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ABSTRACT

The concept of aimost boundedness was introduced and discussed by Nanda, [3]. The ob-
ject of this paper is 10 oblain hecessary and sulficient conditions o characlerize the
malrices of the classes (m{p): rns) (ms{p):™) and (ms{p):Ms). Those sequence spac-
es are described below,

HEMEN HEMEN SINIRLI DIZ} UZAYI IGINE BAZI
MATRIS TRANSFORMASYONLAR

OZET

Hemen hemen simirhihk kavraml Nanda taratindan lanmldi ve lartigiidi, [3]). Bu
gahgmamn amact {m(p):Ms), (ms(p}:M) ve (ms(p):Ms) mairls siniflanni karak-
lerize etmek igin gerek ve yeler gartlan elde etmektir. Bu dizi vzaylan agafda belir-
tilmigtir.

1. INTRODUCTION, DEFINITIONS AND NOTATIONS

In this paper, by m and ms we respectively denote the linear spaces
of all real bounded sequences and series. The shlft operator D is
defined on m by

Dx=(xk) k=1, D x=(xk)°°k52 and so on.

The following sequence space was defined by Simons [5] and Mad-
dox,[2];

m(p)={x=(xy):supy I xi |PK< o },

where p=(py) denotes a sequence of striclly positive numbers such
that supipk< = {This assumption is made throught). The bounded-
ness of (py) is not necessary, in general, but it is sufficient for the
space m(p) {o be linear.

T."the space of entire sequences introduced by Ganapathy lyer, [1]
and its dual Y  become particular cases respeclively of cy(p) and
m(p}, the generalized sequence spaces inlroduced by Maddox, [2];
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1/k
T={x=(xy): kaf — 0ask — o},
1k
Y m{x=(xp):supy | xp V< o0 ).

The space ﬁ(p) of almost bounded sequences was introduced by
Nanda, {3];

where

1 m i 0
D xp (D=1).
m+1i§] Kn( )

t (X)) =

It is proved by Nanda [3] that mc m.

It is natural to expect that the space ms can be extended to ms (p)
just as m was extended to m(p). Then we define ms (p) as follows;

ms(p)-{x-(xk):céox,oem(pn.

By using similar argument, we also define
r’ﬁs(m-:x-(xk):tn%oxn)sﬁipn.

When py=p for all k, we have m(p)=m,fr‘1{p)=r’ﬁ,ms(p)=m§ and s

{p)=mis. By ms, we denote the space of almost bounded series. If
py=1/k for all k, we also have m(p)=T* and ms(p)=T‘s. where

T.s={x=(xk):( § xn)a‘r.}.
n=0

LetA={ank) be an infinite malrix of real numbers apy (n,k=0,1,.....)

and A,u two non-empty subsets of the space s of real sequences. We
say that the matrix A defines a transformation from 3, into u, if for
every sequence x= (xy) €A, the sequence Ax=({Ax),)-which is called

the A-transform of the sequence x-exists and is in p, where (Ax),=
apkXk- For simplicity in notations, here and after we write E
o
inslead of kgo‘ By (A,n ) we denote the class of all such matrices.
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Throught the paper, we shall use the notation a{nk} instead of a,y
and by s=(sg) we donete the sequence of partial sums of the series
Xxp. Thus, it is clear that sem (or r/ﬁ) whenever xems {or ﬁs).

2. WE ESTABLISH THE FOLLOWING THEOREMS

in this section, we examine the classes (m(p):ﬁs), (ms(p):Fﬁ) and
(ms(p):Ms). We start with the following lemma due to Nanda [3]
which requires in the proof of Thecrem 2.1.

Lemma. Ae(m(p):m) if and only i, for every integer N>1i

1/
SUPP.m E|a(n,k,m)|N Pk < oo (2.1)

where

1 M ;
a{n,k,m}=——- ¥ a(n+i,k).
m+1;.0

we now have,
Theorem 2.1, Ac(m(p):ms) if and only if, for every integer N>1
no_. 1/
*UPn.mpl 2y adkmiN e (2.2)
]—-

Proof. Let xem(p). Consider the following equality obtained from
the n,qth partial sums of (Ax)j;

n \ n .

$ ¥ agkpk= § (F aGkx san=01,... (2.3)
j=0k=0 k=0 j=0
which yields by letting g — -~ that

n n

L Y oalikig= (Y akihg ;n=01,... 24
iZok k= & 2o (k) xi (2.4)

Thus, it is seenin (2,4) that B = (b(n, k)) ¢ (m(p)ﬁ) if and only if
*w -~ n
Ae(m(p):ms), where b{n k)= ¥ a{jk). This completes the prooi.
j=0
By Theorem 2.1, we have
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Corollary 2.2. A (T' . ms ) if and only if the condition (2.2) holds
with p=1/k for all k.

Theorem 2.3, A (ms(p):ﬁ) if and only if for every inleger N>1

SUPn.m EIAa(n,k.m)iN”pk - (2.5)

timy a(n,k) = 0 for each n, (2,8)
where  Aa(nk,m)=a(nk,m)-a{n k+1,m).

Proof. Necessity. Let Ae(ms(p}:’rﬁ) and xems(p). To show the neces-
sity of (2.6), we assume that (2.6} is not satistied for some n and
obtain a conlradiction as in Theorem 2.1 of Oztiirk, [4). Indeed, un-
der this adsumption we can find some xems(p} such that Ax does
not belong to M. For example, if we choose x=({-1)")ems(p), then
(Ax)p= I a(nk)(-1)X. However, that series X a(nk)(-1)K does not
converge for each n. That is to say that A-transform of the series

Y(-1)", which belongs to ms(p), does not even exists. But this con-
tradicts the fact that Ae(ms(p):m). Hence (2.6) is necessary.

Let us consider the equality

m m-1
kEﬂ.’:\(n,k)xk-e kJY_‘()t!.za(n,I-()s,da(n,m)sm ; mn=01, ... (2.7)

obtained by applying the Abel's partial summation on the mth par-
tial sums of Ax. From (2.6), it is obtained by leling m —e in (2.7)
that

E a(n,k)xy = E Aa(nk)sy ; n=01,... (2.8)

Thus, it is seen that C=(c(n,k))c(m(p):ﬁ) satisfies (2.1) which is
equivalent 1o (2.5), where c(n k)= Aa(nk) for all n and k.

Sufficieny. Suppose that the conditions hold and xems{p). Now, re-
consider C={Aa(nk}} in (2.8). Therefore "C satisfies {2.1) if and only
if A satisfies (2.5)" is true . So, Ce(m(p):M). This implies by (2.8)
that Ae(ms(p):m) and the proof of Theorem is completed.
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By Theorem 2.3, we have

Corollary 2.4. Ae (T's:ﬂ) if and only it (2.6) holds, (2.5} also holds
with py=1/k for all k.

Theotem 2.5. As(ms(p):'rﬁs) if and only if {(2.6) holds and

n 1/
Supm,n I IJEOAaa,k,m)IN Pk o (2.9)

for every integer N>1,

Proof. Let Ac(ms(p):ﬁs) and xz{ms(p). Since (ms(p):Fﬁs) C {ms(p):ﬁ\m),
the necessity of {2.6) is obvious by Theorem 2.3.

Now, consider the equality which is oblained in a similar way of
2.7y

n m -1 n n

T Salikxc- "5 T Aa(Msg+ & aimisymas0d, .. (2.10)
j-o k=0 k=0 j=0 j=0
Therelore we get by considering {2.6) and letfling m 5 «~in {2.10)
that

"
o=

% alkig = 3 ( S Aa(ksy ; n=0,1, .. (2.11)
k k j=0

]

Thus, it is seen that B = {b(n,k)} ¢ (m(p):i’ﬁ) satisfies (2.1) which is
n
equivelant to (2.9), where b(nk)= X 4 a(j,k) for all n and k.
j=0
The sufliciency is trivial.

Finally, we have

Corollary 2.6. A e (Y s: ms) il and only if (2.6) holds, (2.9) also
holds with py=1/k for all k.
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