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Abstract 

This paper presents an evaluation of temperature effects on ultrasonic piezoelectric transducers for electronic flow measurement 

devices. Transducers generates ultrasonic wave against electrical signals and electrical signals against ultrasonic waves due  to their 

bidirectional characteristics. Temperature dynamics of the physical environment is one of the most crucial parameters which a ffects 

the electrical dynamics of the ultrasonic transducers. Due to the temperature related false sensor readings, flow me asurement process 

for different temperature causes calibration errors. In order to identify the temperature effects on transducers characterist ics and 

constitute a generalized solution, a test procedure and data collection process are developed. Initially,  two identical transducers are 

located reciprocally on a flow meter body. Secondly, bodies are located on a test bench to get signal measurements for different flows. 

A wireless communication data acquisition card is employed to collect ultrasonic signal measurements. Test procedure is repeated for 

5 different temperatures and 13 flow rates. The created dataset is evaluated and visualized in MATLAB environment. A temperat ure 

effect compensation process, which is based on machine learning algorithms, is prop osed. This method considers time domain 

information of transducer elements. Experiment temperature value and average values of Time -of-Flight (TOF) signals for each 

transducers are considered to predict actual flow velocity. In this manner, machine learnin g algorithms linear regression, suppor vector 

regression (SVR), Gaussian process regression (GPR) and artificial neural networks (ANN) are employed to construct the relation 

between temperature variation and flow measurement. Compensation performance is in vestigated by considering the 𝑅2, root mean 

square error (𝑅𝑀𝑆𝐸 ), mean absolute error (𝑀𝐴𝐸 ) and mean square error (𝑀𝑆𝐸) model evaluation metrics. According to the results, 

neual network based compensation algorithm gives the best result with 𝑅2 = 0.95.  

 

Keywords: Ultrasonic transducers, Flow metering, Compensation, Time-of-Flight Measurement.   

Ultrasonik Akış Ölçümünde Sıcaklık Etkisinin İncelenmesi ve 

Kompenzasyonu 

Öz 

Bu makale, elektronik akış ölçüm cihazları için ultrasonik piezoelektrik dönüştürücüler üzerindeki sıcaklık etkilerinin bir 

değerlendirmesini sunar. Dönüştürücüler, çift yönlü özelliklerinden dolayı elektrik sinyallerine karşı ultrasonik dalga ve ultrasonik 

dalgalara karşı elektrik sinyalleri üretir. Fiziksel ortamın sıcaklık dinamiği, ultrasonik dönüştürücülerin elektrik dinamiklerini 

etkileyen en önemli parametrelerden biridir. Sıcaklık değişimi kaynaklı yanlış sensör okumaları, farklı sıcaklıklar için akış ölçüm 

işlemi sırasında kalibrasyon hatalarına neden olur. Bu nedenle, dönüştürücü özellikleri üzerindeki sıcaklık etkilerini belirlemek ve 

genelleştirilmiş bir çözüm oluşturmak için bir test prosedürü ve veri toplama süreci geliştirilmiştir. Başlangıçta , bir akış ölçer gövdesi 

üzerinde karşılıklı olarak iki özdeş dönüştürücü konumlandırılmıştır. İkinci olarak, gövdeler, farklı akışlar için sinyal ölç ümleri almak 
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üzere bir test masasına yerleştirilmiştir. Ultrasonik sinyal ölçümlerini toplamak için bir kablosuz iletişim veri toplama kartı 

kullanılmıştır. Test işlemi 5 farklı sıcaklık ve 13 debi için tekrarlanmıştır. Veri toplama sonucu elde edilen veri seti MATLAB 

ortamında değerlendirilip, çalışma koşulları belirlenmiştir ve makine öğrenmesi algoritmalarına dayalı bir sıcaklık etkisi 

kompenzasyon modeli önerilmiştir. Bu yöntem, dönüştürücü elemanlarının zaman ekseni bilgilerini dikkate almaktadır. Gerçek akış 

hızını tahmin etmek için her deney sıcaklık değeri ve Uçuş Süresi (TOF) sinyallerinin ortalama değ erleri dikkate alınmaktadır. 

Böylece, sıcaklık değişimi ve akış ölçümü arasındaki ilişkiyi oluşturmak için makine öğrenmesi algoritmalarından doğrusal 

regresyon, destek vektör regresyonu (SVR), Gaussian süreç regresyonu (GPR) ve yapay sinir ağları (YSA) ku llanılmıştır. Önerilen 

modelin kompenzasyon performansı 𝑅2, ortalama kare-kök hata (𝑅𝑀𝑆𝐸 ), ortalama mutlak hata (𝑀𝐴𝐸) ve ortalama kare hata (𝑀𝑆𝐸), 

gibi hata metriklerinin hesaplanması ile incelenmiştir. Sonuçlara göre, YSA tabanlı kompenzasyon a lgoritmasının 𝑅2 = 0.95 metriği 

ile en iyi sonucu verdiği görülmüştür.  

 

Anahtar Kelimeler: Ultrasonik transduser, Akış ölçümü, Kompanzasyon, Uçuş süresi ölçümü. 

 

1. Introduction 

Parameter change caused by temperature effect is a widely 

countered disturbance phenomenon in the sensor and 

measurement fields including biomedical (Sarjova et al., 2005), 

process control (Mehta et al., 2022), measurement devices (Fang 

et al., 2022) and embedded system designs (Rudnicki, 2020). 

Transducers are commonly used cheap and easy to use sensor 

elements to measure distance (Balasubramanian et al., 2022), 

liquid flow (Yao et al., 2021), gas flow (Chen et al., 2021) and 

pressure (MacAskill et al., 2021). However, change of 

temperature has a significant role on transducer electrical 

characteristics which causes false sensor readings and 

measurement errors (Zibitsker et al., 2021). Calibration process, 

due to the underlying problem, is underwhelmed to converge to 

actual measurement. Identifying the behavior of the problem and 

developing a method to eliminate temperature effects is a 

crucially significant for the sake of true measurement process. 

Related literature is investigated to study on different 

perspectives on the problem. Huang and Young (2009) employed 

an external sensor to measure the temperature of a distance 

measurement system to compensate the ultrasound velocity 

during the measurement process. Wang and Zhang (2010) 

proposed to use a neural network model which considers the 

temperatre sensor data and ultrasonic flow measurements to both 

calibrate and compensate the measurements, and proved that the 

measurement error decreased to 3% from 5.2%. Scale transform 

and cross-correlation methods are employed by Harley and 

Moura (2012) to find phase delay caused by the temperature 

variations. Herein, they can find the optimal time domain 

information of the ultrasonic waves. A methodology, that aims to 

model temperature effects on signal amplitute and waveform of 

the ultrasound to understand that how temperature affects the 

measurement, is proposed by Jia et al. (2021). Huang et al. 

(2021) employed the transducers to predict temperature value of 

a specific medium where the ultrasound velocity is known and 

used to extract temperature. 

In this study, transducer complex dynamics are investigated 

under certain temperature and flow conditions with a data 

acquisition process. The problems defined in the literature focus 

on the temperature change of the water however we focus on the 

temperature effect on the transducer and its electrical 

characteristics. Upstream and downstream signals, which 

represents the electrical signals on transducers caused by 

ultrasonic wave transmitted from other transducer, might be 

evaluated to determine the working conditions. Thus, 

transducers are placed inside of a brass flow meter body to 

measure the stream signals during the flow. Through the 

instrument of heat test bench, flow and temperature test 

conditions are satisfied. Flow measurements, temperature 

measurements, Time Of Flight (TOF) values representing the 

time domain features of stream signals and actual flow 

measurements are collected using a data acquisition card. During 

the test process, data are collected for different water 

temperatures (10𝑜  𝐶, 20𝑜  𝐶, 30𝑜  𝐶, 40𝑜  𝐶, 50𝑜  𝐶) and 13 flow 

rates between 16 L/h and 5000 L/h. 

Remaining parts of the paper is organized as follows: In 

Section 2. transducer element and its mathematical dynamics are 

explained. Problem is detailly defined, collected data are given 

and proposed compensation method is explained. In Section 3. 

the results of the experiment and compensation work are 

presented. Conclusion and the future work of the study are 

presented in the Section 4. 

2. Material and Method 

2.1. Ultrasonic Transducer and Flow Metering 

Ultrasonic transducers are piezoelectric components used to 

generate and/or receive the ultrasonic sound waves (Jaffe et al., 

1965). Pulsed ultrasonic transducers use electrical energy to 

generate ultrasonic wave trains into the water medium. Reflected 

waves, which might be called echo, are transformed into 

electrical energy back by the ultrasonic transducers. The total 

time during the transmission and reflection is considered to 

compute distance or depth in a water medium. Based upon this 

principle, ultrasonic transducers might be employed for flow 

measurement process. Initially, reciprocal transducers are 

located on a body (or transducer paths are connected with the 

mirror reflecting the waves) to generate and receive waves 

(Figure 1). Transducers are pulsed with a pre-determined 

specific period of time. Received signals by the transducers are 

employed to compute wave transmission time measure Time-of-

Flight (TOF). These waves are called Upstream (In the direction 

of flow ) and/or Downstream (In the reverse direction of flow) 

signals. This transmission/receiving operation might be 

performed with an ultrasonic Time-to-Digital Conversion (TDC) 

integrated circuit chip. TOF difference value, which might be 

computed considering the time difference between downstream 

and upstream signals, is considered to measure both direction 

and amplitute of the flow with an offset compensation and 

calibration process. 

 

Figure 1. Visual representation of an ultrasonic flow meter. 
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2.2. Time of Flight Measurement and Data 

Collection 

TOF of an ultrasonic wave in the direction of downstream 

might be given as: 

𝑡(𝐵>𝐴) =
𝐷

𝐶0
+

𝐿

𝐶0 + 𝑣𝑐𝑜𝑠(𝛼)
+

𝐿

𝐶0 + 𝑣𝑐𝑜𝑠(𝛼)
+

𝐷

𝐶0
 

(1) 

where 𝐿 is the distance between transducers, 𝐷  is the diameter of 

the pipe, 𝛼 is the degree between pipe and mirror, 𝐶0 is the speed 

of ultrasonic wave in water, 𝑣 is the flow velocity, and 𝑡(𝐵>𝐴) is 

the downstream TOF value. In the same manner, upstream TOF 

migh be calculated as: 

𝑡(𝐴>𝐵) =
𝐷

𝐶0
+

𝐿

𝐶0 − 𝑣𝑐𝑜𝑠(𝛼)
+

𝐿

𝐶0 − 𝑣𝑐𝑜𝑠(𝛼)
+

𝐷

𝐶0
 

(2) 

 

 

 

 

 

 

where 𝑡(𝐵>𝐴)  is the upstream TOF value. Due to the TOF value 

is reverse proportional to the flow velocity, TOF Difference 

(TOF DIFF) value migh be computed as: 

Δ𝑇 = 𝑡(𝐵>𝐴) − 𝑡(𝐴>𝐵)

=
2𝐿

𝐶0 − 𝑣𝑐𝑜𝑠(𝛼)
−

2𝐿

𝐶0 + 𝑣𝑐𝑜𝑠(𝛼)

=
4𝐿𝑣𝑐𝑜𝑠(𝛼)

𝐶0
2 − 𝑣2 cos2(𝛼)

 

 

 

(3) 

Computing the flow velocity is directly affected by the 

change of water temperature due to the sound velocity 𝐶0 is 

affected by temperature. To eliminate this dependency: 

𝑡(𝐵>𝐴) ∗ 𝑡(𝐴>𝐵)

=
4(𝐿 + 𝐷)2

(𝐶0 − 𝑣𝑐𝑜𝑠(𝛼))(𝐶0 + 𝑣𝑐𝑜𝑠(𝛼))

+
4𝐷𝑐𝑜𝑠(𝛼)(𝐿 − 𝐶0𝐿 − 𝐷𝑣𝑐𝑜𝑠(𝛼))

𝐶0
2(𝐶0 − 𝑣𝑐𝑜𝑠(𝛼))(𝐶0 + 𝑣𝑐𝑜𝑠(𝛼))

 

 

 

(4) 

Left side of the Eq. (4) may be assumed as zero, and substituting 

(4) in (3) for 𝐶0
2 − 𝑣2 cos 2(𝛼) gives temperature independent 

flow velocity as: 

𝑣 =
Δ𝑇

𝑡(𝐵>𝐴) ∗ 𝑡(𝐴>𝐵)
∗

(𝐿 + 𝐷) 2

𝐿𝑐𝑜𝑠(𝛼)
 

(5) 

Due to the flow calculation is not dependent on 𝐶0 

variations, measurement is not affected by temperature variation. 

However, the aim of this study is to eliminate temperature 

effects on transducer electrical characteristics. To understand the 

temperature related measurement behaviors and dynamics of the 

transducer, flow measurements are performed for different 

temperatures and velocities (Figure 2). TOF values for both 

upstream and downstream, temperature readings, flow 

measurements and actual flow velocities are recorded to perform 

a calibration process which eliminates the temperature variation 

effects. 
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2.3. Temperature Compensation Process 

Temperature parameter must be know to eliminate its effects 

on transducer. Due to the 𝐶0 parameter has a known correlation 

with temperature, it migh be employed to estimate temperature 

value. 𝐶0 might be computed as: 

𝑡(𝐵>𝐴) + 𝑡(𝐴>𝐵) =
4𝐿𝐶0

𝐶0
2 − 𝑣2 cos2(𝛼)

 
(6) 

due to the 𝐶0
2 ≫ 𝑣2 cos 2(𝛼) , equation (6) becomes: 

𝐶0 =
4𝐿

𝑡(𝐵>𝐴) + 𝑡(𝐴>𝐵)
 

(7) 

Proposed compensation method is based on a machine 

learning model which considers the water temperature correlated 

parameter 𝐶0, flow measurement 𝑣 to estimate actual velocity 𝑣 

(Figure 3). 

 

 

 

 

   

   

   

 

 

 

Figure 2. TOF signal evaluation of collected data  during experiments. 
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Figure 3. Block representation of proposed machine learning 

model. 

To perform this process, machine learning models are employed. 

Linear regression is method which defines a linear mathematical 

expression between dependent and independent variables to 

perform a prediction process of the independent variable 

(Weisberg, 2005). This model might be defined as: 

�̂� = 𝜃𝑇𝑋 
(9) 

where  𝑦 is the model prediction, 𝜃 represents model regression 

parameters, and 𝑋 represents model inputs. 

Support Vector Regression (SVR) method employees a 

mapping kernel function which projects feature space into a 

higher dimensional hyperplane (Awad and Khanna, 2015). The 

objective of constructing a Support Vector Machine (SVM) is to 

map features into a higher dimensional space (𝐹) by employing 

a kernel function. Estimation function of a general SVR might 

be defined as: 

�̂� = 𝛼𝑖𝐾(𝑥𝑖 ,𝑥𝑗)+ 𝑏 (10) 

where 𝛼𝑖 represents the support vectors with 𝑖 samples, and 𝑏 

represents the bias term. Mapping function 𝐾 is employed as 

linear, quadratic and cubic, respectively. 

Gaussian process regression is a non-parametric regression 

method based on optimizing the distribution kernel function 

hyper parameters (Wilson et al., 2011). Kernel function with 

optimal parameters define a regression fit which maximize the 

negative log-marginal-likelihood (NLML) of the training set. 

 

 

 

 

 

 

 

 In this framework, probabilistic approach to regression 

between input-output relation might be defined as: 

�̂� = 𝑓(𝑥) + 𝜖 (11) 

where 𝜖 term represents a Gaussian distribution. 

Fundamentals of ANN is based on learning brain neuron 

cells, and hypostatized in machine learning framework (Eskov et 

al., 2019). This model consists of an input layer, hidden layers, 

an output layer and processing elements known as neurons. Each  

neuron node receives its input from previous neuron nodes. 

Neurons passes linearly weighted sum of the signal to another 

neuron over an activation function. Activation functions within 

the hidden layers gain the model its dynamics, and are selected 

considering the complexity of the dataset. Multi-Layer 

Perceptron (MLP) type of ANN has known number of input and 

output layer neurons, and equals to the number of independent 

and dependent variables, respectively. MLP might be defined as: 

�̂� = ℎ𝑜 (𝑊𝑜
𝑇 ∗ ℎ𝑖(𝑊𝑖𝑛

𝑇 ∗ 𝑋)) 
(12) 

where 𝑊𝑖𝑛  represents the hidden-layer neuron parameters, ℎ𝑖
(∙) 

represents the hidden-layer activation function, 𝑊𝑜  represents 

the output-layer neuron parameters, and ℎ𝑜
(∙) is the output-layer 

activation function. In this work, a single hidden-layer MLP type 

ANN is employed for compensation process. 

3. Results and Discussion 

MATLAB environment is employed to study on the 

collected dataset. Firstly, 𝐶0 and 𝑣 values are computed for each 

temperature value. Linear regression, SVR, GPR and ANN are 

employed to perform compensation process. Model 

performances are investigated by considering the metrics 

𝑅2, 𝑅𝑀𝑆𝐸 , 𝑀𝑆𝐸, 𝑀𝐴𝐸 values (Table 1). 

 

 

 

 

 

 

Machine 
Learning based 
Compensation 

Block

  

 
  

Table 1. Model performance metric evaluations. 

 Linear 
Regression 

Linear Kernel 
SVR 

Quadratic Kernel 
SVR 

Cubic Kernel SVR GPR ANN 

𝑅2 0.82 0.81 0.81 0.84 0.92 0.95 

𝑅𝑀𝑆𝐸 0.09876 0.1009 0.1007 0.0932 0.0374 0.0707 

𝑀𝑆𝐸 0.0097 0.0101 0.0101 0.0086 0.0014 0.0050 

𝑀𝐴𝐸 0.0414 0.0315 0.0352 0.0220 0.0076 0.0065 
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According to the results, linear models have close 

performance in terms of 𝑅2 and error metrics. Although the 

quadratic kernel SVR is a nonlinear model, it is understood that 

it provides close performance to linear models in terms of 𝑅2 

and error metrics. Cubic kernel SVR gives slightly better 

performance on 𝑅2, 𝑅𝑀𝑆𝐸  and 𝑀𝑆𝐸 metrics, but it is successful 

in terms of 𝑀𝐴𝐸  metric compare to previous models. Thus, it is 

observed that solving the problem with quadratic or qubic 

approaches is not appropriate in terms of a trade-off between 

model complexity and model performance. GPR, as a 

probablistic distribution based model, gives the best 

performance in terms of 𝑅𝑀𝑆𝐸  and 𝑀𝑆𝐸 metrics due to its 

stochastic behavior. ANN, which gives the best performance in 

terms of 𝑅2, also is successful in terms of 𝑀𝐴𝐸  compare to all 

proposed models on predictin the actual flow velocity. 

4. Conclusions and Recommendations 

This study presents a machine learning based calibration 

method for temperature effects on transducer dynamics on flow 

measurement devices. Herein, the problem is identified and 

related works are given. Initially, transducer component and 

flow measurement process are defined. The data collection 

process for understanding the nature of the problem and adapting 

the proposed method parameters are explained. Afterward, 

temperature effect and proposed method are explained. Machine 

learning models and machine learning based compensation 

process are detailly explained. Finally, model performances on 

compensation process are investigated via performance indexes. 

According to the results, neural network based compensation 

block gives the better performance compare to other models in 

terms of performance metrix. In the future direction of the study, 

a reinforcement learning based compensation method may be 

considered to eliminate disturbance effects. 
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