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Abstract: This study focuses on the spectral features of the non-selfadjoint singular 

operator with an out-of-the-ordinary type weight function. Take into consideration 

the one-dimensional time-dependent Schrödinger type differential equation 

−𝑦′′ + 𝑞(𝑥)𝑦 = 𝜇2𝜌(𝑥)𝑦, 𝑥 ∈ [0,∞), 
holding the initial condition 

𝑦(0) = 0, 
and the density function defined with a completely negative value as 

𝜌(𝑥) = −1. 
There is an enormous number of the papers considering the positive values of 

𝜌(𝑥) for both continuous and discontinuous cases. The structure of the density 

function affects the analytical properties and representations of the solutions of 

the equation. Unlike the classical literature, we use the hyperbolic type 

representations of the equation’s fundamental solutions to obtain the operator’s 

spectrum. Additionally, the requirements for finiteness of eigenvalues and 

spectral singularities are addressed. Hence, Naimark’s and Pavlov’s conditions 

are adopted for the negative density function case. 
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Öz: Bu çalışmada kendine eşlenik olmayan, singüler ve standard dışı bir ağırlık 

fonksiyonuyla birlikte tanımlanmış operatörün spektral özellikleri ele alınacaktır. 

Bir boyutlu, zamana bağımlı Schrödinger tipli diferansiyel denklem 

−𝑦′′ + 𝑞(𝑥)𝑦 = 𝜇2𝜌(𝑥)𝑦, 𝑥 ∈ [0,∞), 
𝑦(0) = 0, 

başlangıç koşulu ve tamamen negatif olarak tanımlı 

𝜌(𝑥) = −1, 
yoğunluk fonksiyonuyla birlikte göz önüne alınsın. Pozitif değerli sürekli ve 

süreksiz yoğunluk fonksiyonuna sahip operatörler için literatürde çok sayıda 

çalışma bulunmaktadır. Yoğunluk fonksiyonunun yapısı operatörün analitik 

özelliklerini ve çözümlerin gösterimini etkilemektedir. Klasik literatürden farklı 

olarak, bu çalışmada hiperbolik tipli temel çözümler operatörün spektrumunu 

belirlemek için kullanılmıştır. Buna ek olarak, özdeğerlerin ve spektral 

tekilliklerin sonluluğu için gerekli koşullar elde edilmiştir. Böylece, Naimark ve 

Pavlov koşulları, negatif yoğunluk fonksiyonuna sahip operatör durumunda 

çözülmüştür. 
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1. Introduction 

 

The analysis of differential and discrete equations spectral features have emerged as a topic of 

curiosity in quantum physics and has become the source of extensive publications. It is clear that studies 

of spectral and scattering theory help to obtain very important information about nuclear particles and 

sub-particle physics. For these reasons, mathematical theories modelling the behaviors of the particles 

in quantum physics remain a popular research area (Naimark, 1954 and 1968; Pavlov, 1962; Chadan & 

Sabatier, 1977; Marchenko, 1986; Amrein, 2005; Levitan, 1987; Mutlu & Kir, 2020). 

Take into account the one-dimensional Schrödinger equation 

 

−𝑦′′ + 𝑞(𝑥)𝑦 = 𝜆2𝜌(𝑥)𝑦, 𝑥 ∈ [0,∞), (1) 

 

where 𝜌 denotes the density function and 𝜆 stands for the eigenparameter. There is excessive number of 

research papers on the inverse and direct problems for 𝜌(𝑥) = 1 (Bairamov et al., 1999; Adıvar & 

Akbulut, 2010; Mamedov, 2010; Olgun & Coskun, 2010; Koprubasi & Yokus, 2014; Yokus & Coskun, 

2019). The inverse problem of the operator with the equation (1) and discontinuous weight (density) 

function 𝜌(𝑥) = {
𝛼2,
1,

0 ≤ 𝑥 < 𝑎
𝑥 ≥ 𝑎

 where 0 < 𝛼 ≠ 1  has been handled by Mamedov (2010). The 

function’s discontinuity heavily influences the structure of the Jost solution. Similarly, the 

representation of the main equation has been affected by the discontinuous weight, too. As a 

consequence, discontinuous positive valued weight function case took a prominent attention from 

various authors (Darwish, 1993; Gasymov & El-Reheem, 1993; Guseinov & Pashaev, 2002; Adıvar & 

Akbulut, 2010; Mamedov & Cetinkaya, 2015; Nabiev & Mamedov, 2015; Bairamov et. al., 2018). 

It is vital to point out at this stage that Naimark was the first who attacked the singular non-

selfadjoint problem for 𝜌(𝑥) = 1 (Naimark, 1960 and 1968). Let us remark that since the operator 

generated by the help of the equation (1) is defined on the unbounded interval, it is said to be a singular 

operator. Also, complex valued potential function results to a non-selfadjoint (also called non-hermitian) 

operator. Naimark demonstrated that the operator’s spectrum comprises eigenvalues, spectral 

singularities, and continuous spectrum. Under certain constraints, it is also confirmed by him that all 

these eigenvalues and spectral singularities must be of finite number and multiplicity. Non-hermitian 

Sturm-Liouville differential equations with the positive valued discontinuous density function have been 

researched in various papersemploying Naimark’s and Pavlov’s methodologies (Pavlov, 1962; Naimark, 

1968; Levitan, 1987). 

Unlike the known literature, inverse scattering and inverse spectral theory of the Sturm-

Liouville type operators with sign-changing density function has been studied by Gasymov and El-

Reheem (1993). The interested reader may also consult the papers (El-Raheem and Nasser, 2014; El-

Raheem & Salama, 2015) and the references therein for the detailed information about the sign-valued 

density function case and its application in physics. The most crucial reason distinguishing this problem 

from the positive-valued weight function case is the new analytical difficulties that arising from the 

weight function’s negative value. As a result of the appearance of the hyperbolic type solutions of the 

Sturm-Liouville problems, the analytical features of the solutions change entirely. Hence, we need to 

re-examine the spectral properties of the operators for the potentials including negative values. 

Let us also remind that in discrete analogue of the Sturm-Liouville and Dirac operators, the 

representation of the Jost solution is determined by the eigenparameter transformation. While the 

trigonometric transformation 𝜆 = 2cos𝑧  results in analytical solutions in the upper half-plane 

(Bairamov et al., 2001; Yokus & Coskun, 2016), hyperbolic type transformation 𝜆 = 2cosh𝑧 gives the 

Jost solutions which are analytic in the left-half plane (Bairamov et al., 2010; Koprubasi, 2021; 

Koprubasi & Aygar Küçükevcilioğlu, 2022). Also, in the paper (Bairamov et al., 2010), the 

eigenparameter of the non-selfadjoint boundary value problem was taken as 𝜆 = (𝑖𝑧) − (𝑖𝑧)−1, |𝑧| ≤
1. As a result of this transformation, the Jost solution obtained the polynomial type representation which 

is analytic inthe unit disc.  

In addition to that, (Lyantse, 1968), the Jost solution of the difference equation analogue of the 

Sturm-Liouville operator has been investigated for the eigenparameters 𝜆 =
1

2
(𝑧−1 + 𝑧), |𝑧| ≤ 1. A 
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non-standard representation for the Jost solution has been obtained under this eigenparameter 

transformation, too. 

This manuscript was influenced by the prior researches mentioned above. The spectral features 

of the non-hermitian singular Sturm-Liouville type equation for 𝜌(𝑥) = −1 will be concenterated on. 

Compared to the discrete cases (Lyantse, 1968; Bairamov et al., 2001; Bairamov et al., 2010; Yokus & 

Coskun, 2016; Koprubasi, 2021;Koprubasi & Aygar Küçükevcilioğlu, 2022), it is clear that the problem 

of under what circumstances one obtains analytical solutions of Sturm-Liouville type differential 

operators in different regions has not been studied enough. Hence, this paper may fill the gap in the 

literature. Let us also remark that, while the transformation chosen for the eigenparameter determines 

the analytical characteristics of the Jost solutions in discrete problems; the structure of the weight 

function affects the Jost solution in differentialcase. Hence, based on this idea, this paper may also lay 

the groundwork for new research topics in inverse and direct problems. This paper also has crucial 

importance since this is one of the first studies considering the negative value of the density function for 

the singular non-selfadjoint operators. 

 

2. Solutions to the Problem 

 

We provide preliminary data for the negative density function case in this section, which could 

also be derived using similar theorems and methodologies (Marchenko, 1986; Gasymov & El-Reheem, 

1993; El-Raheem & Nasser, 2014). 

Let us introduce the differential operator 𝑇  in the Hilbert space 𝐿𝜌
2(ℝ+)with help of the 

differential equation 

 

−𝑦′′ + 𝑞(𝑥)𝑦 = 𝜇2𝜌(𝑥)𝑦, 𝑥 ∈ ℝ+, (2) 

 

and the initial condition 

 

𝑦(0) = 0, (3) 

 

where 

 

𝜌(𝑥) = −1, (4) 

 

and 𝜇 is an eigenparameter. We also assume that the potential function 𝑞 is complex-valued. Clearly, 

together with the expressions (2)-(4) and our assumptions, the operator 𝑇  is a singular and non-

selfadjoint operator. 

Except otherwise indicated, we presume that 𝑞(𝑥) holds 

 

∫

∞

0

𝑥|𝑞(𝑥)|𝑑𝑥 < ∞. (5) 

 

Consider the solutions of (2) as 𝑆(𝑥, 𝜇) and 𝐶(𝑥, 𝜇) which hold the initial conditions 

 
𝑆(0, 𝜇) = 0, 𝑆′(0, 𝜇) = 1,

𝐶(0, 𝜇) = 1, 𝐶′(0, 𝜇) = 0.
 (6) 

 

Take into account the case 𝑞(𝑥) ≡ 0. Then, (2) takes the form 

 

𝑦′′ = 𝜇2𝑦, 𝑥 ∈ ℝ+. (7) 

 

Thus, 𝑆(𝑥, 𝜇) and 𝐶(𝑥, 𝜇) can be represented by the hyperbolic type representations  
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𝑆(𝑥, 𝜇) =
sinh𝜇𝑥

𝜇
,

𝐶(𝑥, 𝜇) = cosh𝜇𝑥.

 (8) 

 

Using the results of (Marchenko, 1986) and the constant coefficients method, one can easily 

verify that the fundamental solutions 𝑆(𝑥, 𝜇) and 𝐶(𝑥, 𝜇) have the Volterra type integral representations 

as 

 

𝑆(𝑥, 𝜇) =
sinh𝜇𝑥

𝜇
+ ∫P(x, t)

𝑥

0

sinh𝜇(𝑥 − 𝑡)

𝜇
𝑑𝑡, (9) 

 

and 

 

𝐶(𝑥, 𝜇) = cosh𝜇𝑥 + ∫

𝑥

0

Q(x, t)cosh𝜇𝑡𝑑𝑡. (10) 

 

Moreover, the functions 𝑆 and 𝐶 are entire with respect to the variable 𝜇. They are also analytic 

on the left half-plane 𝑅𝑒𝜇 ≤ 0. Existence and uniqueness results of the solutions 𝑆(𝑥, 𝜇) and 𝐶(𝑥, 𝜇) 
can also be proven analogous to (Marchenko, 1986). Also, Wronskian of the solutions 𝑆 and 𝐶 might be 

formulated as 𝑊[𝑆(𝑥, 𝜇), 𝐶(𝑥, 𝜇)] = −1, 𝜇 ∈ ℂ. 
 

Let us now indicate by 𝑒(𝑥, 𝜇)  the solution of (2) that fullfils the asymptotic criteria 

lim
𝑥→∞

𝑒(𝑥, 𝜇)𝑒−𝜇𝑥 = 1, 𝑅𝑒𝜇 < 0. 

 

Under condition (5), (2) has the solution of the form 

 

𝑒(𝑥, 𝜇) = 𝑒𝜇𝑥 +∫

∞

𝑥

𝐾(𝑥, 𝑡)𝑒𝜇𝑡𝑑𝑡. (11) 

 

(11) is referred as the Jost solution of 𝑇. The kernel 𝐾(𝑥, . ) ∈ 𝐿1(0,∞) and 𝐾(𝑥, 𝑡) can be uniquely 

determined by the potential function 𝑞. Moreover, it can be differentiated continuously with respect to 

its arguments. 

Define 𝛼(𝑥) = ∫
∞

𝑥
|𝑞(𝑠)|𝑑𝑠. Hence, the inequality 

 

|𝐾(𝑥, 𝑡)| ≤ 𝐶𝛼 (
𝑥 + 𝑡

2
), (12) 

 

yields for 𝐶 > 0 constant. Therefore, the Jost solution 𝑒(𝑥, 𝜇) is analytic with regard to the variable 𝜇 

in the region ℂ𝑙𝑒𝑓𝑡: = {𝜇 ∈ ℂ: 𝑅𝑒𝜇 < 0}  and continuous on ℂ𝑙𝑒𝑓𝑡: = {𝜇 ∈ ℂ: 𝑅𝑒𝜇 ≤ 0} . For further 

information about these results, one may consult the books of Marchenko (1986) and Amrein et al. 

(2005).  

The resolvent operator of 𝑇 is denoted as 

 

𝑅𝜇(𝑇)𝑓 = ∫

∞

0

𝐺(𝑥, 𝑡; 𝜇)𝜑(𝑡)𝑑𝑡, 𝜑 ∈ 𝐿2(ℝ+), (13) 

 

where  
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𝐺(𝑥, 𝑡; 𝜇) =

{
 
 

 
 𝑒(𝑥, 𝜇)𝑆(𝑡, 𝜇)

𝑒(0, 𝜇)
, 0 < 𝑡 ≤ 𝑥,

𝑒(𝑡, 𝜇)𝑆(𝑥, 𝜇)

𝑒(0, 𝜇)
, 𝑥 < 𝑡 < ∞,

 (14) 

 

is the Green’s function of 𝑇. Thus, the resolvent set 𝑅𝜇(𝑇) can be stated in the form 

 

𝑅𝜇(𝑇) = {𝜆: 𝜆 = 𝜇
2, 𝑅𝑒𝜇 < 0, 𝑒(0, 𝜇) ≠ 0}. (15) 

 

3. Spectrum of 𝑻 

 

Let us define  

 

 𝑒(𝜇): = 𝑒(0, 𝜇), (16) 

 

where 

 

𝑒(0, 𝜇) = 1 + ∫

∞

𝑥

𝐾(0, 𝑡)𝑒𝜇𝑡𝑑𝑡. (17) 

 

Define the notation 𝜎𝑑(𝑇) to designate the set of eigenvalues of 𝑇. Similarly, use the symbol 

𝜎𝑠𝑠(𝑇) to show the spectral singularities of the operator 𝑇. If we make use of the classical definitions of 

the spectrum and expressions of the resolvent and Green’s function in (14) and (15), we readily obtain  

 

𝜎𝑑(𝑇) = {𝑧: 𝑧 = 𝜇
2, 𝜇 ∈ ℂ𝑙𝑒𝑓𝑡, 𝑒(𝜇) = 0} (18) 

 

𝜎𝑠𝑠(𝑇) = {𝑧: 𝑧 = 𝜇
2, 𝑧 = 𝜉 + 𝑖𝜏, 𝜉 = 0, 𝜏 ∈ ℝ, 𝑒(𝜇) = 0}. (19) 

 

Similarly to Naimark (1960 and 1968)’s theorems and using the fundamental concepts of the 

spectrum from functional analysis, we determine the continuous spectrum of the operator 𝑇  as the 

following 

 

𝜎𝑐(𝑇) = {𝑧: 𝑧 = 𝜉 + 𝑖𝜏, 𝜉 = 0, 𝜏 ≥ 0}. (20) 

 

Definition 1 (Naimark, 1968; Levitan, 1987). The multiplicity of a root of 𝑒(𝜇) in the region ℂ𝑙𝑒𝑓𝑡 is 

referred to as the multiplicity of the corresponding eigenvalue and spectral singularity of the operator 𝑇. 
Up to now, using the classical definitions of the spectrum, we obtained the spectrum of the 

operator 𝑇. Hereafter, we will focus on the quantitative properties of the spectrum. For that purpose, it 

is clear that the zeros of 𝑒(𝜇) on ℂ𝑙𝑒𝑓𝑡 have to be taken into consideration. 

Let us define the sets 

 

𝑄1: = {𝜇: 𝜇 ∈ ℂ𝑙𝑒𝑓𝑡, 𝑒(𝜇) = 0}, (21) 

 

𝑄2: = {𝜇: 𝜇 = 𝜉 + 𝑖𝜏, 𝜉 = 0, 𝜏 ∈ ℝ, 𝑒(𝜇) = 0}. (22) 

 

Define all accumulation points of 𝑄1 by 𝑄3. Further, use the notation 𝑄4 to designate a set of all 

roots of 𝑒(𝜇) having infinite multiplicity in ℂ𝑙𝑒𝑓𝑡. Obviously, using these set definitions, (18) and (19) 

can be restated as the following 

 

𝜎𝑑(𝑇) = {𝑧: 𝑧 = 𝜇
2, 𝜇 ∈ 𝑄1}, (23) 
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𝜎𝑠𝑠(𝑇) = {𝑧: 𝑧 = 𝜇
2, 𝜇 ∈ 𝑄2}\{0}. (24) 

 

Lemma 1 If (5) holds, then 

(a) 𝑄1  is bounded set. 𝑄1  can have at most countably many elements. Furthermore, these 

elements can only accumulate to the bounded subset of the imaginary axis. 

(b) 𝑄2 is a compact set. Moreover, its Lebesgue measure is zero.  

 

Proof. Using the inequality (12) and the expression of 𝑒(𝜇), it can be easily seen that 𝑒(𝜇) is an analytic 

function with regard to the variable 𝜇 in ℂ𝑙𝑒𝑓𝑡. Also, it is continuous on the imaginary axis. Further, it 

yields the asymptotic 

 

𝑒(𝜇) = 1 + 𝑜(1), 𝜇 ∈ ℂ𝑙𝑒𝑓𝑡, |𝜇| → ∞. (25) 

 

The boundedness of the sets 𝑄1 and 𝑄2 follows from (25). Hence, the proof of part (a) follows 

from analyticity of 𝑒(𝜇) in ℂ𝑙𝑒𝑓𝑡 and continuity on the imaginary axis. For part (b), we shall consider 

the boundary uniqueness theorems of analytic functions (Dolzhenko, 1979). Using these theorems, we 

get that 𝑄2  is a closed set and 𝜇(𝑄2) = 0, where 𝜇  stands for the linear Lebesgue measure in the 

imaginary axis. 

 The following theorem can be stated easily using (23), (24) and Lemma 1: 

 

Theorem 2 Suppose the condition (5) yields. In this case, 

(i) The set of eigenvalues of 𝑇 is bounded. Further, it can have at most countably many elements. 

Also, these elements can only accumulate to a bounded subinterval of the imaginary axis. 

(ii) 𝜎𝑠𝑠(𝑇) is bounded set. 𝜇(𝜎𝑠𝑠(𝑇)) = 0.  

Note that we obtained some quantitative properties of the spectrum of 𝑇 under the condition (5). 

From now on, we will consider more strict conditions on the potential. 

 

Theorem 3 Assume that 

 

∫

∞

0

𝑒𝜀𝑥|𝑞(𝑥)|𝑑𝑥 < ∞, (26) 

 

for some 𝜀 > 0. If the condition (26) is fulfilled, then the operator 𝑇 has finitely many eigenvalues and 

spectral singularities. Moreover, each of these eigenvalues and spectral singularities is of finite 

multiplicity. 

 

Proof. Using (12) and (26), we can write 

 

|𝐾(𝑥, 𝑡)| ≤ 𝐶exp (−𝜀
𝑥 + 𝑡

2
), (27) 

 

for arbitrary positive constant 𝐶 . Considering the expression of 𝑒(𝜇) and (27), it is clear that 𝑒(𝜇) 

continues analytically from the complex left-half plane to the right half-plane 𝑅𝑒𝜇 <
𝜀

4
. Consequently, 

the accumulation points of the roots of 𝑒(𝜇) in ℂ𝑙𝑒𝑓𝑡 cannot lie in the imaginary axis. From Lemma 1, 

we can see that the bounded sets 𝑄1 and 𝑄2 have a finite number of elements. Also, taking into account 

the analyticity of 𝑒(𝜇) for 𝑅𝑒𝜇 <
𝜀

4
, we deduce that the zeros of 𝑒(𝜇) in ℂ𝑙𝑒𝑓𝑡 are of finite number, and 

they are of finite multiplicity. As a result, the operator 𝑇 has a finite number of eigenvalues and spectral 

singularities with finite multiplicities.  

The condition (26) is recognized as Naimark’s condition in the discipline, which enables us to 

utilise the Jost function’s analytic continuation characteristics for the proof. However, there is a more 
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strict condition for the potential called Pavlov’s condition, which pushes us to use new methods to prove 

the finiteness of the sets 𝜎𝑑(𝑇) and 𝜎𝑠𝑠(𝑇). 
Let 

 

∫

∞

0

𝑒𝜀√𝑥|𝑞(𝑥)|𝑑𝑥 < ∞, 𝜀 > 0. (28) 

 

Clearly, 𝑒(𝜇) is the analytic in the complex left-half plane ℂ𝑙𝑒𝑓𝑡 and continuous on the imaginary axis. 

Nevertheless, analytic continuation property does not hold from the left-half plane to the right-half  

plane. We will also benefit from the following relations between the sets 𝑄1, 𝑄2, 𝑄3 and 𝑄4 for the proof 

of the following theorem, which can be inferred directly from the boundary uniqueness theorems of the 

analytic functions (Dolzhenko, 1979): 

 

𝑄1 ∩ 𝑄4 = ∅,𝑄3 ⊂ 𝑄2, 𝑄4 ⊂ 𝑄2, 𝑄3 ⊂ 𝑄4, (29) 

 

and 

 

𝜇(𝑄3) = 𝜇(𝑄4) = 0. (30) 

 

Theorem 4 If the condition for the potential (28) holds to be accurate, then 𝑄4 = ∅.  

 

Proof. Using Lemma 1, we obtain that  

 

| ∫

−𝑀

−∞

ln|𝑒(𝜇)|

1 + 𝜇2
𝑑𝜇| < ∞, |∫

∞

𝑀

ln|𝑒(𝜇)|

1 + 𝜇2
𝑑𝜇| < ∞, (31) 

 

for sufficiently large values of 𝑀 > 0 . Moreover, 𝑒(𝜇) is analytic in ℂ𝑙𝑒𝑓𝑡  , all its derivatives are 

continuous up to the imaginary axis and 

 

|𝑒(𝑟)(𝜇)| ≤ 𝐶𝑟, 𝜇 ∈ ℂ𝑙𝑒𝑓𝑡, 𝑟 = 1,2, . . . , |𝜇| < 2𝑀, (32) 

 

where 

𝐶𝑟: = 𝑐∫

∞

0

𝑡𝑟|𝐾(0, 𝑡)|𝑑𝑡. (33) 

 

If we make use of (31), (32) and Pavlov’s theorem, we get 

 

∫

𝜔

0

ln𝑡(𝑠)𝑑𝜇(𝑄4,𝑠) > −∞, (34) 

 

where 𝑡(𝑠) = inf
𝑟

𝐶𝑟𝑠
𝑟

𝑟!
, 𝐶𝑟  is defined by (33), 𝜇(𝑄4,𝑠)  is the linear Lebesgue measure of the 𝑠 -

neighborhood of 𝑄4, and 𝜔 > 0 is a constant (Bairamov et al., 1999; Adıvar & Akbulut, 2010). We can 

also write the following estimations 

 

𝐶𝑟 = 𝑐∫

∞

0

𝑡𝑟|𝐾(0, 𝑡)|𝑑𝑡 ≤ 𝑐∫

∞

0

𝑡𝑟exp (−
𝜀

4
𝑡) 𝑑𝑡 ≤ 𝐵𝑏𝑟𝑟𝑟𝑟!, (35) 
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for 𝐵 and 𝑏 are constants depending on 𝑐 and 𝜀. If we substitute the estimation (35) in the definition of 

𝑡(𝑠), we get 

 

𝑡(𝑠) = inf
𝑟

𝐶𝑟𝑠
𝑟

𝑟!
≤ 𝐵inf

𝑟
{𝑏𝑟𝑠𝑟𝑟𝑟} ≤ 𝐵exp{−𝑠−1𝑒−1𝑏−1}, (36) 

 

by (34). It follows from (35) and (36) that 

 

∫

𝜔

0

𝑠−
𝛿

1−𝛿𝑑𝜇(𝑄4,𝑠) < ∞. (37) 

 

Clearly, 
𝛿

1−𝛿
≥ 1. Therefore, if we consider the convergent integral in (37), this might be true if and only 

if, for arbitrary 𝑠, 𝜇(𝑄4,𝑠) = 0 or 𝑄4 = ∅.  

□ 

Theorem 5 In case the condition (28) is true, then the operator 𝑇 does have a finitely many eigenvalues 

and spectral singularities with a finite multiplicity.  

 

Proof. To verify the theorem, we shall demonstrate that 𝑒(𝜇) has a finite number of zeros with finite 

multiplicities in ℂ𝑙𝑒𝑓𝑡. Using the relation (29) between the sets and the former theorem, it may well be 

observed that 𝑄3 = ∅. That is, the accumulation points of the bounded sets 𝑄1 and 𝑄2 can not exist. 

Therefore, 𝑒(𝜇) has only a finite number of roots in ℂ𝑙𝑒𝑓𝑡. Because 𝑄4 = ∅, we can see that these roots 

are of finite multiplicity.  

 

4. Discussion and Conclusion 

 

In this study, we investigated the spectrum and spectral properties of the non-selfadjoint Sturm-

Liouville type operator with the negative density function. We used hyperbolic type representations of 

the fundamental solutions of the operator to obtain the spectrum. We obtained the Jost function which 

is analytic on the left-half complex plane. We also adopted Naimark’s and Pavlov’s conditions for the 

potential function to be met for the finiteness of the eigenvalues and spectral singularities.  

The exciting feature of this study is that we present the relation between the discrete operator 

case and differential operator case from a different perspective. In particular, this study is analogous to 

the hyperbolic eigenparameter-dependent case in discrete operators. 
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