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Abstract

A sixth order Homeier-like method is introduced for approximating a solution of the non-linear equation in
Banach space. Assumptions only on �rst and second derivatives are used to obtain a sixth order convergence.
Our proof does not depend on Taylor series expansions as in the earlier studies for the similar methods.
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1. Introduction

Determining the solutions to the nonlinear equations in the Banach space setting are extensively studied
problems in numerical analysis and scienti�c computing ([1],[2],[8],[16]). Most of the problem arising in the
real-life can be mathematically modeled into an equation of the form

A(h) = 0, (1)

where A : D ⊆ H1 → H2 is a nonlinear operator between the Banach spaces H1 and H2 and D is open convex
set in H1. In recent times, it is observed that to determine the approximations to (1), multistep iterative
methods are used. These methods sometimes involves computation of its derivatives at each iteration at
a number of values of h. Even though they are not much in practice, one can �nd few interesting class
of formula which are computationally attractive, where the evaluation of A′(h) is rapid compared with A.
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When the function A is de�ned by integral, such cases arise. Such methods were proposed by Traub [18],
Homeier [6] etc. Iterative formulae given by Traub is of the type,

hn+1 = hn − a1w1(sn)− a2w2(hn) (2)

where,

w1 =
A(h)

A′(h)
and w2 =

A(h)

A′(h+ Γw1(h))
,

on choosing the parameters a1, a2 and Γ suitably, a third order processes is obtained costing one evaluation of
A(h) and two of A′(h) per iteration. On the other hand, Homeier introduced a modi�ed Newton method for
vector functions which converges locally cubically, without the neccassity of higher derivative computation.
It is a two step iterative scheme given by

sn = hn − 1

2
A′(hn)

−1A(hn)

hn+1 = hn −A′(sn)
−1A(hn), n = 0, 1, · · · .

Per iteration the above method requires one evaluation of the vector function and solving two linear sys-
tems with the Jacobian as coe�cient matrix, where the Jacobian has to be evaluated twice. This method
is suitable if the computation of the derivatives has a similar or lower cost than that of function itself
([2],[4],[7],[14],[15],[17]).

The order of convergence is an important issue, when one deals with iterative methods. So, let us recall
that a sequence {hn} in h with limn→∞ hn = h∗ is said to be convergent of order R > 1, if there exist
positive reals β1, β2, such that for all n ∈ N, ∥hn − h∗∥ ≤ β1e

−β2Rn
([9],[11]). The basic tool employed to

�nd the order of convergence is the Taylor expansion which requires existence of higher order derivatives.
An alternative approach is to use the computational order of convergence (COC)[19] de�ned as

γ =

ln(∥hn+1 − ϕ

hn − ϕ
∥)

ln(∥ hn − ϕ

hn−1 − ϕ
∥)
,

where hn−1, hn, hn+1 are three consecutive iterates near root ϕ or the approximate computational order of
convergence (ACOC) de�ned as

γ =

ln(∥hn+1 − hn
hn − hn−1

∥)

ln(∥ hn − hn−1

hn−1 − hn−2
∥)
,

where hn−2, hn−1, hn, hn+1 are four consecutive iterates near root ϕ, to obtain the order of convergence.
Without increasing the number of derivative evaluations it was not possible to obtain higher order formulae
for Traub or Homeier methods. However several modi�ed Traub like methods and modi�ed Homeier like
methods are available in the literature (see[3],[5],[9],[10],[11], [13],[19],[20]).

In this paper, we introduce an iteration of order six for solving (1) in Banach space. The proposed
Homeier-like method is de�ned by:

sn = hn − 2

3
A′(hn)

−1A(hn)

gn = hn −A′(
3sn + hn

4
)−1A(hn) (3)

hn+1 = gn −A′(gn)
−1A(gn), n = 0, 1, 2, 3...
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Another issue, is the e�ciency of the method. In this regard, recall the informational e�ciency, introduced

by Traub [18], E.I = a

1

b , where a is the order of the methods and b is the number of function evaluations.
Before Traub, Ostrowski [12] introduced a term called e�ciency index or computational e�ciency de�ned as

E(Ψ) = R

1

Θf ,

where R indicates the convergence order of the method and Θf gives the number of function evaluations.
Thus the informational e�ciency and the computational e�ciency of the proposed method (3) is 6/5 = 1.2

and 6

1

5 = 1.4310 respectively, wherein for Homeier's method it is 3/3 = 1 and 3

1

3 = 1.442 respectively.
The novelty of our approach is that we obtain convergence of order six without using assumptions on

the derivatives of order greater than two. In earlier studies, if the iterative method is of order m, one need
assumptions on derivatives of the involved operator upto the order m+1. So using our approach one can
increase the applicability of the iterative methods.

Throughout the article, we consider B(h0, γ) = {h ∈ H1 : ∥h − h0∥ < γ} and B[h0, γ] = {h ∈ H1 :
∥h− h0∥ ≤ γ} for γ > 0.

Following assumptions are required to analyze our results.

Assumption 1.1. (cf. Assumption 1.1 [4]) There exists k1 > 0, such that for every h, s ∈ D(A)

∥A′(h)−1(A′(s)−A′(h))∥ ≤ k1∥s− h∥ (4)

and there exists k2 > 0, such that for all h, s ∈ B(h∗, γ) for some γ > 0,

∥A′(h)−1A′′(s)∥ ≤ k2. (5)

Rest of this paper is arranged in the following way. Local convergence, numerical examples and conclu-
sions, respectively are given in Section 2, Section 3 and Section 4.

2. Main Results

Lets de�ne some functions and parameters required to establish the convergence analysis. Let p1 :
[0,∞) → [0,∞) be de�ned by

p1(x) =
(k1k2

4

)
x2

and
q1(x) = p1(x)− 1.

Then q1(0) = −1 < 0 and q1

( 2
√
2√

k1k2

)
= 1 > 0. Using the intermediate value theorem (IVT), q1 has a

minimal zero r1 ∈
(
0,

2
√
2√

k1k2

)
.

Let p2 :
[
0,

2
√
2√

k1k2

)
→ [0,∞) be de�ned by

p2(x) =
(k31k22

25

)
x5

and
q2(x) = p2(x)− 1.
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Then q2(0) = −1 < 0 and q2

( 2 5
√
2

5
√
k31k

2
2

)
= 1 > 0. Hence, again by IVT q2 has a minimal zero r2 ∈(

0,
2 5
√
2

5
√

k31k
2
2

)
.

Let
r = min{r1, r2} (6)

Then, for all x ∈ [0, r), we have
0 < p1(x) < 1 (7)

and
0 < p2(x) < 1. (8)

Next, we furnish the convergence analysis for (3).

Theorem 2.1. Let Assumption (1.1) holds. Then the sequence {hn} de�ned by (3) with h0 ∈ B(h∗, r)−{h∗}
converges to h∗ with R- order of convergence six, i.e.,

∥hn+1 − h∗∥ ≤ c∥hn − h∗∥6 (9)

where c = (
k31k

2
2

32
)

Proof. Induction methodology is used to prove the following:

∥gn − h∗∥ ≤ p1
(
∥hn − h∗∥

)
∥hn − h∗∥ (10)

and
∥hn+1 − h∗∥ ≤ p2

(
∥hn − h∗∥

)
∥hn − h∗∥. (11)

Let h0 ∈ B(h∗, r). By (3)

g0 − h∗ = h0 − h∗ −A′(
3s0 + h0

4
)−1

[
A(h0)−A(h∗)

]
= A′(

3s0 + h0
4

)−1

[
A′(

3s0 + h0
4

)(h0 − h∗)−
∫ 1

0
A′(h∗

+ t(h0 − h∗))(h0 − h∗)dt

]
= A′(

3s0 + h0
4

)−1

[ ∫ 1

0
[A′(

3s0 + h0
4

)−A′(h∗

+ t(h0 − h∗))](h0 − h∗)dt

]
= A′(

3s0 + h0
4

)−1
[ ∫ 1

0

∫ 1

0
A′′(h∗ + t(h0 − h∗) + θ(

3s0 + h0
4

− h∗ − t(h0 − h∗))
)
dθ × (

3s0 + h0
4

− h∗ − t(h0 − h∗))dt
]
(h0 − h∗).
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By Assumption (4), we get

∥g0 − h∗∥ ≤
∥∥∥∥ sup
t∈[01]

{∥∥∥∥∫ 1

0
A′(

3s0 + h0
4

)−1A′′
(
h∗ + t(h0 − h∗) + θ(

3s0 + h0
4

− h∗ − t(h0 − h∗))
)
dθ

∥∥∥∥}×
∫ 1

0
(
3s0 + h0

4
− h∗ − t(h0 − h∗))dt(h0 − h∗)

∥∥∥∥
≤ k2

4

∥∥∥∥∫ 1

0

[
3s0 + h0 − 4h∗ − 4t(h0 − h∗)

]
dt(h0 − h∗)

∥∥∥∥
≤ k2

4

∥∥∥∥∫ 1

0

[
3(s0 − h∗) + (h0 − h∗)− 4t(h0 − h∗)

]
dt(h0 − h∗)

∥∥∥∥
≤ k2

4

∥∥∥∥∫ 1

0

[
3(h0 − h∗ − 2

3
A′(h0)

−1A(h0)) + (h0 − h∗)− 4t(h0 − h∗)
]
dt(h0 − h∗)

∥∥∥∥
≤ k2

4

∥∥∥∥∫ 1

0

[
2(h0 − h∗ −A′(h0)

−1A(h0)) + (2− 4t)(h0 − h∗)
]
dt(h0 − h∗)

∥∥∥∥
≤ k2

2

∥∥∥∥[h0 − h∗ −A′(h0)
−1A(h0)

]
(h0 − h∗)

∥∥∥∥
≤ k2

2

∥∥∥∥A′(h0)
−1

[
A′(h0)(h0 − h∗)−

∫ 1

0
A′(h∗ + θ(h0 − h∗))(h0 − h∗)dθ

]
(h0 − h∗)

∥∥∥∥
≤ k2

2

∥∥∥∥∫ 1

0
A′(h0)

−1
[
A′(h0)−A′(h∗ + θ(h0 − h∗))

]
dθ(h0 − h∗)2

∥∥∥∥
≤ k1k2

4
∥h0 − h∗∥3 (12)

= p1
(
∥h0 − h∗∥

)
∥h0 − h∗∥

≤ ∥h0 − h∗∥ < r.

Thus, g0 ∈ B(h∗, r). By the third sub-step of method (3), we have

h1 − h∗ = g0 − h∗ −A′(g0)
−1[A(g0)−A(h∗)]

= A′(g0)
−1[A′(g0)(g0 − h∗)−

∫ 1

0
A′(h∗ + t(g0 − h∗))dt(g0 − h∗)]

= −
∫ 1

0
A′(g0)

−1[A′(h∗ + t(g0 − h∗))−A′(g0)]dt(g0 − h∗).

From Assumption 1.1 and (12) we have

∥h1 − h∗∥ ≤ k1
∥g0 − h∗∥

2

2

≤ k31k
2
2

32
∥h0 − h∗∥6 (13)

= p2
(
∥h0 − h∗∥

)
∥h0 − h∗∥

< r.

The induction for (10) and (11), will be completed, if we simply replace, h0, g0, h1 by hn, gn, hn+1 in the
preceding arguments.

Further, uniqueness of the solution is presented below.

Theorem 2.2. Suppose Assumption (4) holds and h∗ is a simple solution of the equation A(h) = 0. Then,
the only solution of equation A(h) = 0 in the set A = D ∩B[h∗, γ] is h∗ provided that

k1γ <
2

3
(14)



Suma P B, Shobha M Erappa, S.George, Results in Nonlinear Anal. 5 (2022), 452�458. 457

Proof. Consider a solution c ∈ A of equation A(h) = 0. Set N =
∫ 1
0 A′(h∗+t(c−h∗))dt. Then by Assumption

(4) and (14), we have

∥A′(h)−1(N −A′(h))∥ ≤ k1

∫ 1

0
∥h∗ + t(c− h∗)− h∥dt

≤ k1

∫ 1

0
∥h∗ − h∥+ t∥h∗ − c∥dt

≤ 3

2
k1γ < 1.

So, N is invertible and hence we get c = h∗ and the identity 0 = A(c)−A(h∗) = N(c− h∗).

3. Numerical Example

Example 3.1. Let H1 = H2 = R, h0 = 1, Ω = [h0 − (1 − l), h0 + (1 − l)], l ∈ (0, 1) and A : Ω → Y be
de�ned by

A(h) = h3 − l.

Then ∥A′(h0)
−1∥ ≤ 1

3
, ∥A′(s)−A′(h)∥ ≤ 6(2− l)∥s− h∥ and hence for all h ∈ Ω, we have

∥A′(h)−1∥ ≤ ∥A′(h0)
−1∥

1− ∥A′(h0)−1∥∥A′(h)−A′(h0)∥
≤ 1

3(1− 2(2− l)(1− l))
.

Hence,

∥A′(h)−1(A′(s)−A′(h))∥ ≤ ∥A′(h)−1∥L∥s− h∥ ≤ 2(2− l)

1− 2(2− l)(1− l)
∥s− h∥

Then, we have k1 =
2(2− l)

1− 2(2− l)(1− l)
. Now ∥A′′(s)∥ ≤ 6(2−l). Therefore ∥A′(h)−1A′′(s)∥ ≤ 2(2− l)

1− 2(2− l)(1− l)
.

Hence k2 =
2(2− l)

1− 2(2− l)(1− l)
. For l = 0.65, r1 = 0.0407 = r2, so r=0.0407.

Example 3.2. Let H1 = H2 = R3, h0 = (0, 0, 0)T , D = B[0, 1]. De�ne function A on D for w = (h, s, g)T

by

A(w) =
(
eh − 1,

e− 1

2
s2 + s, g

)T
.

Then, we get

A′(w) =

 eh 0 0
0 (e− 1)s+ 1 0
0 0 1

 .

Hence k1 = (e− 1) and k2 = e. Thus, r1 = 0.9254, r2 = 0.9688. So, r=0.9254.

4. Conclusion

This article studied a Homeier like method in a Banach space using assumptions on Frechet derivative of
the operator upto order 2. Our approach does not involve Taylor series expansion. Also this approach can
be used for obtaining converegence order of other methods without using assumptions on the derivatives of
order more than two.
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