
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
  
 

 
 
 
 
 
 
 
 

1. Introduction 
 

The COVID-19 outbreak that started in Wuhan, China in December 2019 continues its impact worldwide. 
As of April 3, 2021, the number of deaths worldwide is approximately 2.8M, while the number of cases is 
129.9M [1]. Those infected with the disease show mild symptoms, spreading the virus at an early stage, 
making it difficult to control the spread [2]. Although vaccines against the virus have been developed, the 
mutations that the virus has undergone cause it to be transmitted faster than before. For this reason, early 
detection and isolation of the patients with the disease is of great importance for the correct treatment, 
planning, and control of the spread. 
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Introduction-Objectives: The high contagiousness of the SARS-COV-2 virus 
has resulted in many people being infected worldwide. In many countries, the 
capacity of intensive care units has been insufficient and has become unable to 
accept new patients. Imaging-based non-invasive methods developed as an 
alternative to the RT-PCR technique to control the spread of the virus during 
the pandemic process generally focus on the presence or absence of the disease. 
However, these methods do not provide information about how severe the 
disease is and how it progresses. Therefore, in this study, a deep learning-based 
estimation framework with low computational load is proposed to predict 
severity scores using chest radiographs.  
Materials-Methods: The pre-trained ImageNet models are used as feature 
extraction networks to extract generic features. A two-headed estimation 
subnetwork each with the same number of layers is created to learn task-
specific features. Eventually, an end-to-end trainable lightweight deep model 
is created by connecting the estimation subnetwork to the feature extraction 
network.  
Results:  The proposed model is evaluated on a publicly available Cohen’s 
covid-chestxray-data set. The best cross-validation performance in terms of 
RMSE, MAE, and R2 in the prediction of lung involvement and opacity is 
obtained as 1.39/0.98, 1.1/0.81, 0.65/0.66, respectively.  
Conclusions: Although the model has been trained with limited data, 
promising results are achieved with an end-to-end framework for estimating 
the severity of the COVID-19 disease.  
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After proving that medical images carry various information about COVID-19, many researchers aimed to 
develop rapid screening tools that could be an alternative to RT-PCR (Reverse Transcriptase-Polymerase 
Chain Reaction) technique [3]. In some of these developed methods, hand-crafted features are extracted 
from medical images, and classical machine learning methods are trained [4]–[6]. Deep learning-based 
methods have been proposed in another significant number of studies [4], [7]–[9]. It is possible to categorize 
the proposed deep learning-based methods into three categories: X-Ray, CT, and methods developed using 
multimodal images. On the other hand, because all these studies focusing on the presence and absence of 
the disease, it is not possible to obtain information on how severe the disease is. The information to be 
obtained about the severity of the disease will provide important clues about the course of the disease. Thus, 
an idea can be obtained to reduce or increase the care for the patient.  
 
Some studies have been conducted to determine the severity of COVID-19 disease. In [3], RT-PCR test 
and X-Ray imaging are used on all patients suspected of being infected with the SARS-COV-2 virus. It is 
concluded that the RALE score computed is a numerical value that can express the severity of COVID-19 
pneumonia and is an important precursor of emergency care. In [10], a scoring system is developed to 
determine the severity of COVID-19. Risk factors that cause severe illness are determined by regression on 
the patient population infected with SARS-COV-2. The scoring system developed in this study reveals that 
patients in the high-risk group are 20.24 times more likely to develop severe illness than the low-risk group. 
In [11], a Random Forest model is trained using the quantitative and radiomics features as well as laboratory 
indexes to assess COVID-19 disease severity. Promising results are obtained in the study.  
 
Developing effective, reliable, and low-cost diagnostic tools is a necessity in the fight against COVID-19. 
Therefore, it is aimed to develop a reliable method with the low computational cost for predicting severity 
scores for COVID-19 disease in this study. 
 
The main contributions of this work are as follows: 
1- With the proposed model, lung involvement and opacity scores, which explain the severity of COVID-19 

pneumonia, are simultaneously estimated by an end-to-end trained deep learning model. 
2- The proposed model is lightweight with 2.19M parameters that have been trained on the images obtained 

from the X-Ray imaging technique, which is available in almost all health institutions. 
 

Fig. 1. The proposed severity score estimation framework. 
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The study is organized as follows. The proposed method is presented in Section 2. Section 3 is devoted to 
experimental results. Section 4 is devoted to the discussion. Finally, the conclusions are presented in Section 
5. 

2. Proposed Method 

The proposed deep learning-based severity score estimation framework is given in Fig. 1. As seen in Fig. 
1, the framework consists of two major parts, i.e, Feature Extraction Network (FEN) and Severity Score 
Estimation Subnetwork (SSEN). Accordingly, activation maps generated at the top of the FEN are fed to 
the SSEN. Finally, the severity scores i.e. lung involvement and opacity are estimated by SSEN. The details 
of each network are given in below. 

2.1. Feature extraction network 

One of the main problems in the field of medical image analysis is the insufficiency of training data. The 
deep transfer learning strategy [12] is a technique that can overcome this. In this strategy, features learned 
by a network trained over a larger data set are transferred to the new task. In the study, pre-trained ImageNet 
[13] models at different depths are used as the feature extractors of the proposed framework to see which 
model performs well. Accordingly, the models used in the study are ResNet-18 [14], SqueezeNet [15], 
GoogLeNet [16], ShuffleNet [17], MobileNetv2 [18] and EfficientNet-B0 [19], respectively. All the 
weights of each model to be used as feature extractors are frozen to avoid overfitting.  

2.2. Severity score estimation subnetwork 

The severity score estimation subnetwork consists of additional layers working in parallel to learn 
task-specific features regarding opacity and lung involvement. First, at the beginning of each parallel 
branch, activation maps are processed by a convolutional layer with 3×3 sized 64 filters. Then, a depth 
concatenation layer is used to consolidate the obtained maps with fine-grained maps incoming from an 
intermediate layer. In Table 1, the last and intermediate layer names of each model are given.  

Table 1. Pre-trained models are given with the layer names.  

Model Last Layer Tensor Intermediate Layer Tensor 

ResNet-18 res5b_relu 7×7×512 res4b_relu+maxpool 7×7×256 

SqueezeNet fire9-concat 13×13×512 fire6-concat 13×13×384 

GoogLeNet inception_5b-output 7×7×1024 inception_4b-output+maxpool 7×7×528 

ShuffleNet node_199 7×7×544 node_163 7×7×544 

MobileNetv2 out_relu 7×7×1280 block_15_add 7×7×160 

EfficientNet-B0 efficientnet-b0|Model|Head|MulLayer 7×7×1280 efficientnet-b0|model|blocks_14|Add 7×7×192 

 

The obtained feature maps are further processed along with the batch normalization, ReLU, convolutional 
layer, batch normalization, and ReLU stages, respectively. A global max-pooling layer is used to extract 
more prominent features at each branch. Accordingly, a 1×1×64 dimensional vector is obtained by picking 
one feature from each of the 64 channels. Then, a clipped ReLU is used to threshold opacity and lung 
involvement scores that exceed expert-defined ceiling values. Finally, a fully connected layer is used to 
estimate scores at each branch. 
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3. Experiments and Results 
 

3.1. Data set 

In the study, the publicly available data set given in [20] is used. The data set consists of 94 X-ray images 
in which each image corresponds to the COVID-19 case. The lung involvement extent (or geographic 
extent) and opacity extent are predicted by three-blinded experts following a scoring system [21]. The 
extent for each lung i.e. ‘0’, ‘1’, ‘2’, ‘3’, ‘4’ indicate ‘no involvement’, ‘<25% involvement’, ‘25%-50% 
involvement’, ‘50%-75% involvement’, and ‘>75% involvement’, respectively [22]. Accordingly, the total 
extent of the lung involvement is aligned between 0-8 to be included left and right lung [22]. Similarly, the 
extent of opacity for each lung is aligned between 0-3, where ‘0’, ‘1’, ‘2’ and ‘3’ indicate ‘no opacity’, 
‘ground-glass opacity’, ‘consolidation’ and ‘white-out’, respectively. As a result, the extent of total opacity 
is aligned between 0-6 [22]. Therefore, the ceiling threshold of the clipped ReLU layer in each branch of 
the proposed framework given in Fig. 1 is set as in (1). This setting facilitates the convergence of the 
network. 

0, 0 0, 0

Clipped_Relu_involvement= , 0 8 Clipped_Relu_opacity= , 0 6

8, 8 6, 6

x x

x x x x

x x

  
     
   

                      (1) 

3.2. Hyperparameters, Data Augmentation, and Loss Function 

Each model has been trained for 200 epochs with SGDM (Stochastic Gradient Descent with Momentum) 
optimizer.  The other hyperparameters i.e. Learn rate, L2 regularization and Momentum are set as 10-3, 10-

4, and 0.9, respectively. The data is randomly augmented at each training epoch using the affine 
transformations i.e. rotation, scaling, reflection and translation. As the different version of the original 
training data is seen by the network at each training epoch, data is augmented 200-fold (~15,200 samples) 
in total. The half mean square error function given in (2) is used to calculate the loss, where N, ℎఝ, and 𝑦 
indicate the number of observations, network responses and targets, respectively. 

ℒ௧௬,   ௩௩௧ =  2

1

1 1
( )

2

N
i i

i

MSE

h x y
N 






          (2) 

Accordingly, the loss values obtained at each head of the network i.e. the lung involvement loss 
(ℒ௩௩௧) and the opacity loss (ℒ௧௬) are summed up to obtain total loss (ℒ௧௧) as given in (3). 
Finally, the gradients are updated using the total loss. 

 

ℒ௧௧ = ℒ௧௬ + ℒ௩௩௧             (3)  

 

3.3. Performance metrics 

The performance metrics utilized in the study are root-mean-square-error (RMSE), determination 
coefficient (R2), and mean absolute error (MAE). The RMSE, R2, and MAE metrics are computed as given 
in (4). 
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3.4. Performance comparison 

In this section, the performance of each model is evaluated using the RMSE metric. The evaluation process 
is demonstrated in Fig. 2. The data set is first randomly divided into training and test sets (hold-out) using 
the rates of 80% and 20%. Then, the training set is further partitioned into five non-overlapping test sets 
(folds) for five-fold cross-validation. Each model is validated using the five-fold cross-validation. 
Accordingly, the RMSE scores obtained at each test fold for opacity and lung involvement are averaged to 
reveal overall performance. Finally, the best-performing model is evaluated on the hold-out set.  

In Table 2, the RMSE scores achieved by each method on each fold are given in detail. The five-fold cross-
validation and the hold-out scores achieved by each method are also given. As seen in Table 2, since the 
deviation of the results obtained at each fold is relatively low, more stable performance is obtained with 
ShuffleNet and ResNet-18 based models compared to other models. On the other hand, it is seen from Table 
2 that all models provide better performance in the hold-out set due to the limited sample size. 

Table 2. Performance comparison.  

Feature extractor 

RMSE 

Fold-1 
15-Images 

Fold-2 
16-Images 

Fold-3 
15-Images 

Fold-4 
15-Images 

Fold-5 
15-Images 

Avg. 
Hold-out 
18-Images 

SqueezeNet 1.55/1.77 1.61/1.36 2.32/2.08 1.94/1.11 2.19/0.89 1.93/1.45 1.70/1.08 

ShuffleNet 1.12/1.01 1.18/0.78 1.51/1.17 1.52/1.03 1.58/0.90 1.39/0.98 1.28/0.82 

MobileNetv2 1.41/1.32 1.60/1.00 2.27/1.68 1.92/1.07 1.97/1.62 1.84/1.34 1.32/1.20 

ResNet-18 1.39/1.04 1.39/0.94 1.79/1.30 1.27/0.64 1.62/1.24 1.50/1.04 1.34/0.85 

GoogLeNet 1.19/1.03 1.89/1.25 2.72/1.15 1.77/1.01 1.62/1.08 1.84/1.11 1.53/0.97 

EfficientNet-B0 1.59/1.27 1.48/0.70 1.92/1.29 1.94/1.15 1.58/1.06 1.71/1.10 1.30/0.85 

 

 

Fig. 2. Evaluation process of the proposed framework. 
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In Fig. 3, the average five-fold cross-validation score obtained with each method is given as a bar graph to 
easily compare the results based on MAE, R2, and RMSE. As seen in Fig. 3, the minimum MAE and RMSE 
for both lung involvement and opacity prediction are obtained with the ShuffleNet-based model. The 
maximum R2 score for lung involvement prediction is obtained by the ShuffleNet-based and ResNet-18-
based models. The maximum R2 score for opacity prediction is obtained by the ShuffleNet-based model. 
On the other hand, the SqueezeNet-based model underperforms all other methods based on MAE, R2, and 
RMSE.  
 

 
Fig. 3. Comparison of the methods based on the metrics i.e., MAE, RMSE, and R2. 

 
Since the best performance is achieved with the ShuffleNet-based model, predictions of this model on hold-
out set are plotted versus actuals. In Fig. 4(a), the estimates (oval shapes in black) made by the lung 
involvement head are plotted versus the actual scores (oval shapes in blue). In Fig. 4(b), the estimates (oval 
shapes in black) made by the opacity score head are plotted versus the actual scores (oval shapes in blue). 
The vertical red lines in Fig. 4(a) and Fig. 4(b) show the errors between the actuals and the network 
estimates. In Fig. 4(c)-4(d), the scatter plots show the predictions versus actuals corresponding to the lung 
involvement head and the opacity score head, respectively. The dashed red line drawn in Fig. 4(c) and Fig. 
4(d) shows the perfect prediction line. As seen in Fig. 4 (c) and 4 (d), the predicted points lie along with 
the perfect prediction line. Also, the mean absolute distance of points to the perfect prediction line is 1.11 
and 0.69 in Fig. 4(c) and Fig. 4(d), respectively. 
 

 

  
(a)                                  (b) 
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(c)                       (d) 

Fig. 4. Predictions versus actuals are plotted with error lines in (a) for the lung involvement head and in (b) for the opacity score 
head. Predictions versus actuals are plotted without error lines in (c) for the lung involvement score head and in (d) for the 
opacity score head.   
 
3.5. Visualization 

In this section, Gradient-weighted Regression Activation Maps (Grad-RAM) are given for images selected 
from the hold-out set. Since the network is double-headed, two types of RAM are provided in Fig. 5. 
Accordingly, the images given in the leftmost column of Fig. 5 are original. While the RAM images given 
in the middle column are obtained from the lung involvement score head, images given in the rightmost 
column are obtained using the opacity score head. Predicted scores are also given under each image, with 
the corresponding actual scores (Gth) assigned by experts. 
 
 

   
                                                                 Gth: 2.7, predicted: 2.86      Gth: 2.0, predicted: 2.41 

   
                       Gth: 3.0, predicted: 3.14        Gth: 2.3, predicted: 2.45 
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                Gth: 4.7, predicted: 4.05         Gth: 3.0, predicted: 2.32 

   
                  Gth: 3.3, Predicted: 3.71       Gth: 2.0, Predicted: 1.96 

Fig. 5. Grad-RAM images given in the middle and rightmost columns are obtained using the lung involvement head of the model 
and the opacity score head, respectively. 
 
In Fig. 5, RAM images from each head generally focus on the regions inside the lungs, particularly the 
opaque regions. However, unrelated areas outside the lungs are also returned with warm colors, especially 
from the opacity score head. The most likely reason for the model to look at these regions is the insufficient 
training examples.  

4. Discussion 

The only difference between the models formed to predict the severity scores is the feature extraction 
backbone. To find an optimal feature extraction backbone that provides superior performance for any given 
task is extremely important. The feature maps generated by the pre-trained networks consist of universal 
and complex information. When this information is consolidated with the task-related features learned by 
additional layers, performance is improved. In this work, the better combination in terms of this is 
accomplished by the ShuffleNet-based model. This model yields better generalization ability on a hold-out 
set. In Table 3, the proposed method is compared with the reference studies using the same data set. Cohen 
et al. [22] used a pre-trained DenseNet [23] model to predict severity scores. The model is trained with non-
COVID-19 datasets collected from different data sources before creating a final model. Promising results 
are obtained. Amer et al. [24] proposed a deep learning-based model to predict severity scores. Before the 
severity score estimation, lungs are segmented in the work. Only the lung involvement score is estimated 
from the segmented lungs. As seen in Table 3, superior results are obtained in terms of RMSE, MAE, and 
R2 compared to the reference studies with the proposed method. 

Table 3. Comparing the results with the reference studies. 

Work 
Validation 

method 
Test set Parameters RMSE MAE R2 

Cohen et al. [22] Hold-out 50-images - 1.43/0.92 1.14/0.78 0.60/0.58 

Amer et al. [24] Hold-out 50-images - - - 0.67/- 

Proposed method 
Hold-out 18-images 

2.19M 
1.28/0.82 1.11/0.69 0.69/0.66 

CV-5 76-images 1.39/0.98 1.10/0.81 0.65/0.66 
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5. Conclusion 

In this study, the COVID-19 pneumonia severity scores, namely lung involvement, and opacity are 
estimated by a two-headed ShuffleNet-based network. Since the proposed method has a total of 2.19M 
parameters, it offers a low complexity solution to the problem. The proposed model can be used to triage 
patients as well as monitor the course of COVID-19 patients in the intensive care unit. One of the limitations 
of this study is that the model has yet been trained with a limited number of samples. As the data set is 
updated with more expert-labeled data, performance can be improved by fine-tuning the model. Besides, 
performance can be further improved by using only lungs in the severity prediction following a 
segmentation. These issues will be taken into consideration in our next study. 
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