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1. Introduction 
 
Today, "Medical artificial intelligence" programs have been used in medicine increasingly. Artificial 
intelligence (AI) systems can also make clinical diagnosis and treatment recommendations based on 
patient data and advise the physician. Artificial neural networks are mimic the work of the biological 
nervous system. They are detecting patterns that have not been noticed before and classing them, 
checking medical devices, detecting the characteristics of medical images. Hematology is the area where 
medical AI is mostly used. AI is used in benign and malignant hematology for diagnosis, prognosis, 
treatment planning as well as hematologic pathological, radiographic, laboratory, genomics, 
pharmacological and chemical data related. In this study, Pub med database was scanned using the words 
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Artificial intelligence (AI) is a computer-based science that aims to simulate 
the human brain using a system. One of the most used areas of artificial 
intelligence in medicine is hematology. In this study, the Pubmed database 
was scanned using the words "hematology, artificial intelligence". The 
chronological development of artificial intelligence in hematology was 
evaluated by examining the articles found. AI was used firstly in hematology 
with peripheral blood interpretation in laboratory systems. It was followed by 
flow cytometry for immunophenotyping and bone marrow reporting. The 
diagnosis of iron deficiency anemia, hemoglobinopathies, Polistemia Vera 
and classification of hematological malignancies such as leukemia and 
lymphoma were made. AI-supported algorithms are developed for 
immunotherapy and evaluation of recipient compatibility before stem cell 
transplantation. Also they used evaluation of recurrence and complications 
after transplantation. Together with the new generation digital image 
analyzers, images has been transferred to a central laboratory and an unique 
automation that can be archived with fast, high-quality consultation. As a 
result, artificial intelligence systems have been used in the diagnosis and 
treatment of hematological diseases from past to present and seem to play an 
important role in the future. 
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"hematology, artificial intelligence". The chronological development of artificial intelligence was 
evaluated in hematology from the past to date by examining the found articles. 
2. History 
 
In 1873, Alexander Bain (1818–1913) described memory as a series of nerves and published the book 
"Relationships of mind and body theories" [1]. In 1943, Warren S. McCulloch, a neuroscientist, and 
Walter Pitts, a logician, made a mathematical model of a neuron. They wrote an article titled "The logical 
calculus of ideas implicit in neural activity" [2]. In 1950, Alan M. Turing, one of the fathers of modern 
computer science, proposed a criterion called the "Turing test" to decide whether a computer program 
achieves an intelligence equivalent to human. In this test, a person has a written conversation with a 
reporter who does not appear on any subject. If a person believes that he is talking to another person 
while communicating with a computer, the computer passes the Turing test.  At John McCarthy's 
conference in 1956, the term AI was officially added to the dictionary of scientific terms. In 1960, 
Rosenblatt presented the first learning machine capable of learning to identify optical patterns, developing 
the first neural network to be applied to a real problem [3]. 
 
3. Artificial intelligence and hematology  
 
AI first applications in hematology are related to laboratory diagnosis. In 1995, a three-legged system was 
established in five European hospitals aimed at accurate diagnosis and classification of hematological 
malignancies by conducting diagnostic peripheral blood interpretation, flow cytometry immune phenol 
typing and bone marrow reporting. These systems are named after their creators as Professor Petrushka, 
Fidelio and Belmonte respectively. In addition to laboratory results, these three modules are engaged in 
interaction with each other and with a database that includes clinical history. With this system, the 
diagnosis and classification of 100 definitively diagnosed leukemia patients were made. While the system 
correctly diagnosed 94 patients, the correct diagnosis level of the clinicians was determined as 99[4]. 
Then 366 samples of patients with lymphoproliferative disorders, leukemias and lymphomas collected 
from two independent medical centers tested for control.  In 300/366 samples, a common result was 
achieved with Fidelio's interpretations. When analyzing the disputes, it revealed that most of them were 
due to errors in the diagnostic record and differences in diagnostic criteria between Fidelio's database of 
information and those used in the medical center [5]. Bone marrow reporting by the Professor Belmonte 
system; 785 random cases were evaluated and scored by three hematologists: one consultant, one senior 
and one teenager. Each of the reports scored satisfactory or better than at least two of the three referees. In 
addition to safety and accurateness, improving efficiency by reducing turnaround time has also been 
found to be an important feature of the system [6].  
 
Another approach to the diagnosis of hematological diseases was achieved through unsupervised pattern 
recognition and the integration of artificial neural networks (ANN). In 1999, Fucharoen worked on an 
artificial intelligence laser cytometer device that was adapted to the ADVIA120 automatic hematological 
analyzer. It has classed 40,000 red blood cells of this device by volume and Hb content to base it on Mie 
sweat. In the diagnosis of thalassemia, iron deficiency anemia, hemoglobinopathy patients, relatively 
accurate results were obtained according to the conditions of that day [7]. In 1995, Erler et al. and 
Birndorf et al. used artificial intelligence devices in the thalassemia class [8, 9]. Amendolia et al. used 
four peripheral blood hematological parameters (RBC, Hb, Hct and MCV). They detected beta carrier and 
alpha carrier thalassemia with 94% accuracy using ANN together with hemochrocytometric analysis [10]. 
After the development of automatic cytochemistry for leukocyte counting, a new and effective pre-
microscopic approach devoloped during automatic blood cell counting for leukemia diagnosis and 
classification.  A cytometer was used that based on the light assessment of basic cell properties, volume, 
peroxide activity and nuclear density. This device distinguished leukocyte classes according to volume, 
myeloperoxidase content and chromatin model. Information was learned by adding a score to the 
cytogram about normal samples as well as the genealogy, myeloid differentiation level and chromatin 
pattern. Compared to FAB qualification, this system had 91% diagnostic activity [11]. In 2001, this 
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software was developed. It found normal and pathological differentiation from blood samples taken from 
patients with hematopoietic disorders [12]. In 2002, using artificial intelligence 98% diagnosis of 
Polistemia Vera (PV) was possible [13]. 
 
In 1999, Golub et al. created a systematic approach to identify acute leukemia. It is based on the 
simultaneous expression of thousands of genes using independent DNA microdysis[14]. Using genome 
microdyzis to leukemia classification, it was possible to identify known prognostic leukemia subtypes and 
special gene signatures of high relapse risk patients. These studies could also be used for studies created 
to differentiate stem cells into cells that can be used to replace tissue damaged by disease or trauma [15]. 
 
AI was also used in the diagnosis of iron deficiency anemia [16]. Neural network-based models have been 
developed for the differentiative diagnosis of iron deficiency anemia and β-thalassemia [17-21]. 
 
Morita et al. analyzed bone marrow samples from patients with myeloid leukemia. They created an AI-
based model that accurately predicts clinical phenotype based on somatic mutation data [22]. Siddiqui 
proposed an AI model based on known clinical parameters before treatment, estimating mortality rates for 
patients undergoing chemotherapy. Thus, clinicians were allowed to identify patients suitable for 
intensive induction regimens [23]. These approaches are based on cytogenetics, mutation status, and age. 
They have been shown to accurately predict the prognosis of acute myeloid leukemia (AML). Gerstung et 
al. has individually applied large data set knowledge banks to combine clinical and genomic data of 
patients.  This method provided a higher level of accuracy for recurring, remission compared to current 
standards [24]. Fleming, Shrev, Li et al. reported a lower error rate compared to the European Leukemia 
Net 2017 score in predicting the prognosis [25-27]. AI can be used to develop a new prognostic index or 
improve an existing one. Patkar and Wagner developed a scoring system for classification NPM1 mutated 
AML [28, 29]. AI was able to estimate the probability of a full response in pediatric AML patients 
receiving induction therapy according to gene expression models [30]. AI can provide a patient selection 
of new therapeutic agents approved for the treatment of patients with AML.  
 
Evaluating eligibility criteria and scanning electronic health records for eligible patients; AI predicted the 
likelihood of failure or success in trial. AI systems have also been developed to discover new treatment 
strategies from genomic data and detected drug-sensitive targets [31-34]. AI techniques were also 
developed to evaluate patients eligible for transplant and patients at risk of complications before starting 
treatment [35-37]. Post-transplant recurring was predicted using alternative decision trees [38]. It can also 
be used to predict the development of acute graft versus host disease after allogeneic transplantation [39, 
40)] Many studies have been carried out investigating the use of AI tools to improve hematopoietic cell 
transplantation (HTC). The choice of transmitter and receiver pairs for HCT is a major issue that can 
affect the prognosis of HCT recipients. Different studies have investigated the possible use of AI methods 
and tools to overcome this challenge. Marino [41] and Buturovic [42] used AI methods to identify 19 
amino acid substitutes shows bad outcome following HCT. Despite the optimistic preliminary results, 
these algorithms failed in the validation study. Sarkar and Srivastava have developed an algorithm that 
uses both HLA and the lethal cell immunoglobulin-like receptor to improve transmitter selection for 
recipients with acute myelogenous leukemia (AML) [43]. The algorithm was able to increase the 
accuracy of estimates by 3% - 4% compared to the usual analysis. Sivasankaran et al. proposed a black 
box model in the development of a system that uses non-secondary HLA features in the selection of 
donors, but to date, no data has been reported on confirming or improving accuracy [44]. Despite all the 
advances in HCT, HCT recipients are at risk of many complications that can increase their mortality and 
morbidity. Therefore, predicting the risk and prognosis of recipients to develop these complications will 
help clinicians. They can make better decisions that will improve patients' quality of life and quality of 
survival. In 2015, a prediction model to classify AL patients according to their prognosis following 
allogenic HKT was developed [45]. The results showed that this method is a valid tool for classifying the 
risk of AL patients under HCT. The system was able to predict 100 days of mortality, leukemia-free 
survival, 2 years of overall survival, and relapse mortality. Using pre-transplant minimal residual disease 
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(MRD), Li et al. predicted the allogenic HCT result in AML and Myelodysplastic syndrome (MDS)[46]. 
The approach was found to distinguish between abnormal (MDS or AML) and normal cases by 90.8% in 
the training set and 84.4% in the verification set. System results are interpreted 100 times faster than 
exports. 
 
 In B-cell Acute Lymphoblastic Leukemia, artificial intelligence was used to predict recurrence by 
analyzing differences in the intensity of marker expression.  The prognostic potential of 
immunophenotypic marker expression density was evaluated. Classifiers have been created to measure 
the differences between patients with relapse by associating them with genetic information. Thus, the 
relationship between the sub-expression of the CD38 and the probability of recurring was determined 
[47]. 
 
Recently, automated digital microscopy systems have been developed. They can take advantage of a 
digital camera connected to a more advanced computer system. Digital images of individual cells are 
taken. A computer-aided classification based on image analysis parameters of the geometric, color, and 
tissue properties of the blood cell.  Image analysis automates the blood-spreading review process and 
gives faster slide reviews. Digital image analyzers also let remote networked laboratories quickly transfer 
images to a central laboratory for review. This simplifies various basic business functions in laboratory 
hematology such as consultations, digital image archiving, libraries, quality assurance, proficiency 
assessment, education, and training [48, 49]. 
 
Changes in the specific cell population can be detected by using simulation models. Many differential 
equations are applied for each cellular subspecies or chemical tool during immune interactions. In recent 
years, tumor complex immune properties such as spatial dynamics of the tumor, cellular heterogeneity, 
cytokine activity, signaling, and modular factors have been added to these simulation models. 
Personalized mathematical models have been developed to improve the effectiveness of newly developed 
immunotherapies during clinical research. AI techniques can facilitate precise planning of treatments for 
optimization of clinical trials of innovative stem cell and gene theatrics in pediatric patients. Predicting 
clinical results can simplify patient data [50]. 
 
4. Conclusion  
 
AI applications can be used at all stages of patient management in hematology from diagnostic peripheral 
blood analysis to gene profiling. AI is important for developing individual-specific treatment. Many 
studies on leukemia classification, stem cell treatments, and genetic programs also continue. As a result, 
artificial intelligence systems will be used much more in the future than it is now. Models of 
hematological data supported by intelligent systems will set the stage for us to better understand diseases 
and develop new treatments. 
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