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 Abstract 

This paper describes an unsupervised sequential auto-encoding model targeting multi-object 

scenes. The proposed model uses an attention-based formulation, with reconstruction-driven 

losses. The main model relies on iteratively writing regions onto a canvas, in a differentiable 

manner. To enforce attention to objects and/or parts, the model uses a convolutional localization 

network, a region level bottleneck auto-encoder and a loss term that encourages reconstruction 

within a limited number of iterations. An extended version of the model incorporates a 

background modeling component that aims at handling scenes with complex backgrounds. The 

model is evaluated on two separate datasets: a synthetic dataset that is constructed by composing 

MNIST digit instances together, and the MS-COCO dataset. The model achieves high 

reconstruction ability on MNIST based scenes. The extended model shows promising results on 

the complex and challenging MS-COCO scenes.  
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1. INTRODUCTION 

Generative image modeling is a fundamental problem in machine learning, with numerous potential 

applications in various domains, such as computational art generation, image editing, representation 

learning and unsupervised recognition. For this reason, a variety of models have been proposed over the 

recent years, such as Generative Adversarial Networks (GANs) [1-3], variational auto-encoders (VAEs) 

[4-5], Moment Matching Networks [6], Normalizing Flows [7-11], Diffusion Models [12-13,34-35] and 

auto-regressive models [36]. 

Recent progress in generative model architectures and formulations has led to the construction of high-

fidelity and high-resolution generative image models, e.g., Liu et al. [14], Brock et al. [15], Karras et al. 

[16], Karnewar and Wang [17], Karras et al. [18], Gu et al. [31], Rombach et al. [32], Zhang et al. [33]. 

These models are known to yield particularly successful results in single-object cases, such face generation 

[37]. However, even with the state-of-the-art techniques, the contemporary models suffer from two 

shortcomings: (i) the best performing models rely on supervised training where image labels and/or 

annotations are provided to the model during training [19], (ii) the modeling of complex scenes, involving 

multiple objects is largely an unresolved problem [20].  

In this context, we propose a sequential image auto-encoder that can be trained over multi-object scene 

examples without annotations. The main goal of the proposed model is to learn a re-constructive operator 

that discovers object parts, objects and/or distinctive regions in an unsupervised manner, such that a scene 

can be reconstructed in a limited number of generation steps.  

The proposed approach aims to make a step towards building models that can ultimately learn the structure 

of the world, in an object-centric way, from unlabeled natural images, as a way to tackle the difficulty of 

modeling complex scenes. In particular, the long-term research goal is to develop modeling principles that 
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allow handling complex scenes in an object-by-object manner so that contemporary models performing 

well in single-object domains can be made to work well in the complex ones. 

A main observation that suggests the possibility of unsupervised learning of object-based sequential scene 

models is the fact that modeling complex scenes in an object and/or part driven can be of lower complexity, 

compared to learning unstructured scene models, especially under certain constraints. The main reason here 

is that the spatial arrangement of objects within a scene typically has much more variability compared to 

the variability within the spatial structure of the object parts. For example, in a street scene, cars, people, 

trees and buildings may appear in pretty much arbitrary positions within the limits of geometric layout, 

with various nearby occurrences of the parts of different objects. In contrast, cars (and most other objects) 

have a relatively more rigid structure that depicts far smaller spatial variability, especially when the pose-

driven variations are ignored. Therefore, from a complexity point of view, object-aware models are likely 

to provide much more scalable approaches, as opposed to tackling complete scenes as complex spatial 

arrangements of low-level patches. 

Based on these reasonings, we therefore aim to make a step towards building unsupervised models that 

handle scenes in an object-by-object manner. More specifically, we aim to learn sequential auto-encoding 

processes where each write operation focuses on a single object, or a part of it, as opposed to writing patches 

with mixed object semantics. Ultimately, the goal is to construct approaches that are naturally capable of 

modeling natural scenes through object compositions, towards overcoming the limitations of contemporary 

models.  

A major inspiration for our work is the DRAW model [21]. The DRAW model uses a variational auto-

encoder where both the encoder and decoder components are recurrent neural networks (RNNs). At each 

time step, DRAW uses the output of the decoder RNN to decide the next image area to be read and written. 

The encoder RNN is updated according to the read area, its output is transformed into a latent variable 

sample, and the decoder RNN is updated according to that sample information. The patch to be written on 

the canvas, i.e., the image being constructed, is also decided using the output of the decoder RNN. The 

original DRAW work does not directly aim at learning object-based image models, e.g., the proposed model 

uses 64 read & write operations on simple MNIST images, which contain one object per image [21].   

Our approach similarly proposes a sequential auto-encoder. In contrast to DRAW, however, we explicitly 

target exploring the potential of learning an objects-driven auto-encoder. Therefore, other than embracing 

the fully-differentiable read and write operators, and the sequential canvas-writing framework of DRAW, 

our approach drastically differs from the original DRAW model to be able to enforce object-by-object 

reconstruction of the scenes. The main distinctions of our model can be summarized as follows. First, 

instead of relying on RNN outputs to decide the soft attention areas as in DRAW, we define a dedicated 

convolutional localization network that decides on the read and write region coordinates at each time step. 

Second, instead of relying on RNNs, we define a bottleneck-limited region auto-encoder that operates 

locally on the area soft-attended according to the localization network output. The bottleneck in the 

encoding dimensionality restricts the model's per-patch generative complexity capacity, therefore, 

effectively enforces the whole model to focus on individual objects or their parts, as opposed to learning a 

degenerate generation process, e.g. holistically autoencoding the full scene like a conventional auto-

encoder. Third, we propose the mean-squared error over time (MSEOT) loss, which increasingly penalizes 

discrepancies between the canvas and the original image. MSEOT term effectively enforces the network to 

reconstruct the scene in a minimal number of steps, and therefore, encourages learning to attend to object 

or major part patches, instead of smaller fragments. Fourth, we introduce an additional patch loss that 

directly measures the autoencoding quality of individual write operations. Finally, towards handling models 

with complex backgrounds, we introduce the background model, which first generates the background 

"stuff" so that the sequential model can focus on generating foreground "things".  

The details of the method are given in Section 2. The experimental observations, which demonstrate the 

potential of the proposed approach in learning object-driven auto-encoding processes, are presented and 

discussed in Section 3. Finally, the conclusive remarks are given in Section 4. 

 

 



Yarkın Deniz ÇETİN, Ramazan Gökberk CİNBİŞ / GU J Sci, Part C, 10(4):1127-1142 (2022) 1129 

2. METHOD 

In this section, we present the details of the proposed model. We first give an overview of the overall 

architecture in Section 2.1. We then explain the localization network, region auto-encoder and differentiable 

reader/writer in Section 2.2, 2.3 and 2.4, respectively. We explain the training details in Section 2.5. Finally, 

we present model extensions towards handling scenes with complex backgrounds in Section 2.6. 

2.1. Main Architecture 

The architecture is built in a sequential way to reconstruct the given scene, within a limited number of steps. 

At each step, the model localizes the region to be read, extracts a summary of the location, re-constructs 

the localized region and accumulates the region reconstructions by writing onto a canvas. 

More formally, the model can be expressed in terms of a series of sub-models, operations, and 

(intermediate) variables. The canvas image, which is updated over the read-write iterations, is expressed 

by 𝑐. The status of the canvas at a particular iteration 𝑡, is given by 𝑐𝑡, which is normally empty at 𝑡 = 0 

unless initialized by a background model (Section 2.6). At the beginning of each iteration, we first compute 

the error image 𝜉𝑡  between the input image 𝑥, and the current canvas: 

𝜉𝑡 = 𝑥 − 𝑐𝑡 (1) 

The next step of the model is to localize the region, where the model will soft-attend in the current iteration, 

using the localization network: 

𝜔𝑡 = 𝐿𝑜𝑐𝑎𝑙𝑖𝑧𝑒(𝜉𝑡) (2) 

The output of the localization network (Section 2.2) provides the parameters 𝜔 of the soft attention reader-

writer (Section 2.4).  

The next step is to read and encode the current region of interest in the error image domain:  

𝜌𝑡 , 𝑓𝑡 = 𝑅𝑒𝑎𝑑(𝜉𝑡 , 𝜔𝑡) (3) 

𝑧𝑡 = 𝐸𝑛𝑐𝑜𝑑𝑒𝑟(𝜌𝑡) (4) 

The reader takes the error image 𝜉𝑡 and the coordinates 𝜔𝑡, and returns the read patch 𝜌𝑡 and region reading 

filters 𝑓𝑡, which are re-used later in the writing stage. The encoder takes the read patch and returns the patch 

encoding 𝑧𝑡. 

Once the localization, reading, and encoding steps are completed, the decoder sub-module takes the 

encoding 𝑧𝑡 and synthesizes the region image to be written onto the canvas:  

𝑟𝑡 = 𝐷𝑒𝑐𝑜𝑑𝑒𝑟(𝑧𝑡) (5) 

where 𝑟𝑡 is the reconstruction output. The canvas is updated additively via the writing operation: 
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Figure 1. The proposed sequential generation approach. The model iteratively attends to an image 

region, reconstructs the corresponding patch, and writes onto the canvas. All steps and modules are 

learned in an unsupervised manner. 

𝑐𝑡+1 = 𝑐𝑡 + 𝑊𝑟𝑖𝑡𝑒(𝑟𝑡 , 𝑓𝑡) (6) 

It is worth nothing that the same filters created at the reading stage are re-used here. A summary of all these 

steps is summarized in the diagram given in Figure 1.  Overall, the model aims to reconstruct a given scene 

by attentively reading, reconstructing and writing patches onto a canvas. 

The model’s temporal depth is specified by the number of iteration (𝑇), a hyper-parameter that describes 

the number of steps it is allowed to make to reconstruct the image. While this is normally a hyper-parameter, 

in Section 2.5 we describe a technique that aims to enforce the network to learn reconstruction with a limited 

number of iterations so as to learn larger parts or objects, instead of non-semantic low-level patches. 

The following subsections explain the details of the aforementioned submodules and operations. 

2.2. Localization Network 

The localization network takes a given error image 𝜉𝑡 at each iteration 𝑡, and returns the parameters for the 

patch reading operator. For this purpose, we use a convolutional neural network (CNN) that aims to predict 

the image region that needs to be locally updated. The network, as shown in Figure 2, is composed of a 

series of convolution and max pooling operations, with ReLU activations. While the convolutional layers 

are aimed at coarsely preserving the spatial structure of the input, max pooling operations aim to 

progressively select a particular image region.  

The final layer of the network takes the vectorized convolutional activations, transforms them via a fully 

connected layer and outputs the 5 parameters required by the attentive read/write operators, as explained 

later in Section 2.4.  
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Figure 2. The localization network used in the main experiments. This particular network shown is 

designed for 64x64 input images. The architecture can easily be adapted to other input resolutions. 

 

 

Figure 3. Auto-encoder network with the bottleneck layer in the middle for reconstructing local image 

regions. 

 

2.3. Region Auto-Encoder 

At each step, the localized region is encoded and reconstructed via a network with restricted encoding 

capacity, which we call region auto-encoder. The overall structure is visualized in Figure 3: the module 

takes a localized image region, encodes into a limited dimensionality code and tries to reconstruct the region 

of the same size as in input.   

The bottleneck dimensionality can affect the learned region patterns. Larger dimensionalities can lead to 

localization of large regions, while the smaller ones can cause learning spatially too small patterns.   

The region auto-encoder architecture used in our experiments is defined in Table 1. The encoder starts with 

three convolutional layers. The convolutional features are flattened and transformed via two consecutive 

fully connected layers. The bottleneck dimensionality is set to 1024 based on preliminary experiments. The 

encoded vector is approximately transformed back to the region via three consecutive transposed 

convolution layers.  

 

2.4 Soft-Attention Reader-Writer 

For attentive image reading and canvas writing operations, we utilize the kernel-based formulation used in 

Gregor et al. [21]. In this approach, 𝑁 × 𝑁 grids of Gaussian kernels are used for reading & writing image 

regions. The grid is defined by the stride parameter 𝛿 and the overall grid center coordinates (𝑔𝑋, 𝑔𝑌). The 

center 𝜇 of the (𝑖, 𝑗)-th grid cell is defined as in Eq. 7, and Eq. 8: 
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Table 1. Architecture of the region auto-encoder. 

Autoencoder Network 

Layer Output Size 

Convolution 1 16 x 16 x 16 

Convolution 2 32 x 8 x 8 

Convolution 3 64 x 4 x 4 

Fully Connected 64, 128, 256, 512 

Fully Connected 1024 

Transpose Conv. 1 32 x 8 x 8 

Transpose Conv. 2 16 x 16 x 16 

Transpose Conv. 3 1 x 32 x 32 

𝜇𝑋
𝑖 = 𝑔𝑋 + (𝑖 −

𝑁

2
− 0.5) 𝛿 

(7) 

𝜇𝑌
𝑗

= 𝑔𝑌 + (𝑗 −
𝑁

2
− 0.5) 𝛿 

(8) 

Given the grid configuration specified by all 𝜇𝑥 , 𝜇𝑦 values and the kernel variance parameter 𝜎, a set of 

Gaussian kernels are formed. The gaussian kernels corresponding to the (𝑖, 𝑗)-th grid cell using the 

corresponding grid center 𝜇 and 𝜎 values are defined as follows: 

𝐹𝑥(𝑖, 𝑎) =
1

𝑍𝑋
𝑒𝑥𝑝 (−

(𝑎 − 𝜇𝑋
𝑖 )

2

2𝜎2
),  

 

(9) 

𝐹𝑦(𝑗, 𝑏) =
1

𝑍𝑌
𝑒𝑥𝑝 (−

(𝑏 − 𝜇𝑌
𝑗

)
2

2𝜎2
), 

 

(10) 

where 𝐹𝑥 and 𝐹𝑦 are the Gaussian kernel functions in the 𝑥 and 𝑦 directions, respectively.  More specifically, 

𝐹𝑥[𝑖, 𝑎] gives the reading (or writing) weight of pixels with 𝑥 = 𝑎, for all cells in the 𝑖-th row of the grid. 

Similarly, 𝐹𝑦[𝑗, 𝑏] gives the reading (or writing) weight of pixels with 𝑦 = 𝑏, for all cells in the j-th column 

of the grid. 𝑍𝑋 and 𝑍𝑌 are normalization constants such that the kernel weights sum to one. 

A final input parameter 𝛾 is used for scaling the read and write operation intensity values. The reading is 

achieved simply by a bilinear operation.  For an input 𝑥, the value read for the grid coordinate (𝑖, 𝑗) is given 

by: 

∑ ∑ 𝛾𝐹𝑥(𝑖, 𝑎)𝐹𝑦(𝑗, 𝑏)𝑥(𝑎, 𝑏)

𝑊

𝑏

𝐻

𝑎

 

 

(11) 

where 𝑥(𝑎, 𝑏) is the image pixel at the coordinates (𝑎, 𝑏), and the summation runs over all image pixels. 

Similarly, the write operation produces the image to be added to the canvas according to the following 

formula, describing the write value for pixel at the grid coordinate (𝑖, 𝑗):  
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∑ ∑
1

𝛾
𝐹𝑥(𝑖, 𝑎)𝐹𝑦(𝑗, 𝑏)𝑥(𝑎, 𝑏)

𝑊

𝑏

𝐻

𝑎

 

 

(12) 

In color images, we apply the same operations to all channels individually. 

Examples of kernels with different stride 𝛿 and the number of kernel settings are shown in Figure 4. The 

first column shows the original images. The second one shows outputs of patch read operations via 

Gaussian kernels. The third column shows the images rewritten onto the canvas, and the last one shows the 

filters and their respective densities over the canvas. Going from up to down, the number Gaussian kernels 

(𝑁) and their 𝜎 parameters are as follows. First row: 𝑁 = 21, 𝜎 = 0.1. The second row: 𝑁 = 42, 𝜎 = 0.1. 

The third row: 𝑁 = 21, 𝜎 = 0.01. The last row: 𝑁 = 42, 𝜎 = 0.01. Notice that higher 𝜎 values yield more 

blurry readings, and the larger number of kernels provide higher resolution operations. Therefore, in 

practice, the stride 𝛿 parameter controls the size of the region that is read by the model, and by increasing 

𝛿, larger areas can be read at the expense of reduced resolution. The resolution, in general, can be adjusted 

by decreasing or increasing the number of kernels.  

The Gaussian kernel based read/write scheme has two main advantages. First, the operation is fully 

differentiable, therefore, allows end-to-end gradient-based training. Second, using only 5 parameters, i.e., 

𝑔𝑋, 𝑔𝑌, 𝛿, 𝜎 and 𝛾, the read and write operation is determined, which simplifies the task of the localization 

model.  

2.5. Training 

Arguably the most commonly used loss function for training auto-encoders is the mean squared error (MSE) 

loss, which is defined as follows: 

1

𝐻𝑊
∑ ∑(𝑥𝑖𝑗 − 𝑐𝑖𝑗)

2
𝑊

𝑗

𝐻

𝑖

 

 

(13) 

While this is a sensible loss for measuring the overall reconstruction quality, a problem that we have 

observed is that the network may end up writing too many small patches especially when the number of 

read/write iterations is set to high. Similarly, when the iteration count is too small, the network then 

struggles learning the scene structures as it is not allowed to make sufficiently many changes on the canvas 

for reconstruction purposes. 

A major difficulty in setting the optimal number of read/write iterations is the fact that complexity of the 

scenes can change significantly across images. A parameter that is too small for one scene can be too high 

for another one. Based on these observations, we opt to choose a relatively large number of iterations while 

penalizing more heavily the canvas errors towards the end. More specifically, we propose the Mean 

Squared Error Over Time (MSEOT) loss, which has the following form: 
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Figure 4. Visualization of soft attention readers with varying number of kernel and stride parameters. 

 

𝐿𝑀𝑆𝐸𝑂𝑇 = ∑ ||𝑥 − 𝑐𝑡||2(𝑡 − 1)2

𝑇

𝑡=1

 

 

(14) 

This loss term encourages the network to complete the scene in early iterations. In this manner, whenever 

reconstruction is possible with a few write operations, e.g., in scenes with few objects in them, the network 

will be rewarded for early reconstruction. However, where that is not possible, e.g., in relatively more 

complex scenes, the network may continue to write patches towards maintaining a smaller reconstruction 

loss at least towards the final iterations. 

The proposed MSEOT loss measures the loss over the whole image. However, it is also preferable to write 

accurate regions so that each write corresponds to the whole object (or part) as opposed to an intensity-

scaled version of it. To realize this loss term (𝐿𝑟𝑒𝑔𝑖𝑜𝑛), at each iteration, we apply the read operation to the 

original image, and compute the MSE loss between the write output and the original patch. 

Our final loss blends all these losses together, which are computed on a per-iteration basis: 

𝐿𝑡𝑜𝑡𝑎𝑙 = 𝛼𝑟𝑒𝑔𝑖𝑜𝑛𝐿𝑟𝑒𝑔𝑖𝑜𝑛 + 𝛼𝑀𝑆𝐸𝑂𝑇𝐿𝑀𝑆𝐸𝑂𝑇 (15) 

where 𝛼𝑟𝑒𝑔𝑖𝑜𝑛 and 𝛼𝑀𝑆𝐸𝑂𝑇 are the weighting terms. The accumulation of these losses over the iterations 

are used to drive the network training. 

2.6. Handling Scenes with Complex Backgrounds 

This section explains the background module that we introduce to the model in order to adapt it from scenes 

with simple backgrounds (i.e., compositions of binary digits) to more complex, realistic scenes as in the 

MS-COCO [22] dataset.  We also greatly increase the localization network's complexity to improve its 

modeling capacity and utilize progressive training, both of which are explained at the end of section. 

Background modeling. One of the problems with the attentive model is the limited number of write 

operations the model has in its disposal to reconstruct a given image. On top of that, forcing the model to 

behave in a one-object-at-a-time behavior via MSEOT and all the explained design choices creates a great 

difficulty in scenes with complex backgrounds. 
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Since the non-trivial backgrounds are generally composed of stuff, which is typically a combination of 

countless objects and/or textures of trees, grasses, etc. Such objects are not compatible with the one object 

(part) at a time auto-encoding scheme.  

In fact, when the original model is trained over images with non-trivial background, the model allocates a 

great number of write operations to writing stuff fragments, since the background is generally the largest 

"object” and typically constitutes the largest part of the reconstruction error.  

This behavior leads to undesired one to one copying of unstructured patches, without showing any scene 

structure learning behavior. To prevent learning such degenerate models, we introduce a background 

network. Basically, the background network 𝐵(𝑥) is a simple, image-level bottleneck autoencoder that aims 

to capture the coarse scene structure.  

This background network reduces the initial error of the canvas, allowing the model to start with a coarse 

scene, as opposed to an empty canvas. With the help of this network, the model starts to show promising 

results MS-COCO, which are later discussed in Section 3.  

Table 2 presents the architectural details of the background network. Its encoder consists of a simple 

convolutional layer, followed by a fully connected layer. The decoding starts with another fully connected 

layer, followed by a transposed convolutional layer. 

Improved localization network.  We observe that the capacity of the localization network needs to be 

increased significantly to be able to produce usable region estimates in complex scenes. The architecture 

of the improved localization is presented in Table 3. As it can be seen from the table, the network mainly 

consists of a series of convolution, batch normalization and max pooling triplets. All activations in the 

network use Leaky ReLU activations. The resulting embeddings are then converted to 5 read/write 

parameters using a final fully connected layer. 

Progressive training. Finally, we observe that setting the number of read/write iterations is more 

problematic in the case of real-world images with complex backgrounds, even with the MSEOT loss. In 

our preliminary experiments, we have observed that when the model size is kept fixed, the model tends to 

struggle in handling the complexity of the domain due to insufficient complexity, or quickly overfits to a 

degenerate autoencoder that does write operations poorly aligned with the scene structure. As a partial 

solution, we observe that starting with fewer read/write iterations and increasing it at later iterations yields 

a more stable training process. 

 

Table 2. Architecture of the background network. 

Background Network 

Layer Output Size 

Convolution 1 4 x 32 x 32 

Fully Connected 16 

Fully Connected 4096 

Transpose Conv. 1 1 x 64 x 64 
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Table 3. Architecture of the localization network used in MS-COCO experiments. 

Autoencoder Network 

Layer Output Size 

Convolution 1_1 32 x 64 x 64 

BatchNorm 1_1 32 x 64 x 64 

MaxPool 32 x 32 x 32 

Convolution 1_2 32 x 64 x 64 

BatchNorm 1_2 32 x 64 x 64 

Convolution 2_1 64 x 32 x 32 

BatchNorm 2_1 64 x 32 x 32 

MaxPool 64 x 16 x 16 

Convolution 2_2 64 x 32 x 32 

BatchNorm 2_2 64 x 32 x 32 

MaxPool 64 x 16 x 16 

Convolution 3_1 128 x 16 x 16 

BatchNorm 3_1 128 x 16 x 16 

MaxPool 128 x 8 x 8 

Convolution 3_2 128 x 8 x 8 

BatchNorm 3_2 128 x 8 x 8 

MaxPool 128 x 4 x 4 

Fully Connected 256 

 

 

 

 

3. RESULTS AND DISCUSSION 

This section first explains the two datasets that we use to empirically observe the potential of the presented 

model. We then present our main experimental results on the MNIST-Scenes dataset, and the exploratory 

results on the MS-COCO dataset.  

 

3.1. Datasets 

For our main experiments to empirically observe the potential of the proposed model, we generate a new 

MNIST-based dataset, which we call the MNIST Scenes dataset. This dataset consists of scenes with 

multiple MNIST digits, therefore, it provides an experimental setup with simple shapes where the 

autoencoder can be trained in a reasonable amount of time. The dataset contains 10000 and 2000 randomly 

generated images for training and testing, respectively. The dataset is artificially generated using a Python 

script.  
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Figure 5. Test reconstruction loss over training iterations on MNIST-Scenes. 

 

The second dataset that we use is the MS-COCO dataset [22], which contains greatly complex scenes that 

are typically composed of a large number of small and large objects, only some of which are annotated in 

the data set. To avoid computational difficulties, we resize the images to 64x64. In this resize operation, to 

preserve the aspect ratio of the objects, we first crop the largest possible square in each image and then, 

resize it to 64x64. We use 40000 training images and 4000 test images.  

3.2. MNIST-Scenes Experiments 

In the MNIST-Scenes experiments, our main goal is to explore the potential of the network to learn a 

part/object based scene model. The network is trained for 250 Epochs with a batch size of 25. The Gaussian 

kernel size selected for experiments is 25 × 25, roughly one Gaussian per pixel in the MNIST digits. While 

we find that the selection of Gaussian kernel size is not a critical choice, selecting too small values tends to 

cause learning of very small image fragments, as opposed to parts or objects. Similarly, selecting two high 

values tends to cause reading and writing regions that cover multiple objects, instead of individual ones. 

Figure 5 shows the reconstruction loss measured on the test set, over the training iterations. As the loss is 

measured on images unused for model fitting, the decrease in the loss over time quantitatively shows the 

progress made by the model in terms of sequential autoencoding of novel scenes. 

The experiments show high segmentation performance with objects with no textured background. However, 

when textured background is present, the network fails to localize correctly without using higher code sizes. 

This in turn creates overfitting with many object patches and breaks the object-by-object reconstruction 

behavior. 

In Figure 6, a qualitative result is presented on a scene containing seven different digits. The first image on 

top-left shows the original image. The following ones, listed in row-major order, visualize the canvas after 

each write operation. The result shows that the model is able to locate and write individual objects, 

achieving the desired behavior. 
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Figure 6. An example MNIST reconstruction result. The top-left image is the original image. The 

following ones show the canvas after each read/write iteration. 

 

 

 

Figure 7. An image reconstruction example on MNIST-Scenes. Time points to down. The leftmost part 

shows the filter weights on canvas. The second column shows the image patches written at that time step. 

The third row shows the cumulative state of the canvas. The fourth column shows the patches read by the 

filter. The last column shows the original image. 

 

 

To further illustrate the inner workings of the trained model, we illustrate the details of the attentive read 

and write operations in Figure 7. In the figure, each row shows a time step, starting from the initial one. 

The first column shows the attended regions, denoted by the filter weights. The second and third columns 

show the region to be written onto the canvas and the updated canvas status, respectively. The fourth column 

shows the patch that is read as the source of these write operations. Finally, the last column shows the 

original image. From the steps, it can be observed that the model first reads and reconstructs the digit "1" 

alone, and then the digit "3". The following iteration acts mainly as an improvement step that adds details 

for the digit "3" onto the canvas. 

An interesting question is whether the network is able to implicitly localize the objects. While the network 

lacks an explicit encoding of object locations due to the infinite-support differentiable read/write 

formulation, we can still look into the localization network's behavior by analyzing the embeddings 

provided by the localization network, which is aims to define the areas of attention for the sequential 

reconstruction purposes. For this purpose, we generate a sequence of images where the number “36” is 

smoothly moved to form a lower triangle, spanning the regions close to the lower border, the right border 

and the diagonal areas. We coarsely categorize these images in terms of the location of the number: on the 

diagonal (diag), on the right  (right) and in the down parts of the image (lower). Finally, we calculate the 

position encodings given by the localization network and compute their 2-dimensional t-SNE [23] 

embeddings.  
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Figure 8. Analysis of the latent space generated by the localization network. The t-SNE embeddings are 

grouped into colors based on the location of the digit in the provided input image. All embeddings are 

obtained based on the same image model. 

 

 

Figure 9. The reconstruction error on the MS-COCO train set over the training iterations. 

The tSNE embeddings are presented in Figure 8. From the results, we observe that similarly located objects 

tend to yield similar tSNE embeddings, which suggests that the localization network is able to learn 

localizations of objects, at least to some degree. We also observe that diagonal positions have a more 

spreaded tSNE distribution, which is understandable as the diagonal spans a wide range of coordinates. 

3.3. MS-COCO Experiments 

The main goal of the MS-COCO experiments is to observe the possibility of extending the model to real-

world scenes with complex backgrounds, and observe the difficulties therein. For this purpose, we monitor 

the ability of the model to fit to the train data, which is a difficulty on its own. For this purpose, we monitor 

the reconstruction loss over the training iterations. As it can be seen in Figure 9, the model converges slowly 

towards lower errors. We also observe the major error drops around iterations 5000 and 9000, following 

the additions of extra iterations. This observation suggests that the progressive training of the model helps 

the convergence.  
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Figure 10. Qualitative reconstruction results on MS-COCO. 

 

Two example qualitative results are given in Figure 10. In each example, we observe the change of the 

canvas starting from the one generated by the background model, over the read/write iterations. The very 

last image in each series shows the original one. In both cases, we observe that the model sequentially adds 

details to the scene. However, the clearly major difference between the final canvas states and the original 

images point out the difficulty of the task. 

5. CONCLUSION 

In this work, we have presented a fully-differentiable, end-to-end trained sequential autoencoding model 

for multi-object scenes. The model is trained in an unsupervised manner, including its localization network, 

as well as the read & write heads, purely driven by reconstruction quality based losses.  At each iteration, 

the model soft-attends to a region in the image area, and updates a canvas based on its regional auto-

encoding output. To enforce learning to reconstruct over major parts and objects, instead of a series of small 

patches, enforce the model to reconstruct the scene within a few steps via the Mean Squared Error Over 

Time loss. Similarly, to avoid attention onto too large or complex regions, we use a bottleneck auto-encoder 

at each attended region. 

The experiments show that, in simple scenes, the model yields positive results with a tendency to 

reconstruct scenes to a large degree in an object-driven manner. While the real-world MS-COCO 

experiments, with the background model, also shows promising results, there is a large gap between the 

reconstructions and the actual scenes.  

As a future work, the progress towards learning object-centric scene models can also naturally yield novel 

approaches to the unsupervised image segmentation problem, where the goal is to group pixels into 

semantically coherent clusters. As shown in our experimental results, the sequential generative scene model 

can discover objects as writing blocks.   This information, therefore, has the potential of providing valuable 

image segmentation information, in a way fundamentally differs from the traditional techniques such as 

pixel-to-pixel similarity-driven graph cuts [24-25], mean-shift clustering [26], boundary-detection [27], 

bottom-up multi-scale hierarchical image segmentation [28] or deep network based on similar foundations 

[29]. An important research direction is to replace the bottleneck auto-encoder with the recent variants of 

deep generative models, such as GANs [1,30], VAEs [4-5,31] or the Diffusion Models [12-13]. 
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