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Abstract
In the present paper, we define the generalized Kwang-Wu Chen matrix. Basic properties
of this generalization, such as explicit formulas and generating functions are presented.
Moreover, we focus on a new class of generalized Fubini polynomials. Then we discuss their
relationship with other polynomials such as Fubini, Bell, Eulerian and Frobenius-Euler
polynomials. We have also investigated some basic properties related to the degenerate
generalized Fubini polynomials.
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1. Introduction
The nth Bernoulli numbers Bn are defined by the generating function

t

et − 1
=
∑
n≥0

Bn
tn

n!
, |t| < 2π. (1.1)

The rational numbers B0 = 1, B1 = −1/2, B2 = 1/6, B3 = 0, B4 = −1/30 and B2n+1 = 0
for n > 0, have many beautiful properties. The most basic recurrence relation is

n∑
k=0

(
n + 1

k

)
Bk = 0. (1.2)

In 2001, Kwang-Wu Chen [5] gave an algorithm for computing Bernoulli numbers, with

a0,m = 1
m + 1

; an+1,m = − (m + 1) an,m+1 + man,m. (1.3)

The primary purpose of this paper is to extend the Fubini transform for generalizing
Fubini polynomials and studying its properties. We first generalize (1.3). The idea is
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to construct an infinite matrix M := (an,m)n,m≥0 in which the first row a0,m := αm of
the matrix is the initial sequence and the first column an,0 := βn is the final sequence.
More precisely, for nonzero complex numbers x and y, we propose to study the following
three-term recurrence relation

an+1,m(x, y) = x (m + 1) an,m+1(x, y) + yman,m(x, y). (1.4)

By setting x = −1 and y = 1 in (1.4), we get (1.3). More directly, we propose to generalize
the Fubini transformation.

The Fubini transform of a sequence (αn)n≥0 is the sequence (βn)n≥0 given by

βn =
n∑

k=0
k!
{

n

k

}
tkαk

and the inverse transform is

αn = 1
n!tn

n∑
k=0

s (n, k) βk .

2. Definitions and notation
In this section, we introduce some definitions and notations which are useful in the rest

of the paper. Following the usual notations [7].
The falling factorial xn (x ∈ C) is defined by

xn = x (x − 1) · · · (x − n + 1) , x0 = 1

and the rising factorial denoted by xn, is defined by

xn = x (x + 1) · · · (x + n − 1) , x0 = 1.

The (signed) Stirling numbers of the first kind denoted s (n, k) are the coefficients in
the expansion

xn =
n∑

k=0
s (n, k) xk. (2.1)

The exponential generating function is

1
k!

(ln (1 + t))k =
∑
n≥k

s (n, k) tn

n!
, (2.2)

and s (n, k) satisfy the following recurrence relation:

s (n + 1, k) = s (n, k − 1) − ns (n, k) (2.3)

and that
s (n, 0) = δn,0 (n ∈ N), s (n, k) = 0 (k > n or k < 0),

where δn,m denoted Kronecker symbol.
The Stirling numbers of the second kind denoted

{n
k

}
count the number of ways to

partition a set of n things into k nonempty subsets. Explicitly
{n

k

}
are the coefficients in

the expansion

xn =
n∑

k=0

{
n

k

}
xk.
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The r-Stirling numbers [3] denotes
{n

k

}
r
, for any positive r ∈ N, the number of partitions

of a set of n objects into exactly k nonempty, disjoint subsets, such that the first r elements
are in distinct subsets. These numbers obey the recurrence relation{

n

k

}
r

= 0, n < r,{
n

k

}
r

= δk,r, n = r,{
n

k

}
r

= k

{
n − 1

k

}
r

+
{

n − 1
k − 1

}
r

, n > r

(2.4)

and {
n

k

}
r

=
{

n

k

}
r−1

− (r − 1)
{

n − 1
k

}
r−1

. (2.5)

The exponential generating function is given by

1
k!

ert
(
et − 1

)k
=
∑
n≥k

{
n + r

k + r

}
r

tn

n!
. (2.6)

3. The Generalized Fubini transform
Theorem 3.1. Given an initial sequence (a0,m)m≥0, define the matrix M associated with
the initial sequence by (1.4) then

(1) The entries of the matrix M are given by

an,m(x, y) = 1
m!

n∑
k=0

{
n + m

k + m

}
m

(k + m)!yn−kxka0,m+k. (3.1)

(2) Suppose that the initial sequence a0,m+r has the following ordinary generating func-
tion Ar (t) =

∑
k≥0

a0,k+rtk. Then, the sequence (an,r (x))n≥0 of the rth columns of

the matrix M has an exponential generating function Br (t; x, y) =
∑

n≥0
an,r(x, y) tn

n!
,

given by

Br (t; x, y) = erty

r!

(
e−ty d

dt

)r
[(

ety − 1
y

)r

Ar

(
x

y
(ety − 1)

)]
. (3.2)

Proof. (1) We prove the relation (3.1) by induction on n. The result clearly holds for
n = 0, we now show that the formula for n + 1 follows from (1.4) and induction
hypothesis

an+1,m(x, y) = 1
m!

n−1∑
k=0

{
n + m + 1
k + m + 1

}
m+1

(k + m + 1)!xk+1yn−ka0,m+k+1

+m

{
n + m

m

}
m

yn+1a0,m + 1
(m − 1)!

n∑
k=1

{
n + m

k + m

}
m

(k + m)!xkyn−k+1a0,m+k

+ 1
m!

{
n + m + 1
n + m + 1

}
m+1

(n + m + 1)!xn+1a0,m+n+1.
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After some rearrangements, we get

an+1,m(x, y) = 1
m!

n∑
k=1

{
n + m + 1

k + m

}
m+1

(k + m)!xkyn−k+1a0,m+k + m

{
n + m

m

}
m

yn+1a0,m

+ 1
(m − 1)!

n∑
k=1

{
n + m

k + m

}
m

(k + m)!xkyn−k+1a0,m+k

+ 1
m!

{
n + m + 1
n + m + 1

}
m+1

(n + m + 1)!xn+1a0,m+n+1.

From (2.4) and (2.5), and after some rearrangements, we get

an+1,m(x, y) = 1
m!

n∑
k=1

({
n + m + 1

k + m

}
m+1

+ m

{
n + m

k + m

}
m

)
(k + m)!xkyn−k+1a0,m+k

+
{

n + m + 1
m

}
m

yn+1a0,m + 1
m!

{
n + m + 1
n + m + 1

}
m

(n + m + 1)!xn+1a0,m+n+1

= 1
m!

n+1∑
k=0

{
n + m + 1

k + m

}
m

(k + m)!xkyn−k+1a0,m+k.

(2) The verification of (3.2) follows by induction on n. By using (3.1), we obtain

Br (t; x, y) =
∑
n≥0

(
1
r!

n∑
k=0

{
n + r

k + r

}
r

(k + r)!xkyn−ka0,r+k

)
tn

n!

=
∑
k≥0

(k + r)!
r!

(
x

y

)k

a0,r+k

∑
n≥k

{
n + r

k + r

}
r

(ty)n

n!
.

From the relation (2.6), we obtain

Br (t; x, y) =
∑
k≥0

(k + r)!
r!

(
x

y

)k

a0,r+k
1
k!

erty
(
ety − 1

)k

= erty
∑
k≥0

(
k + r

r

)
a0,r+k

(
x

y

(
ety − 1

))k

.

Since(
k + r

r

)[
x

y

(
ety − 1

)]k

= 1
r!xr

(
e−ty d

dt

)r [x

y

(
ety − 1

)]k+r

,

we get

Br (t; x, y) = erty

r!

(
e−ty d

dt

)r
[(

ety − 1
y

)r

Ar

(
x

y
(ety − 1)

)]
.

This evidently completes the proof of Theorem.
□

The following corollary represents another expression for the generating function Br

Corollary 3.2.

Br (t; x, y) = 1
r!

r∑
k=0

s (r, k) dk

dtk

[(
ety − 1

y

)r

Ar

(
x

y
(ety − 1)

)]
. (3.3)
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To prove formula (3.3) using

(
e−ty d

dt

)r

F (t) = e−rty
r∑

k=0
s (r, k) dk

dtk
F (t) ,

with

F (t) =
(

ety − 1
y

)r

Ar

(
x

y
(ety − 1)

)
.

Theorem 3.3. Given final sequence (an,0)n≥0, define the matrix M associated with the
final sequence by

an,m+1(x, y) = 1
x (m + 1)

(an+1,m(x, y) − yman,m(x, y)) , (3.4)

then

(1) The entries of the matrix M are given by

an,m (x, y) = ym

xmm!

m∑
k=0

y−ks (m, k) an+k,0 . (3.5)

(2) Suppose that the final sequence an+r,0 has the following exponential generating
function B̂r (t) =

∑
k≥0

ak+r,0
tk

k! . Then, the sequence (ar,m (x))m≥0 of the rth row of

the matrix M has an ordinary generating function Âr (t; x, y) =
∑

m≥0
ar,m(x, y)tm,

given by

Âr (t; x, y) = B̂r

(
y−1 ln

(
1 + ty

x

))
. (3.6)

Proof. (1) We prove by induction on m, the result clearly holds for m = 0. By
induction hypothesis and (3.4), we have

an,m+1(x, y) = ym

xm+1 (m + 1)!

(
m∑

k=0
y−ks (m, k) an+k+1,0 − ym

m∑
k=0

y−ks (m, k) an+k,0

)

= ym

xm+1 (m + 1)!

(
y−ms (m, m) an+m+1,0 +

m−1∑
k=0

y−ks (m, k) an+k+1,0

)

− ym

xm+1 (m + 1)!

(
m

m∑
k=1

y−k+1s (m, k) an+k,0 + mys (m, 0) an,0

)
.

After some rearrangements, we get

an,m+1(x, y) = ym

xm+1 (m + 1)!

(
m∑

k=1
y−k+1s (m, k − 1) an+k,0 − m

m∑
k=1

y−k+1s (m, k) an+k,0

)

+ ym

xm+1 (m + 1)!
(
y−ms (m, m) an+m+1,0 − mys (m, 0) an,0

)
.
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From (2.3) and after some rearrangements, we get

an,m+1(x, y) = ym+1

xm+1 (m + 1)!

m∑
k=1

y−k (s (m, k − 1) − ms (m, k)) an+k,0

+ ym+1

xm+1 (m + 1)!

(
y−m−1s (m + 1, m + 1) an+m+1,0 + s (m + 1, 0) an,0

)
= ym+1

xm+1 (m + 1)!

m+1∑
k=0

y−ks (m + 1, k) an+k,0 .

which completes the proof.
(2) According to (3.5), we have

Âr (t; x, y) =
∑
m≥0

(
ym

xmm!

m∑
k=0

y−ks (m, k) ar+k,0

)
tm

=
∑
k≥0

ar+k,0 y−k
∑
m≥k

ym

xmm!
s (m, k) tm.

From the relation (2.2), we obtain

Âr (t; x, y) =
∑
k≥0

ar+k,0 y−k 1
k!

(
ln
(

1 + ty

x

))k

= B̂r

(
y−1 ln

(
1 + ty

x

))
,

which completes the proof.
□

Corollary 3.4. For n, m ≥ 0, we have

n∑
k=0

{
n + m

k + m

}
m

(k + m)!xkyn−ka0,m+k =
m∑

k=0
s (m, k) x−mym−kan+k,0 . (3.7)

The identity (3.7) can be viewed as the generalized Fubini transform which can be
reduced, for m = 0 to the Fubini transform of the sequence αn, and for n = 0 to the
inverse Fubini transform of the sequence βm.

4. On generalized Fubini polynomials
Setting the initial sequence a0,m = 1 in (1.4), we get the following matrix

M =



1 1 1 1 · · ·
x y + 2x 2y + 3x 3y + 4x · · ·

2x2 + yx 6x2 + 6yx + y2 12x2 + 15xy + 4y2 ...

6x3 + 6x2y + xy2 24x3 + 36x2y + 14xy2 + y3 ...

24x4 + 36x3y + 14x2y2 + xy3 ...
...


.
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Since Ar (t) = 1
1−t , it follows from (3.2) and (3.3) that the final sequence has an expo-

nential generating function given by

Br (t, x, y) = erty

r!

(
e−ty d

dt

)r
[(

ety − 1
y

)r 1
1 − x

y (ety − 1)

]

= 1
r!

r∑
k=0

s (r, k) dk

dtk

[(
ety − 1

y

)r 1
1 − x

y (ety − 1)

]
.

In particular for r = 0, we have

B0 (t; x, y) = 1
1 − x

y (ety − 1)
.

Definition 4.1. We defined a sequence of polynomials Fn(x, y) of two variables x, y, called
generalized Fubini polynomials, by means of the generating function

1
1 − x

y (ety − 1)
=
∑
n≥0

Fn (x, y) tn

n!
. (4.1)

The explicit formula for Fn (x, y) is given by

Fn (x, y) =
n∑

k=0

{
n

k

}
k!xkyn−k. (4.2)

By setting y = 1 in (4.1), we get
1

1 − x (et − 1)
=
∑
n≥0

Fn (x, 1) tn

n!

=
∑
n≥0

ωn (x) tn

n!
, (4.3)

where ωn (x) denotes the Fubini polynomials [1, 8, 11], defined by

ωn (x) =
n∑

k=0

{
n

k

}
k!xk.

By (4.1) and (4.3), we can write the relation between ωn (x) and Fn (x, y), given by the
following two formulas

Fn (x, y) = ynωn

(
x

y

)
(4.4)

and

ωn (x) = y−nFn (xy, y) . (4.5)

The Fubini polynomials ωn (x) are related to the geometric series in the following way
[1, 2] (

x
d

dx

)n 1
1 − x

=
∑
k≥0

xkkn = 1
1 − x

ωn

(
x

1 − x

)
. (4.6)

This relation can be extended to a more general form depending on two variables x and
y.

Theorem 4.2. For x different to y, the polynomials Fn (x, y) have the following property

y

y − x
Fn

(
xy

y − x
, y

)
=
∑
k≥0

(
x

y

)k

(yk)n = yn
(

x
d

dx

)n y

y − x
. (4.7)
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Proof. We have
y

y − x

∑
n≥0

Fn

(
xy

y − x
, y

)
tn

n!
= y

y − x

(
1

1 − x
y−x(ety − 1)

)

= 1
1 − x

y ety

=
∑
k≥0

(
x

y

)k (
ety
)k

.

Then

y

y − x

∑
n≥0

Fn

(
xy

y − x
, y

)
tn

n!
=
∑
k≥0

(
x

y

)k ∑
n≥0

(ky)n tn

n!

=
∑
n≥0

∑
k≥0

(
x

y

)k

(ky)n

 tn

n!
.

Equating the coefficients of tn

n! , we get

y

y − x
Fn

(
xy

y − x
, y

)
=
∑
k≥0

(
x

y

)k

(ky)n.

On the other hand, we apply the formula (4.1) in [1], we get∑
k≥0

(
x

y

)k

(yk)n = yn
∑
k≥0

(
x

d

dx

)n (x

y

)k

= yn
(

x
d

dx

)n ∑
k≥0

(
x

y

)k

= yn
(

x
d

dx

)n y

y − x
. (4.8)

This evidently completes the proof of the theorem. □
Remark 4.3. By setting y = 1 in (4.7) we get (4.6).

Now, recall that the exponential generating function for Bell polynomials ϕn(x), is given
by

ex(et−1) =
∑
n≥0

ϕn(x) tn

n!
(4.9)

and given explicitly by

ϕn(x) =
n∑

k=0

{
n

k

}
xk. (4.10)

In the following result, we will give the integral representation for Fn (x, y) and the link
with ϕn(x).

Theorem 4.4. For n ≥ 0, we have

Fn (x, y) = yn
∫ +∞

0
ϕ

(
x

y
λ

)
e−λdλ (4.11)

and ∑
n≥0

Fn (x, y) tn

n!
=
∫ +∞

0
e

−λ
(

1− x
y

(ety−1)
)
dλ. (4.12)
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Proof. Replacing x by x
y λ in (4.10) and multiplying both sides by yne−λ and integrating

for λ from zero to infinity, we have

yn
∫ +∞

0
ϕ

(
x

y
λ

)
e−λdλ = yn

∫ +∞

0

(
n∑

k=0

{
n

k

}(
x

y
λ

)k
)

e−λdλ

= yn
n∑

k=0

{
n

k

}(
x

y

)k ∫ +∞

0
e−λ (λ)k dλ

= yn
n∑

k=0

{
n

k

}(
x

y

)k

k!.

By comparing with (4.2) we get (4.11).
Now to prove (4.12), using (4.11), we have

∑
n≥0

Fn (x, y) tn

n!
=
∑
n≥0

(
yn
∫ +∞

0
ϕ

(
x

y
λ

)
e−λdλ

)
tn

n!

=
∫ +∞

0

e−λ
∑
n≥0

ϕ

(
x

y
λ

) (ty)n

n!

 dλ

we apply (4.9), we get

∑
n≥0

Fn (x, y) tn

n!
=
∫ +∞

0

(
e−λe

x
y

λ(ety−1)
)

dλ

=
∫ +∞

0
e

−λ
(

1− x
y

(ety−1)
)
dλ.

□

Remark 4.5. By setting y = 1 in (4.11) and (4.12), respectively, we get (3.11) and (3.13)
in [1].

The Fubini polynomials of two variables ωn (x, y) are defined in [8,9,11] by the following
generating function

ety

1 − x(et − 1)
=
∑
n≥0

ωn (x, y) tn

n!
. (4.13)

The next result represents the relation between Fn (x, y) and ωn (x, y).

Theorem 4.6. For n ≥ 0, we have

Fn (x, y) = yn
n∑

k=0
yk

(
n

k

)
(−1)kωn−k

(
x

y
, y

)
. (4.14)

Proof. From (4.1) and (4.13), we have
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∑
n≥0

Fn (x, y) tn

n!
= e−ty2 ety2

1 − x
y (ety − 1)

=

∑
n≥0

(−ty2)n

n!

∑
n≥0

ωn

(
x

y
, y

) (ty)n

n!


=
∑
n≥0

(
n∑

k=0

(
n

k

)
(−y2)kωn−k

(
x

y
, y

)
yn−k

)
tn

n!

=
∑
n≥0

(
yn

n∑
k=0

(
n

k

)
(−1)kykωn−k

(
x

y
, y

))
tn

n!
,

that is to say

Fn (x, y) = yn
n∑

k=0
yk

(
n

k

)
(−1)kωn−k

(
x

y
, y

)
.

□
In addition to the above properties of Fn (x, y) polynomials, we now present some re-

currence relations. The following lemma will be useful for the proof of the next theorem.

Lemma 4.7. For nonzero complex numbers x and y, we have
ety

1 − x
y (ety − 1)

=
(1

x
− 1

y
(ety − 1)

)
d

dt

(
1

1 − x
y (ety − 1)

)
. (4.15)

Theorem 4.8. For n ≥ 0, we have

Fn+1 (x, y) =
(

xy

x + y

) n∑
k=0

(
n

k

)
yn−k

(
Fk (x, y) + 1

y
Fk+1 (x, y)

)
. (4.16)

Proof. Using the above lemma, then (4.15) is equivalent to

∑
n≥0

(
n∑

k=0

(
n

k

)
yn−kFk (x, y)

)
tn

n!
=

1
x

− 1
y

∑
n≥0

(ty)n

n!
+ 1

y

∑
n≥0

Fn+1 (x, y) tn

n!
.

Then,∑
n≥0

(
n∑

k=0

(
n

k

)
yn−kFk (x, y)

)
tn

n!
= 1

x

∑
n≥0

Fn+1 (x, y) tn

n!
− 1

y

∑
n≥0

(ty)n

n!
∑
n≥0

Fn+1 (x, y) tn

n!

+ 1
y

∑
n≥0

Fn+1 (x, y) tn

n!

= 1
x

∑
n≥0

Fn+1 (x, y) tn

n!
− 1

y

∑
n≥0

(
n∑

k=0

(
n

k

)
yn−kFk+1 (x, y)

)
tn

n!

+ 1
y

∑
n≥0

Fn+1 (x, y) tn

n!

=
∑
n≥0

(
1
x
Fn+1 (x, y) − 1

y

n∑
k=0

(
n

k

)
yn−kFk+1 (x, y) + 1

y
Fn+1 (x, y)

)
tn

n!
.

Equating the coefficients of tn

n! , we get
n∑

k=0

(
n

k

)
yn−kFk (x, y) = 1

x
Fn+1 (x, y) − 1

y

n∑
k=0

(
n

k

)
yn−kFk+1 (x, y) + 1

y
Fn+1 (x, y)
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and after some rearrangements, we obtain the result. □
Remark 4.9. As a special case, we get the formula (24) in [6] by setting y = 1 in (4.16).

Theorem 4.10. For n ≥ 0, we have

Fn+1 (x, y) + yFn (x, y) = (x + y)
n∑

k=0

(
n

k

)
Fk (x, y)Fn−k (x, y) . (4.17)

Proof. Considering the derivative of the generating function of the polynomials Fn (x, y)
(4.1), we have∑

n≥0
Fn+1 (x, y) tn

n!
= xety(

1 − x
y (ety − 1)

)2

=
(

x + y

1 − x
y (ety − 1)

− y

)
1

1 − x
y (ety − 1)

= (x + y)
∑
n≥0

Fn (x, y) tn

n!
∑
n≥0

Fn (x, y) tn

n!
− y

∑
n≥0

Fn (x, y) tn

n!

= (x + y)
∑
n≥0

(
n∑

k=0

(
n

k

)
Fk (x, y)Fn−k (x, y) − yFn (x, y)

)
tn

n!
.

Equating the coefficients of tn

n! , and after some rearrangements, we obtain the result. □
For y = 1, we get the result of the Theorem 1 in [8].

Theorem 4.11. For n ≥ 0 and for x1 different to x2, we have
n∑

k=0

(
n

k

)
Fk (x1, y)Fn−k (x2, y) = x2Fn (x2, y) − x1Fn (x1, y)

x2 − x1
. (4.18)

Proof. The proof of (4.18) becomes as follows
1

1 − x1
y (ety − 1)

1
1 − x2

y (ety − 1)
= x2

x2 − x1

1
1 − x2

y (ety − 1)

− x1
x2 − x1

1
1 − x1

y (ety − 1)
.

□
Now, in this part of the paper, we will connect the polynomials Fn (x, y) with Eulerian

polynomials and Frobenius-Euler polynomials. It is known that for x ̸= 1 and n ≥ 0, the
Eulerian polynomials An(x) and the Frobenius-Euler polynomials Hn(x; y) are defined
respectively by the following generating functions [12,13]

1 − x

et(x−1) − x
=
∑
n≥0

An (x) tn

n!
, (4.19)

1 − x

et − x
ety =

∑
n≥0

Hn (x; y) tn

n!
. (4.20)

Theorem 4.12. For n ≥ 0, and for nonzero complex numbers x and y,we have

Fn (x, y) = xnAn

(
1 + y

x

)
(4.21)

and for t ̸= 1, we have

An (t) =
(

t − 1
y

)n

Fn

(
y

t − 1
, y

)
=
(1

x

)n

Fn (x, x(t − 1)) . (4.22)
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Proof. The generating functions (4.1) and (4.19) can be rewritten as
1

ety − (1 + y
x)

= −x

y

∑
n≥0

Fn (x, y) tn

n!
(4.23)

and for x ̸= 1
1

et − x
= −

∑
n≥0

An (x)
(x − 1)n+1

tn

n!
. (4.24)

Then,

x

y
Fn (x, y) = yn An

(
1 + y

x

)
( y

x)n+1 .

= xn An
(
1 + y

x

)
( y

x)
.

Which is equivalent to (4.21).

Now, for t = 1 + y
x in (4.21), we obtain (4.22).

□

Theorem 4.13. For n ≥ 0, we have

Fn (x, y) = yn
n∑

k=0
yk

(
n

k

)
(−1)kHn−k

(
1 + y

x
; y

)
.

Proof. From the generating functions (4.1) and (4.20), we have,∑
n≥0

Fn (x, y) tn

n!
= e−ty2

(
1 − (1 + y

x)
)

ety − (1 + y
x)

ety2

= e−ty2∑
n≥0

Hn

(
1 + x

y
; y

) (ty)n

n!
.

In the same way as the proof of Theorem 4.6. we get the result. □

5. Probabilistic representation
We consider a geometric distributed random variable X. The probability density func-

tion, for k ∈ N∗ and two parameters p and q, such that q = 1 − p, as follows:

P (X = k) = pqk−1.

The higher moment of X is given by

E(Xn) =
∑
k≥1

knp(1 − p)k−1. (5.1)

In the next paragraph, we show that Fn (x, y) can be viewed as the nth moment of a
random variable X − 1 where X follows the geometric law.

Theorem 5.1. Let X be a random variable follows the geometric law and for p = y
x+y > 0

, we have

Fn (x, y) = y

x + y

∑
k≥0

(
x

x + y

)k

(yk)n (5.2)

=ynE((X − 1)n). (5.3)
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Proof. From (4.1), we have∑
n≥0

Fn (x, y) tn

n!
= y

x + y

1(
1 − x

x+y ety
)

= y

x + y

∑
k≥0

(
x

x + y

)k (
ety
)k

= y

x + y

∑
k≥0

(
x

x + y

)k ∑
n≥0

(ky)n tn

n!

= y

x + y

∑
n≥0

∑
k≥0

(
x

x + y

)k

(ky)n

 tn

n!
.

Equating tn

n! and by comparing with (5.1), we obtain the result. □

6. Degenerate generalized Fubini polynomials
For any nonzero real number λ, we define the degenerate generalized Fubini polynomials

as
1

1 − x
y ((1 + λty)

1
λ − 1)

=
∑
n≥0

Fn,λ (x, y) tn

n!
. (6.1)

It is clear that lim
λ→0

(1 + λty)
1
λ = ety and therefore lim

λ→0
Fn,λ (x, y) = Fn (x, y).

Now, recall that the degenerate Stirling numbers of the second kind
{n

k

}
λ
, are defined

by the following generating function [4]

1
k!

(
(1 + λt)

1
λ − 1

)k
=
∑
n≥k

{
n

k

}
λ

tn

n!
. (6.2)

In the next result, we will give the explicit formula for Fn,λ (x, y).

Theorem 6.1. For n ≥ 0, we have

Fn,λ (x, y) =
n∑

k=0

{
n

k

}
λ

k!xkyn−k. (6.3)

Proof. From (6.1), we note that∑
n≥0

Fn,λ (x, y) tn

n!
= 1

1 − x
y ((1 + λty)

1
λ − 1)

(6.4)

=
∑
k≥0

(
x

y

)k (
(1 + λty)

1
λ − 1

)k

=
∑
k≥0

(
x

y

)k

k!
∑
n≥k

{
n

k

}
λ

(ty)n

n!

=
∑
n≥0

(
n∑

k=0

{
n

k

}
λ

k!xkyn−k

)
tn

n!
.

Equating tn

n! , we obtain the result. □
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Remark 6.2. Now, by setting y = 1 in (6.1), we get
1

1 − x((1 + λt)
1
λ − 1)

=
∑
n≥0

Fn,λ (x, 1) tn

n!

=
∑
n≥0

ωn,λ (x) tn

n!
,

where ωn,λ (x) denotes the degenerate Fubini polynomials [10], defined by

ωn,λ (x) :=
n∑

k=0

{
n

k

}
λ

k!xk.
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