Erc. Unv. Fen Bil. Derg., 1, 1-¢ (1994) 73-89

An Algorithm far Integer Programmiag Protders :
{ With Mathematica Coding )

Mechmet CINAR
Eiciyes Universitesi iktisadi ve [dari Bilimber Fakiiltesi Igletme Bolimii
Mehmet Emin YOKSEL
Erciyes Universitesi Mithendistik Fakiiltesi Flekironik Bolimii
Omer TAHTASAKAL
App'eCenter Mega Bilgisayar Ltd. Genel Miidiir

ABSTRACT

In this study, by using different redefined the algorithms of cutting-plane and
branch-and-bound method both und added somne heuristic sub-routines, u new
algorithm with Mathematica coding under Machintosh is inroduced for solving ull
the problems based on inleger programming.

For this purpose, types of the integer programming problems and related solution
methods are discussed first, Then, a new algorithun is introduced in a detailed sumple
and also is tested wiilizing the IBM 1est problems. The results show thal the new algo-
rithm is efficint, casy to run and needs less computational effort than the other algo-
rithms discussed in this paper.

O7ZET

Bu ¢alismada, kesme diizeyi ve dul-sinir yontemlerini degisik bir yorumla bir-
likte kullanarak ve bazi sezgisel sub-routine eklemeleriyle, her it tunsayil: prog-
rambnna problemlerinin ¢dziimiine ytinelik, Machintosh ortaminda kullaniian Mathe-
matica il ile yazilmig yeni bir algoritma ve iliskin kodlamast lumtlimaktachr.

Bu amaghi, dnce tamsayils programiama problemi, tiideri ve ¢iziim yontemleri
Lartigiining, ardisira sézii cdilen algoritma 6rnek uygolamalacla wostilong ve Wsvi e
rufindin tamsayili programlar igin geligtivilen 10 test drnek pioblem dzerindeki ¢i-
ziimleri venlmisgtin. DOS onamanda kuilamian LINDO paket progruming, MOS aler-
natife olarak geligtirilen yeni algoritima, opsiyonlan gerei etkilegimlt ve ¢ok amagh
whrak kollanstabilmekte ve hiz agisindan doyurucu goridlmektedir,
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INTRODUCTION

Int the Jinear programming (LP) it is allowd both the decision vartables and the
slack vartables to assume noanegative fractionid values, or nonnegalive integer values,
in the optinal solution. In many of the poblen siuations, fractional values for the de-
vision variables were obtained as an optimal solution was determined, aod these fracti-
onal values were acceptuble and appropriate in the context of the problem being consi-
dered. In general, it is quite possible to use fractional amount of a resource o produce
a {ractionul amount of o product.

However, there are also a number of imporant problem situations in which frac-
tional answers are neither practical nor very meaningful. For exmnple, consider the
ivllowing production planning sttwation [1]. A firm manutactures three types ol corp-
rale jets. The selling prices for these jets are as follows;

Model A - § 1,750,000, Model B - $ 2,000,000, Model C - $ 1,900,000. Yearly poduc-
tion of these jets is constrained by available work force, availuble muchine e wid
capital availability. The production conditions for the problem situition can be expres-
sed as lollows:

Constraint Model A Moddl B Muwdel ¢ Resomrce

Work furce 40 Workers 635 Wurkers S0 Workers 150 Workers
N chine time 6,001 Hours 10,000 Howrs 8,000 Hows 30,000 Vours
Capital % 1,500,000 $ 1,000,000 % 1,500,000 $ 1,250.000

The standard 1P formulation of this problem would be;
Maximize Z = 750000 x1 + 2000000 x2 + 3500000 x3
subject o |
40x1 + 65 x2 + 50x3 <= 150
6000 x1 + 10000 =2 + 8000 x3 <= 30000
1500000 x1 + 1000000 x2 + 1250000 x3 <= 3500000

with Xl >=0 x2>=0 x3>=0.

The P solution to this problem is x1 = 2.32 airplanes, x3 = L. 14 airplanes, and
value is Z = $ 0,234 474, However, from the nature of the problem it is apperaat that
we could not allow to manufacture of a part of aa airplane. In this production schedu-
ling situation the decision variables have relevance only if they have imteger vilues.

In some praciicat applications, an integer solution to a particular LP problem can be
oblained by simply "rounding oft " the fractional values that appear in the optimal so-
lution. Unfortun:tely, this rounding procedure may cause two difficulties. First, ths
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integer solution may not be feasible, particularly if some of the coefficients in the
construint set are negative. Secoud, even if the rounding olf solution is feasible, it may
not be the optimat solution. To illustrate the first problem, suppose thiat the constraint
sel for the problem is:

x| +x2 <=22/3
xl‘—x2<= 2/3

and the application of the simplex method has resulted in an optimal (noninteger) so-
Iution of x| =4, x2 = 10/3. Observe that we cannot round of X2 eithier 3 or 4 and main-
tain feasibility, Indeed, we can round off x2 only if we ulso change the integer value of
x1. Obviously, rounding off becomes even more impraciical as the number of constra-
ints and variubles increases.

The second problem, as noted above, is that even though a feasibie inleger solari-
on can be obtained Ly rotinding off, it may not be the optimal integer solution, To il-
lustrate, consider the following problem lormulation [2];

C Maximize Z=x1 + 4 x2
subject to: xl+6x2 <= I8
xl <=3
*
with x1, x2 >=0, and all integers.

The noniateger solution for this problem is x1 = 3, x2=2.5, Z = 13. To ublain an inte-
ger solution 1o this problem by rounding off, we would obtain x1 =3,x2=2,7Z=11.
However, the optimal integer solution is x1 =0, x2 =3, 72 = 12,

Practical applications of integer programming (IP) have become wuch more
common in recent years. Because of this fact, and problems associated with simply ro-
undling off linear solurions, there has arisen a peed for an efficient solution procedure
for 1P problems,

There arce basically three types of 1P problems [3];

1. An all-integer programming problem. All the decision variables are constrai-

nced Lo integer values.
b

2. A mixed-integer programming problem. Some, hul not all, of the decision va-
riables are consiiained to integer values.

3. A zero-one integer programming problem. All of the decision variables are
constrained to the infeger values zedo or one.

All these types of IP problerns are couched within the general format of what wo-
uld otherwise be a LP problem. That is, the objective function and coustraint ret of the

problem are lincar functions, with only the wdditional restriction that the decision vari-
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ables must be solved for as integers.
There are three approaches ta 1P, numely:
I. Cutting-plune algorithm,
2. Rranch and bound technique,

3. Bulas' additive 0-1 algorithm.

THE ALGORITHM

An algorithm for solving all-integer and mixed integer programming problems
has been developed by Rulph E. Gumary [4]. In using this algorithim, the integer requ-

irement is first relaxed and the resulting LP problem is solved in the usual manner. 11

all decision varinbles have integer valucs, then this current solution 1s wlso the solution
{o the corresponding 1P problem. However, if the current LP solution does not have in-
teger vatues for the decision variables, the original LP preblem will be modified by
adding a new constraint that climinates some noninteger solutions (including the pre-
viously optimal noninteger LP solution), but which does not eliminute any feasible -
teger solutions.

At ihis stage, our new algorithm considers only the deciston variable has mi-
ximum Iractionad part instead of all variables had as a new additional constraint.

Utilizing the new algorithm, the optimal integer solution will eventually be oblai-
ned after all the nuninteger 1o e problem have been cut away. The key idea in the
process is what we are searching for a new LP problem whose set of feasible integer
soluticas coincides which the set of feasible solutions for the 1P problem that we are
atterpting to solve. If this optimal solution (that obtained by using sumplex algoritlun)
hus all integer values fur the decision variables, it is the integer solution to the prob-
lem. 1i' it does not, we add another new constriint to the current modified problem, by
using branch-nd-bound technique, and repeat the procedure.

In the case of mixed-integer programming problem (there is no need heing
integer fur some variables), only the variables those are restricled to integer valu-
es are tuken into consideration. This situation will be identified in the "t" set as
an inpul information.

If the added new constraint auikes the solution infeasible, proposed algorithin
will use the branch-and-bound technique for further considersation. By this purpose,
current added constraint will be dropped, and the remaining modificd constraints set
will be considered. Subsequently, the current value of the objective function determi-

od with simplex is the current bound. The next step in the solution is 1o partition the
set of feasible solutions into many subsets by the same manner. Those subsels whose
bounds violate the current bound or the new constraint that dues not satisfy the model
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solution, are said to be farhomed and are excluded from further consideration.

At this step of the solulion process, one of the remaining subsets, namely the one
with the smallest lowest bound in the minimizing case (largest upper bound in the ma-
ximization), is partitioned further into several subsets, This process is then repeatt
until o feasible solution is found such that the corresponding vatuc of the objeciive
{function is no greater (Jess) than the *Yower (upper) bound for any subset.

Several alternative rules have been suggested for the branch-and-bound steps.
The most popular branch rule fur selecting a subsel to partition is the beui bound rule
[5]. This rule says to select the subset having the most fuvorable bound (the smallest
lower bound in the case of minirization) because this subsct would seem to be miost
promising in terms of contuining an optimal solution,

We uscd the newest hound rule which seleets the most recently ereated sub-
set that has not been Fathomed, breaking a tie between suhsets ereated at (he sa-
me time by selecting the one with the most Gavorable bound,

Many IP problems bave the added feature that all the integer variables are restric-
ted to two values; zero or one. This frequently occurs as the integer decision variable
is used to indicate whether possibte action is w be undertaken (Xi = 1) or not (xi = 0),
where the level of activily represents a fixed allocation of resources. For example,
portfolio selection, site selection, and assignment of certain jobs tc certain machines,
all have a zero-one integer structure.

Utilizing the new algorithm, optimal solution will also be oblained as lollows.
If the case is a pure 0-1 1P problemn, it will geoerate all icasible solution alternati-
ves with zero and one. Then, seleets the alternatives whose satisfy the original
constraints set. After ealculation of the results for the objective function, the algo-
rithm sclects the best one.

[n the mixed zero-onc 1P problem case, all the same with the mixed-IP hut,
in the branching step a partial solution may be selected for purtitioning, and if so,
it is then partitioned into two new subsets by setling xi=1 und xi=0. The newest
bound rule is used fo make this selection,

The new algorithm for solving [P maximization models can be summerized as
follows: '

Step 1. Initialization. Input dia for objective function [t'um:}, constraints set jcons],
all the decision variables-{vars), variables to be integrized |t], variables to be equali-
zed to zero or one [£0]. z0 is option for the mixed 0-1 IP models. I ¢ is null, the algo-
rithm accepts that all the variables are to be integrized. Solve the model without inte-
ger restrictions using standard 1P model {ConstrainedMax).

Step 2. Calculate the fractional parts of the variables to be integerized. Call
{pref]. If the optimal solition has all integer variables, stop. It not, set aal to the value
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- of the objective function, bb1 to nunus infinity.

Step 3. Partition the subset with the largest upper bound. Select the noninteger va-
riable with higher fiactional part [ Branchesj from the LP solution o the subse: of fea-
sible solution % with the largest aa or bh.

Step 4. Find an upper bound on each newly creaiced subset. Call [Bound}. The up-
ner bound for each subset is found by solving the modified LP model.

Step 5. Futhom subsets where possible. For any subset k, fathom it from finther con-
sideration if;

l. an <= bb, or
2. Subset k contains no feasible solutions, or

3. The best feasible integer solution in subset k has been found. 1l aa > bb, resct
aa=bb and retain the solution as the best one found so far.

Step 6. Stop the procedure. When all subsets have been fathomed, the integer soluti-
on is the one that corresponds to the current maximum value of the solution set [sevT].
H all subsets have not been fathomed, return to Step 2 and continue the procedure.

In the minimization case, the new alyorithm tikes func= -1 func and bb = + infity,

For more details about the proposed afgorithm can be seen in the program coding
list at th2 Appendix.

TESTING THE ALGORITHM
Let's selve the problem below.
Max[50x} + 30x2]
st Okl -+ 13x2 <=70
Sxi+2x2<=33
X1, x2 = AlY integer and positive.
In order fo vse the proposed algorithm, first, we have to deline inputs as follpws:

lunc= 50x1 + 30x2; cons = {6x] + 13x2 <= 70, 5x1 + 2x2 «=33); vars = {x1, x2}; t =
{1, 24, sira = 0; sevT = [}

As the first step, we will find the linear solution for the protlem.
In{1] = 1 son=N|CaonstreinedMax[func,cons, vars]];

ilk=son;sev=son;Print]"lin=ar sclution=",son];
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values= vars /. sonf[2]];val I=values;

Print] “values=",vahies)

Out] 1] = : linear solution={358.679, {x1 -> 545283, x2 l—> 2.867921})
values=[5.45283, 2.86792}

Then, search for the fraction part of the variablus,

Inf2] = : d=Prefvalues]; Prim["d="d];

UM ax|dj==0.,Print[ "sotution==" Last|sevT]];Break([]];

Ouff2] = : d=[0.15283, 0.867925)

Choose the bigger fraction which is beneficial if the variable is integerized.
Ta[3] = : sl=e;cl =[]t ])

Oul]3]=:2

Branch the subset for chosen variable,

Inf4]=: Branchu.;[ul,mqs];

Out[4] = : OPT=350. _

const={6 X1 + 13x2<=70,5x] +2x2<=33,x2 <=2}

x1=5.8

x2=2.

OPrT=348.333

x1=5.16667

x2=3,

Take the most promising one. At this stage, constraints set of the problem wiil he
as follaws,

In{5] = : Bound{an,bb];

Out{5] =: *ua*=350.

Check, whether all the variables are integer or not. 7
In[6] = : d=Pref[values];Print["d="d];
HiMax|d)==0. Print[ "solution=",Last[sevT]};Break[]];

Outf6] =: d={0.8, 0.}

If the variables are not integerized, Return the [lirst step.
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In[7] = : ul=e;ntl=t[[ct1]]

Outf7]=:1

In[8] = : Branches[ttl,cons];

Out[8] = : OPT=310.

const={6 x{ + 13 x2<=70, 5 x1 +2x2 <=33, x2<=2,x1<=5.}
x1=5. |
x2=2,

OPT=345.

x1=6.

x2=1.5

In{9] = : Bound[aa,bb];

Out[9] = ; ¥bb*=345. -

In[10] = : d=Pref[values];Print["d=".d];
IfMax[d)==0.,Print]"solution=",Last[sevT]]:Breakl]];

ou[10} = : d={0., 0.5}

In[1L}=; ttl=e;tl=t[{ul]}

Ouyil]=:2

If the branch does not satisfy the constraints, fathom it.
in[12] = ; Branches[tt1,cons}; ‘
Out[12] = : OPT=340.

const={6x1 +13x2<=70,5x1 +2x2<=133,x2<=12,x1>= 6.,x2<=1.}
x|=6.2

x2=1.

OPT=(FATHOMED)

x1=5.16667

x2=3.

faf13] = : Bound[aa,bb);

Olil{l.’.‘] =: *bh*=348.333
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Inf14] = : d=Pref|values];Print["d="d];

I Mux[d]==0. Print["solution=", Last{sevT]];Break{]];

Out[14] = : d={0.166667 ,‘0.1

In[15] = : ul=e;ul=t[{ul]]

Out[16)=: |

1n{17] = : Branches{tul,cons];

Out[17} = : OPT=342.308

consi={6 x} + 13x2<=70,5x1 +2x2<=133,x2>=3,,x1 <=35.}
x1=5.

x2=3.07692

OPT=(FATHOMED)

x1=5.

x2=3.07692

ln[l.BI = : Bound[aa,bb};

Out[19] = : ¥*bb*=342.308

In[20} = : d=Pret[values];Prim{"d="d];
1[Max[d]==0.,Print["sotution=",Last[sevT|}:Breuk|];

Out[20] = : d=(0., 0.0769231}

Inf21] = : tti=esttl=tf{1l ]]

Out[21]=: 2

In[22] = : Brancheslttl cons];

Ouf22] = : OPT=340.

const={6 x1 +13x2<=70,5x1+2x2<=33,x2>=3,x1 <=5,x2<=13.}
x1=5,
x2=3.
OPT=270.
x1=3.
x2=4,
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1a{23] = ; d=Pref]values|;Print{"d="d];

1| Man [ ]==0. Print["sclution=", Last[sevT]]:Break|1];

Out]23] =: d={0., 0.]

solution={ 340, {x] > 5,,x2 > 3.}}

At this moment, fesible solutions are;

1aj24] = sevT

Out[24] =: { [270., {x1 >3, x2 > 4.}], {310, {x1 ->5,x2-> 2.1},
1340, {x1 > 5,x2->3.}}]

This process continues until the last subset is performed. Then, optimal solu-
tion will be obtained mnong the sohition alternatives where they lie in sevl, If the
solution set is null, consider the variable has second highest fraction, and repeat
the algorithm. If it stifl null, print "optimal solution is not found".

.Sglutions for the TBM Test Problems I to X ;

In[25] = : IntegerMax] x3-+x4+x5,

{ de 14+30x24x342x442x5<=210,

30x 1 +20x242x34x442x5<=210,

-90x1+x3<=0,

H0x24x4<=0},{x1,x2,x3,x4,x5},{1,2,34.5}]

Out{25] = : {106., [x1 -> 1., x2-> 1,,x3 -> 54, x4 -> 52., x5 -> 0.}}
In[26] = : IntegerMax| x3+x4+x5,
[20%1+30x24+x342x4+2x5<=180,

30x 1 +20x2+2x3+x4+2x5<=150,

-60x 1 +x3<=0,

“75x2+x4<=0),{x1,x2,x3,x4,x5),{1,2,3,4,5}]

Oui[26] = : {76., {x1 -> 1., x2 -> 1, x3 -> 24,, x4 -> 52., x5 -> 4. }}
In[27] = : IntegerMax[ x1+2x2+x3+2x4,

[x140.75x2<=12,

1.25x3+1.33x4<=14,

x1>=2,x2>=3, x3>=2. x4>=3, },[xl.:x2,x3,:.(4 1,{3,1,2.41]
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Out27]=: (d6,, {x1 -> 2,,x2-> 13, x3 -> 2., x4 -> 8.}}
1a[281 = : IntegerMaxf 50x 1+30x2,
{6x1+13x2<=70,
Sxl+2x2<=33), (xL,x24{!1.21]
Out[28) = : {340., {x1->5,,x2 > 3.}}
(29 = ; IntegerMax] x7+x8+x9+x 10+x{14x12,
[Ox 1472+ 1 Gx3+8x4+24x 5+ 5x 643X T+ T 84+-8x9+4x 1046x | 1 +5x 1 2= 10,
12X 146X 2-+06%3-+2 %4+ 205 S+8X6+4% T+ 6x8+3x0+ 1% 10+5x F | +3x [ 2<= 95,
ISx 4520 1253+ x 54 Sx64 55T+ 5x8+6x0+2x 104 ) x 1 1 -+8x12<= 8U,
185 144K244x 3+ 8244 28X 5+ x64+6x T+4x842x949x 10+7x 1 1+ 1x 1 2<=100,
S12x14x7 <= 0, -15x2+x8<= 0, -12x3+x9<= 0, -10xd4x10<= 0, -11x3+x11<= 0,
~HIx6+x12 <= 0, {x1,x2,x3,x4,x5,x6,X7,x8,x9,x 10,x11,x12},{11 8,9,10,7,12} ]

Ouif29) =: {16, {x] > 0., x2 -> 6., x3 -> 0., xd -> (.19, x5 -> 0.63, x6 -> 0.63, x7 ->
G, x8->0,x9 >0, x10>2,x11 > 7. x12-5>7.}}

1u]30] = : IntegerMax[ - 2000x1-3500x2,{ 50000 | -+30000x2>=900000,
10x 14 15x2>=300,x 1<=22 x2<=25] {x1,x2},(2,1)]

Out]30] =: [-63000., {x1 ->21.,x2 > 6.)}

In[31} = : IntegerMax[ 3x1+20x2,

{xi+8x2<=32,

X 1+x2<=14},{x1,x2}.[1,2}]

Out[32] =: [80., {x]1 -> 0., x2->4.}}

1n[33] = : IntegerMin{ 1600x 1+3200x2+2300x3 ,

{ 3x1 -+ X2 + 6x3 == 2000,

2x1 + 5x2 +x3 >= 1000,

X1+ 2x2 + 4x3 <= 3000}, {x[,x2,x3},{1,2,3}]

Ouif33] = : {969400., {x1 -> 438, x2 -> 2., x3 -> 114.}}

In|34] = : InfegerMax] -(dx1+5x2),

{35 14X2-x3=w2,

X[ 4+4x2-xd==5,
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Ix1+2x2-x5==7},{x1,x2,x3,x4,x5}),{ 1,2} ]

Outpdd] =: [-13, {x1 ->2,x2->1,x3->5,x4 -> 1,,x5 > 1.}}
In[35] = : IntegerMin[ 13x1+15x2+14x3+11x4,

[4x 1+5x2+3x3+6x4>=96, |
20x1+21x2+17x3+12x4>=200,
PixI+12x2+412x3+7x4>=101},[x1,x2,x3,x4 },{4,2,3,1]]
Out[35] =: {187., {x1 ->0.,x2 -> 0,,x3 -> (., x4 -> 17.}}

CONCLUSION

In this study, we have presenied a new algorithm to solve integer programming
models. As it is known, most practical models involve many more variables and cons-
waints. As such, computer codes are required to solve these models. Because of the in-
teger restrictions on the variables, these codes are much less efficient than the simplex
method. Usually, significant computer time is noeded to solve these models. Consequ-
ently, applications to date have involved models with only 4 limited number of integer
variables. Most codes are based on branch-imd-bound method because the cutting pla-
ne method, which has met with only limited success so far, is 0o dependent on the
model struciure, Nonetheless, research is continuing in an effort to find wore efficient
methods based on these two approaches,

Another approach is to solve the model without integer restrictions using the
simplex method and then round off the variables to the nearest integer vidue such that
the constraints are not violated. For large models, this procedure may not be simple
becuuse ol all the possible combinations of values for thétdecision variables. In additi-
on, it cannot be assared that the optimal solution will be found. '

Finally, a significance amount of research is being devoted to the development
of heuristic procedures for solving 1P models. These procedures cannot guaruniee an
optimal solution, but they promise to be superior to the use of inspection or rounding
off und should take less computationad effort than the eutting-plane and branch-and-
bound methods.

The proposed heuristic algorithm coded by Mathematica [6,7,8,9] is tested utili-
zing the IBM test problems. The results show that the new algorithm is efficient, easy
to run and needs less computational effort than most of the algorithms discussed in
this paper.
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Appendix. Program List of Integer Programming.

BeginPackage["TntegerProg™]
IntegerMin:;usage=""
IntegerMax::usage="GIR1S SERBEST SIRADA"
Begin{" Private™"]
Compile[IntegerMax[f_c_v_tl_]:=
Block[ [ func=f,cons=¢,vars=v, =11 values sev,sevl},
Off] ConstrainedMax::nbdd}; Off{ ConstrainedMux::nanopt];
Off{ ConstrainedMax::nonl); Off[ ConstrainedMax ::nsat];
Off] Replace::rep];sev=( );const={ };constl={ );sevT={ };const=( };sev1=[);lopi=0;
st=1;con=cons;iter=0;a=1;le=0;s1ra 20;lop=0;aa=1;bb=2:lkc=Lengthcons];
l=Length[vars];
If{t==Nullt={ ) ;tm=0;
Do[tm=tm+1;t=Append(t,tm], (11)]];
=t;t=Sortft];
son=N|ConstrainedMax{func,cons,vars}};ilk=son;sev=son;
values= vass /. son][2]};val l=values;
Balfvalues,t];
If[bk==2,Print[son];Break[]];
If] bk==3,Print|"Integer solution ig not found"];
Break[]];
For[i=1,il=2,i++,
Ifflop>=11+1,sev=Lastf Sort[sevT]}];Break[]];
Iftiter>=ll,sev=Lasi| Son|sevT}]: Break]];
Iffaa==bb,i=i-1;values=vall;cons=con;a=a+1;le=0;s51ra=0;5=2;];
Wla>=11+1,sev=Last{Son|sevT|];Preak[]];
d=Pref]values];
If{Maxfd]==0. Break][],i=i-1];
If] st==2,
Dof
e=Position{d,Max[d]}[[1,1]};
dife]]=0;st=st+1,{a] };iter=iter+1]:;1tl1=¢;
Iflle==e¢,d[[e|]=0;u1=Posiion{d,Max[d]}H[1,1]i];le=1t Lt d=tf [ u1]];
Branches[ot),cons};
Bound{aa,bb]
k
sev=L.ast[SortfsevT]]

Il

Preffdata_]:=Block]
{d=Map| (#Floor[#])& data] ),
I > Lengthfy),dd={);
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For{i=1,il=Length{t}+ 1,i+-+,
dd I=Takeld, {11{il]} };dd=Append[dd,dd1]};d=dd];e=Position[d,Max[d]}[[1,1]);d)

Branches[ul_cons8_] :=
Blockf {t=1t1 cons=cons8 §, m=values([1t]}; m=Floor[m};n=m+1;
const=Append|cons,varsf[it]j<=m*1.]; sev=N{ConstrainedMaux[func,const,vars]];
aa=sev[[1]ab=Length[sev] Ifisevi=={},sevi=ilk];
I stra==0bir=sev};sira=sira+1;
I[flab==3 bir=sevl];
Iflab==3,sev=bir;aa=bir|[1]];5wa=0;
const=Drop{const,-1];];
values=vars /. sev]|2]); d=Pref[ values);
If{Max[d}==0.,sevT=Append|sevT sev];
sevT=Union[sevT]; lop=Length[sevT);];
consti=Appendfcons,vars[[1t}]>=n*1.]; .
sev 1=N|ConstrainedMax(fune,const1,vars]]; bb=sev1[[1]];ba=Length[sev]]
f]ba==3,sev 1 =sev;bh=-100000000000;cons1 I=Drop[const1,-1]; ;
valuesl=vars /. sev1[|2}]; d=Preffvaluesl];
I Max[dj==0. sevT=Append[sevT sevl);
sevT=Union{sevT]; lop=Length{sevT}]:]

Bound[aal_bbl_] :=
Block[[aa=aa] bb=bbl1},
If]aa-bb > 0, cons=const; lc=Length{cons];
Ifle==lke+1142, i=i-1; values=vars /. ilk[[2]];
st=2;cons=con;a=a+1;le=0;s51ra=0], cons=const!;valucs=values!; sev=sevl;
le=Lengthicons];
Iffle==lke+il+2, i=i-1; values=vars /. ilk[[2]]; st=2:cons=com;a=a+ |;le=0;sira=0]]; |

Bal[val_t4_}:=
Biock! { values=vul 1=14},
Forlz=1,z{=Length{t]+1,z++,
tam=values||t[ ]}
if{ tem-Floot{tam] > 0,
son=0]]; bk=L.ength[son] )

IntegerMin[f5_,c5_,v5_t5_]:=
Block{ [t=15,c=¢5,v=v5 t1=15},
solution=IntegermMax[-f,c,v t1];solution{[ 1]]= (-1)*solutionf[1]] /. solution[{1]];
solution}

ZeroOnelntegerMax([f_c_v_]:=
Block| { tunc=f,cons=c,vars=v,t=11),
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optsol1={ }; n=Length[vars]; values=rep[n};
solutionalt=Append[MakeList[values]+MukeTable[Length[values}],values];
allsolutions=Map[ Apply{Rule,#|& (Transposef{ vars,#}1& /@ solutionalt),{2}};
solutions=Select[allsolutions,SatisfiedQ[cons #1&];

results=(func /. #)& /@ solulions;

optsol 1 =Take{solutions,Position[results, Max{results] }{{ 111};
optsol1=Prepend[optsoll,func /. optsol1{[1]]]]

ZeroOnelntegerMin([f_.c_v_]:=
Block[{ func=f,cons=c,vars=v,t=tl]},
optsol1=(); n=Length{vars]; values=rep{n];
solutionali=Append| MakeList[valuesj+MakeTable[Length[values]].values];
allsolutions=Map] Apply[Rule #)&,(Transpose| { vars,#} 1& /@ solutionalr), (2} ];
solutions=Select[allsolutions,SatisfiedQ[cons, #)&];
resulis={func /. #)& /@ solutions;
optsol1=Take| solutions,Position{resulis,Min[results]]{[1]]1;
optsol1=Prepend|optsol1,func /. opisol 1[{1]]]]

SatisfiedQfconstraints_, parameters_]:=
Apply[And, conctraints /. parameters]
MakeList|l_List]:= 1& /@ Range{2*Length[1]-1]
MakeTable{len_Integer):=Join| Table[0,{len-Lengih[#]}], #]& /@
(Digits[#,2]& /@ Range[2”len-1])
rep[n_] := Table{O,(n}H

MixZeroOnelntegerMax[{_,c_v_t1_z1_J:=
Block[ { func=f,f1=f,cons=c,c1=c,vars=v,v7=v,1=tl ,z0=z] values,sev,sevl],
sev={ };const={ };const1={ J;sevT={ };const={ };sevl={):lopt=0;
st=1;con=cons;iter=0;a=1;le=0;sira=0;abi[| 1]]=100000000; aha=1;
[t 20==Null,son=ZeroOnelntegerMax[f1,c1,v7];Printfson};Break{}];
lkc=Lengthlcons|;ll=Lengihfvars);
Hli==Null,i={ };tm=0,
Do[tm=tni+1;t=Append[t,tm], {11 1];12=t:1=Sort[1];
son=N[ConstrainedMux[func,cons,vars}];ilk=son; sev=son;
values= vars /. sonl[2]};vall=values;
Bal{values,t];
1f]bk==2,son=ZeroOnelntegerMax{f1,c1,v7};Print[son];Break[]];
I bk==3,Printf"Integer solution is not found”};
Break(]];
Forfi=1,i!=2,i++,
Ifiopi==6,sev=Last[Son[sevT]};Break{]];
IfJa==11+1 sev=Lasi[Sor{sevT]};Breakl]};
IfTiter==11,sev=Last[ Sort[sevT]];Break(]]; d=Preflvalues];
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IfiMax[d]==0.,Break([}],i=i-1};
i st==2,
Do|
e=Position[d Max[d]][[1.1]);
d{{e]]=0;st=s1+1,{a}]; iter=iter+1]; tt1=¢;
Hlle==e,
dlle]}=0;ul=Position{d,Maux[d]1[[1,1}]];
le=ttl; wl=tf{er1]);
Ifjaha==1,
Forimh=1,mh!=Length{z0}+1 mh=mh+1,
m=0;n=1,
const=Append[cons,vars[[z0[[mh]]]]==m*1.);
sev=N[ConstrainedMax|func,const,vars]}; aa=sev[[1]];ba=Length]sev];
I ba==3,sev=sev | ;aa=-100000000000;const=Drop|const,-1]];
const1=Append|[cons,vars[[z0[[mh]]}]==n*1];
sev1=N[ConstrainedMax|func,constl,vars]}; bb=sev1[[1]};
Iflaa> bb,cons=const;
values= vars /. sev[[2]],
cons=constl;values= vars /. sevi[{2]]];
1
aha=2;
=Pref[values];
IfMax[d)==0.,,
sevT=Append[sevT,sev];
sevT=Append[sevT,sev1};Break[], i=i-1];
Branchesjitl,cons);
Bound[aa,bb]);
sev=Last[Sort[sevT]]]

MixZeroOnelntegerMin[f5_.c5_,v5_15_z5_ )=
Block[ [f=15,c=c3,v=v5,1l=t5,z1=25],
solution=MixZereOnelntegerMax{-f.c,v,t1,z1];
solution[[1]]= (-1)*solution|[ 1]] /. solution[{1]];
solution

]

End[]
EndPackagel]
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