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Abstract: In the present paper, loxodromes, which cut all meridians and parallels of twisted surfaces (that can be considered 
as a generalization of rotational surfaces) at a constant angle, have been studied in Euclidean 3-space and also some examples 
have been constructed to visualize and support our theory.  
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Öklidyen 3-Uzayında Twisted Yüzeyler Üzerinde Loksodromlar  
 
Öz: Bu makalede, Öklidyen 3-uzayında twisted yüzeylerin (ki bunlar dönel yüzeylerin bir genelleştirilmesi olarak 
düşünülebilir) tüm meridyen ve paralellerini sabit bir açı ile kesen loksodromlar çalışıldı ve ayrıca görselleştirmek ve teorimizi 
desteklemek için bazı örnekler inşa edildi. 
 
Anahtar kelimeler: Loksodromlar, meridyen, twisted yüzeyler. 
 
1. General Information and Basic Concepts 

Loxodromes (also known as rhumb lines) correspond to the curves which intersect all of the meridians at a 
constant angle on the Earth (see Figure 1). An aircraft flying and a ship sailing on a fixed magnetic compass 
course move along a curve. Here the course is a rhumb and the curve is a loxodrome.  Generally, a loxodrome is 
not a great circle, thus it does not measure the shortest distance between two points on the Earth. However, 
loxodromes are important in navigation and they should be known by aircraft pilots and sailors [1]. 

If the shape of the Earth is approximated by a sphere, then the loxodrome is a logarithmic spiral that cuts all 
meridians at the same angle and asymptotically approaches the Earth’s poles but never meets them. Since maritime 
surface navigation defines the course as the angle between the current meridian and the longitudinal direction of 
the ship, it may be concluded that the loxodrome is the curve of the constant course, which means that whenever 
navigating on an unchanging course we are navigating according to a loxodrome [11]. 
 

Figure 1. Loxodrome on Earth 

In this context, there are lots of studies about loxodromes in Euclidean and Minkowskian spaces. For instance, 
the differential equations of loxodromes on a sphere, spheroid, rotational surface, helicoidal surface and canal 
surface in Euclidean 3-space have been given in [11], [13], [12], [2] and [3], respectively. Also, in [4] and [5], 
spacelike and timelike loxodromes on rotational surface and in [6], differential equations of the spacelike 
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loxodromes on the helicoidal surfaces in Lorentz-Minkowski 3-space have been given. 
Now, we recall some basic notions about curves and twisted surfaces in Euclidean 3-space 𝐸!. 
For two vectors  𝑢#⃗ = (𝑢", 𝑢#, 𝑢!) and  �⃗� = (𝑣", 𝑣#, 𝑣!)  in	𝐸!  the  inner  product  of  these  vectors and the  

norm of the vector 𝑢#⃗  are defined by 
 
〈𝑢#⃗ , 𝑣〉 = 𝑢"𝑣" + 𝑢#𝑣# + 𝑢!𝑣!                                                                                        (1) 
 
and 
 
‖𝑢#⃗ ‖ = /〈𝑢#⃗ , �⃗�〉 ,                                                                          (2) 
    
respectively. We say that  𝑢#⃗  is a unit vector, if ‖𝑢#⃗ ‖ = 1. 

The arc-length of a regular curve 𝛼: 𝐼 ⊂ R → 𝐸!, 𝑠→ 𝛼(𝑠), between 𝑠$ and 𝑠 is 
 

𝑡(𝑠) = ∫ ‖𝛼′(𝑠)‖𝑑𝑠.%
𝑠0

                                                             (3)          
 
Then the parameter 𝑡 ∈ 𝐽 ⊂ R is determined as ‖𝛼′(𝑠)‖ = 1. 
Also, the angle 𝜙	(0 < 𝜙 < 𝜋) between the vectors  𝑢#⃗  and  𝑣 is 

 
𝑐𝑜𝑠𝜙 = 〈())⃗ ,,)⃗ 〉

‖())⃗ ‖‖,)⃗ ‖
.                                     (4) 

Here, we recall the definition and parametrization of twisted surfaces in 𝐸! (for detail, see [8]). 
A twisted surface in 𝐸! is obtained by rotating a planar curve 𝛼 in its supporting plane while this plane itself 

is rotated about some containing straight line. Without loss of generality, the coordinate system can be chosen in 
such a way that the 𝑥𝑧-plane corresponds with the plane supporting the planar curve with the 𝑧-axis as its 
containing rotation axis and that the straight line through the point (𝑎, 0,0) parallel with the 𝑦-axis acts as rotation 
axis for the planar curve. 

Firstly, let we apply the rotation about the straight line through the point (𝑎, 0,0) parallel with the 𝑦-axis to 
the profile curve 𝛼(𝑦) = F𝑓(𝑦), 0, 𝑔(𝑦)I, (𝑓 and 𝑔 are real-valued functions) and next apply the rotation about the 
𝑧-axis to the obtained surface. Then, up to a transformation, we get the parametrization of the twisted surface in 
as	𝐸! 
 

𝑇(𝑥, 𝑦) = K
(𝑎 + 𝑓(𝑦) cos(𝑏𝑥) − 𝑔(𝑦) sin(𝑏𝑥))𝑐𝑜𝑠𝑥,
(𝑎 + 𝑓(𝑦) cos(𝑏𝑥) − 𝑔(𝑦) sin(𝑏𝑥))𝑠𝑖𝑛𝑥,

𝑓(𝑦) sin(𝑏𝑥) + 𝑔(𝑦) cos(𝑏𝑥)
U.	                                     (5) 

 
Here, the presence of the factor  𝑏 ∈ R  allows for differences in the rotation speed of both rotations and it is 

obvious from the construction that, if we take 𝑏 = 0, then the twisted surface reduces to a surface of revolution. 
Thus, the twisted surfaces can be considered as generalizations of surfaces of revolution. 

After giving the definition of the twisted surfaces, twisted surfaces with null rotation axis in Minkowski 3-
space have been studied in [9] and twisted surfaces with vanishing curvature in Galilean 3-space have been 
classified in [7]. Also, in [10], the twisted surfaces in pseudo-Galilean space have been studied. 

In this paper, we have studied loxodromes on twisted surfaces in Euclidean 3-space and also we have 
constructed some examples to visualize and support our results. 

 
2. Loxodromes on Twisted Surfaces in 𝑬𝟑 

In this section, we obtain the equations of loxodromes on the twisted surfaces in 𝐸!. 
Let T be the twisted surface which parametrized as (5). Then the coefficients of first fundamental form of the 

twisted surface T are obtained by 
 

𝑔"" =
"
#
W2𝑎

# + (1 + 2𝑏# + cos(2𝑏𝑥))𝑓# + (1 + 2𝑏# − cos(2𝑏𝑥))𝑔#
−4𝑎𝑔𝑠𝑖𝑛(𝑏𝑥) + 4𝑓𝑐𝑜𝑠(𝑏𝑥)(𝑎 − 𝑔𝑠𝑖𝑛(𝑏𝑥)) Z, 
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𝑔"# = 𝑔#" = 𝑏(𝑓𝑔0 − 𝑓0𝑔),                                 (6) 
𝑔## = 𝑓′# + 𝑔′#, 
 
where 𝑔"" = 〈𝑇1 , 𝑇1〉,  𝑔"# = 𝑔#" = 〈𝑇1 , 𝑇2〉, 𝑔## = 〈𝑇2, 𝑇2〉, 𝑓 = 𝑓(𝑦), 𝑔 = 𝑔(𝑦), 𝑓′ = 34(2)

32
 and 𝑔0 = 37(2)

32
. 

Also, we know that the first fundamental form in the base [𝑀1 , 𝑀2] for a surface M(x, y) is given by 
 
𝑑𝑠# = 𝑔""𝑑𝑥# + 2𝑔"#𝑑𝑥𝑑𝑦 + 𝑔##𝑑𝑦#,                              (7) 
             
where 𝑔89 are the coefficients of the first fundamental form of M. So, from (6) and (7), we can write the first 
fundamental form of the twisted surface (5) as  
 

𝑑𝑠# = ^
𝑎# − 2𝑎𝑔𝑠𝑖𝑛(𝑏𝑥) + 2𝑓𝑐𝑜𝑠(𝑏𝑥)F𝑎 − 𝑔𝑠𝑖𝑛(𝑏𝑥)I

+ "
#
((1 + 2𝑏# + cos(2𝑏𝑥))𝑓# + (1 + 2𝑏# − cos(2𝑏𝑥))𝑔#)

_𝑑𝑥#                                        (8) 

           +2𝑏(𝑓𝑔0 − 𝑓0𝑔)𝑑𝑥𝑑𝑦 + (𝑓′# + 𝑔′#	)𝑑𝑦# 
 
and from (8), the arc-length of any curve on the twisted surface between 𝑥" and 𝑥# is given by 
 

𝑠 = `
`∫ a

^
𝑎# − 2𝑎𝑔𝑠𝑖𝑛(𝑏𝑥) + 2𝑓𝑐𝑜𝑠(𝑏𝑥)F𝑎 − 𝑔𝑠𝑖𝑛(𝑏𝑥)I

+ "
#
((1 + 2𝑏# + cos(2𝑏𝑥))𝑓# + (1 + 2𝑏# − cos(2𝑏𝑥))𝑔#

_𝑑𝑥

+2𝑏(𝑓𝑔0 − 𝑓0𝑔) 32
31
+ (𝑓′# + 𝑔′#)	(32

31
)#

1!
1" `

`.                            (9) 

 
Furthermore, a curve 𝛾	is called a loxodrome on the twisted surface T in 𝐸! if it cuts all meridians (y constant) 

(or parallels (x constant)) of T at a constant angle. 
Now, let us suppose that 𝛾(𝑡) = 𝑇(𝑥(𝑡), 𝑦(𝑡)); i.e. 𝛾(𝑡) is a curve on the twisted surface T. With respect to 

the local base [𝑇1 , 𝑇2], the vector 𝛾′(𝑡) has the coordinates (𝑥0, 𝑦′) and the vector 𝑇1 has the coordinates (1, 0). At 
the point 𝑝	 = 	𝑇(𝑥, 𝑦); where the loxodrome cuts the meridians at a constant angle; we get 
 
𝑐𝑜𝑠𝜙 = 〈:#,;0(<)〉

‖:#‖‖;0(<)‖
= 7""31=7"!32

>7""!31!=#7""7"!3132=7""7!!32!
	.	                       (10) 

 
Therefore, keeping in mind (10) we get 
 
𝑔""#𝑠𝑖𝑛#𝜙𝑑𝑥# + 2𝑔""𝑔"#𝑠𝑖𝑛#𝜙𝑑𝑥𝑑𝑦 + (𝑔"## − 𝑔""𝑔##𝑐𝑜𝑠#𝜙)𝑑𝑦# = 0                          (11)       
 
and so, 
 
32
31
= ?#7""7"!%8@!A∓7"">7""7"!?7""!BCD	(#A)

#(7"!!?7""7!!FG%!A)
 .                    (12) 

 
Hence from (6) and (12), the loxodrome on the twisted surface (5) must satisfy 

32
31
= −⎝

⎜
⎜
⎜
⎜
⎜
⎛

⎝

⎜
⎜
⎛

#KL47$?4$7M BCDA

∓#FG%AO

?K!(47$?4$7)!=

(40!=70!)P
Q!?#Q7%8@(K1)=#4FG%(K1)LQ?7%8@(K1)M

="!R
("=#K!=STB(#K1))4!
=("=#K!?STB(#K1))7!

U
V
⎠

⎟
⎟
⎞
×

[#Q
!=L"=#K!=STB(#K1)M4!=L"=#K!?STB(#K1)M7!

?\Q7%8@(K1)=\4FG%(K1)(Q?7%8@(K1))
] BCDA

⎠

⎟
⎟
⎟
⎟
⎟
⎞

\

⎝

⎜
⎛

K!(47$?4$7)!?

(40!=70!)P
Q!?#Q7%8@(K1)=#4FG%(K1)LQ?7%8@(K1)M

="!R
("=#K!=STB(#K1))4!
=("=#K!?STB(#K1))7!

U
VFG%

!A

⎠

⎟
⎞

 .                (13) 

 
Now, we give some examples to support our results that obtained in the paper. 
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Example 1. Taking the profile curve as 𝛼(𝑦) = (𝑦, 0,0),  the twisted surface (5) becomes 
 
𝑇(𝑥, 𝑦) = ((𝑎 + 𝑦𝑐𝑜𝑠(𝑏𝑥)𝑐𝑜𝑠𝑥, F𝑎 + 𝑦𝑐𝑜𝑠(𝑏𝑥)𝑠𝑖𝑛𝑥, 𝑦𝑠𝑖𝑛(𝑏𝑥)I.                                                                  (14)                                                                                         
 
From (13) (we take ∓ in this equation as −), we get the differential equation of the loxodrome on the twisted 
surface (14) for 𝑎 = 0		and 𝑏 = "

#
	as     

 
32
31
= 2√#FG%1=!<Q@A

#
 .                                                                                                                                           (15)                                                                                                                                                          

   
Thus, we write 
 
 32
2
= √#FG%1=!<Q@A

#
𝑑𝑥   

 
and by integrating both sides of this equation, we get 
 
lny = ∫ √#FG%1=!<Q@A

#
𝑑𝑥𝒙

𝒙𝟎
.                                                                                                                                (16) 

 
Putting 𝑥$ = 0	in (16), we reach that 
 
𝑦 = 𝑦(𝑥) = 𝑒√`abb8c<8Fad

#
!,
&
'e<Q@A.                                                                                                                      (17)                                                                                                          

 
Now, if we take 𝜙 = f

g		
  and 𝑥 ∈ (−2π, 2π), we get 𝑦 ∈ (0.0476989, 20.9649). Thus, the loxodrome which lies on 

the twisted surface (14) is obtained as 
 

𝛾(𝑥) = 𝑒h
'	
)abb8c<8Fad

#
!,
&
'e.W𝑐𝑜𝑠 h1

#
i 𝑐𝑜𝑠𝑥, 𝑐𝑜𝑠 h1

#
i 𝑠𝑖𝑛𝑥, 𝑠𝑖𝑛 h1

#
iZ.                                                                      (18)          

 
Also, the arc-length of our loxodrome (18) is approximately equal to 41.8343. The twisted surface (14), meridian 
for y = 15 and the loxodrome (18) can be seen in Figure 2. 
 

 
 

Figure 2. Twisted surface (14), Meridian (red) and Loxodrome (blue) 
 
Example 2.  For the profile curve 𝛼(𝑦) = (cos 𝑦 , 0, sin 𝑦) the twisted surface (5) is 

T(x, y) = K
(a + cos y cos(bx) − sin y sin(bx)) cos x ,
(a + cos y cos(bx) −	sin y sin(bx)) sin x ,

	cos y sin(bx) + sin y cos(bx)
U.                                                                                  (19)          
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If we take 𝑎 = 1 and 𝑏 = 0 then from (13) (we take ∓ in this equation as −), we have 
 
32
31
= 2cos#(2

#
) tan𝜙                                                                                                                                        (20)          

 
and hence 
 

32
# STB!(*!)

= tan𝜙𝑑𝑥	                                                                                                                                             (21) 

 
and by integrating both sides of this equation, we get 
 
tan(2

#
) = 	∫ tan𝜙𝑑𝑥1

1+
.	                                                                                                                                        (22) 

 
Taking 𝑥$ = 0	in (22), we arrive at 
 
𝑦 = 𝑦(𝑥) = 2	(𝑎𝑟𝑐𝑡𝑎𝑛(𝑥tan𝜙) +𝑐𝜋), 𝑐 ∈ 𝑍.	                                                                                                 (23) 
 
Here, if we take 𝑐 = 0, 𝜙 =	f

\
 and 𝑥 ∈ (−𝜋, 𝜋) we have 𝑦 ∈ (−2.52525, 2.52525). Thus, the loxodrome which 

lies on the twisted surface (19) is obtained as 
 
𝛾(𝑥) = (((1 +	cos(2𝑎𝑟𝑐𝑡𝑎𝑛𝑥)) cos 𝑥 , (1 +	cos(2𝑎𝑟𝑐𝑡𝑎𝑛𝑥)) sin 𝑥 , sin(2𝑎𝑟𝑐𝑡𝑎𝑛𝑥)) .                                (24) 
 
Also, the arc-length of our loxodrome (24) is approximately equal to 7.1425. One can see the twisted surface (19), 
meridian for y = 1 and the loxodrome (24) in Figure 3. 

 
 

Figure 3. Twisted surface (2.14), Meridian (red) and Loxodrome (blue) 
 
Furthermore, from the definition of the angle 𝜃 between the loxodrome and any parallel (𝑥=constant), we have 
 
cos 𝜃 = 	

〈;$(<),:*〉	
‖;$(<)‖	i	:*i

=	 7"! 31=	7!! 32

h7""7!! 31!=#7"!7!! 31 32=	7!!
! 	32!

	.                                                                             (25) 

  
From (25), we get 
 
(𝑔""𝑔## cos# 𝜃 −	𝑔"## ) 𝑑𝑥

# − 2𝑔"#𝑔## 	sin# 𝜃	𝑑𝑥 𝑑𝑦 −	𝑔### 	sin# 𝜃	𝑑𝑦
# = 0	                                           (26) 

 
and so, 
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31
32
=	

?#7"!7!! BCD! j	±	7!!	h7""7!!?	7"!
! 	BCD(#j)	

#L7"!! ?	7""7!! STB! jM
	.                                                                                                (27) 

 
Therefore, the loxodrome on the twisted surface must 
 

31
32
=	⎝

⎜
⎜
⎛

#K BCDjL4$7?47$M

∓# STBjO

?K!(74$?47$)!

=P
Q!?#Q7 BCD(K1)=#4 STB(K1)(Q?7 BCD(K1))

="!R
("=#K!=STB(#K1))4!
=("=#K!?	STB(#K1))7!

U
V(4$!=7$!)

⎠

⎟
⎟
⎞
(4$!=7$!) BCD j

P
#K!	(4$7?47$)!

?R #Q!?\Q7 BCD(K1)=\4 STB(K1)(Q?7 BCD(K1))
=("=#K!=	STB(#K1))4!=("=#K!?	STB(#K1))7!

U(4$!=7$!) STB! j
V

 .                                                                (28) 

 
Now, let us give an example for the loxodrome which cuts the parallels of the twisted surface at a constant angle. 
 
𝐄𝐱𝐚𝐦𝐩𝐥𝐞	𝟑. Let us take the profile curve as 𝛼(𝑦) = (𝑐𝑜𝑠#𝑦, 0, 𝑠𝑖𝑛#𝑦). Then, the twisted surface (5) is 
 

𝑇(𝑥, 𝑦) = K
(𝑎 + 𝑐𝑜𝑠#𝑦𝑐𝑜𝑠(𝑏𝑥) − 𝑠𝑖𝑛#𝑦𝑠𝑖𝑛(𝑏𝑥))𝑐𝑜𝑠𝑥,
F𝑎 + 𝑐𝑜𝑠#𝑦𝑐𝑜𝑠(𝑏𝑥) − 𝑠𝑖𝑛#𝑦𝑠𝑖𝑛(𝑏𝑥)I𝑠𝑖𝑛𝑥,

𝑐𝑜𝑠#𝑦𝑠𝑖𝑛(𝑏𝑥) + 𝑠𝑖𝑛#𝑦𝑐𝑜𝑠(𝑏𝑥)
U.                                                                        (29)    

   
Putting 𝑎 = −1and 𝑏 = 0, from (28) (we take ∓ in this equation as −), we get 
 
31
32
= 2√2𝑐𝑜𝑡𝑦𝑡𝑎𝑛𝜃                                                                                                                                    (30) 

 
which gives 
 
𝑑𝑥 = 2√2𝑐𝑜𝑡𝑦𝑡𝑎𝑛𝜃𝑑𝑦. 
 
Thus, by integrating both sides of the equation 
𝑥 = ∫ 2√2𝑐𝑜𝑡𝑦𝑡𝑎𝑛𝜃𝑑𝑦2

2+
.                                                                                                                                      (31) 

 
For 𝑦$ =

f
#
,  we reach that 

 
𝑥 = 𝑥(𝑦) = 2√2𝑙𝑛(𝑠𝑖𝑛𝑦)𝑡𝑎𝑛𝜃.                                                                                                           (32)                        
 
   
Here, by taking 𝜃 = f

!
 and  𝑦∈( f

"g
, #f
!

), we have x ∈ (−8.00637, −0.704674). Therefore, we obtain the loxodrome 
which lies on the twisted surface (29) as 
 
𝛿(𝑦) = (−𝑠𝑖𝑛#𝑦𝑐𝑜𝑠(2√6𝑙𝑛(𝑠𝑖𝑛𝑦)), −𝑠𝑖𝑛#𝑦𝑠𝑖𝑛(2√6𝑙𝑛(𝑠𝑖𝑛𝑦)), 𝑠𝑖𝑛#𝑦).                                                                 (33) 
 
Also, the arc-length of the loxodrome (33) is approximately equal to 3.42788. One can see the twisted surface (29), 
meridian for 𝑥 = −1 and the loxodrome (33) in Figure 4. 
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Figure 4. Twisted surface (29), Meridian (red) and Loxodrome (blue) 

 
References 
[1] Alexander J. Loxodromes: a rhumb way to go, Math. Mag 2004; 77(5): 349–356. 
[2] Babaarslan M, Yaylı Y. Differential Equation of the Loxodrome on a Helicoidal Surface, The Journal of Navigation 2015; 

68; 962–970. 
[3] Babaarslan M, Loxodromes on Canal Surfaces in Euclidean 3-Space, Ann. Sofia Univ. Fac. Math and Inf. 2016; 103: 97–

103. 
[4] Babaarslan M, Yaylı Y.  Space-like loxodromes on rotational surfaces in Minkowski 3-space, J. Math. Anal. Appl 2014; 

409; 288–298. 
[5] Babaarslan M, Munteanu M.I. Timelike loxodromes on rotational surfaces in Minkowski 3–space, Annals of the 

Alexandru Ioan Cuza University-Mathematics, 2015; DOI: 10.2478/aicu-2013-0021. 
[6] Babaarslan M, Kayacik M. Differential Equations of the Space-Like Loxodromes on the Helicoidal Surfaces, Differ Equ 

Dyn Syst 2020; 28(2): 495–512. 
[7] Dede M,  Ekici C,  Goemans W, Ünlütürk Y.  Twisted surfaces with vanishing curvature in Galilean 3-space, International 

Journal of Geometric Methods in Modern Physics,2018; 15(1). 
[8] Goemans W, Van de Woestyne I.  Twisted surfaces in Euclidean and Minkowski 3-space, Pure and Applied Differential 

Geometry, Joeri Van der Veken, Ignace Van de Woestyne, Leopold Verstraelen and Luc Vrancken (Editors), Shaker 
Verlag (Aachen, Germany) 2013; 143-151. 

[9] Goemans W, Van de Woestyne I. Twisted Surfaces with Null Rotation Axis in Minkowski 3-Space, Results in 
Mathematics,(2016; 70: 81–93. 

[10] Kazan A, Karadağ H.B. Twisted Surfaces in the Pseudo-Galilean Space, NTMSCI 2017; 5(4): 72-79. 
[11] Kos S, Vranic D, Zec D. Differential Equation of a Loxodrome on a Sphere, The Journal of Navigation 1999; 52: 418–

420. 
[12] Kos S, Filjar R, Hess M, Differential equation of the loxodrome on a rotational surface, ION ITM Conference, 2009; 

Anaheim, California, USA. 
[13] Petrovic M. Differential Equation of a Loxodrome on the Spheroid, ”Naˇse more” 2007; 54(3-4): 87-89. 


