CERTAIN MATRIX TRANSFORMATIONS INTO ALMOST BOUNDED SEQUENCE SPACE

Ihsan SOLAK

Department of Mathematics Inönü University, 44069, Malatya-TURKEY

ABSTRACT

The concept of almost boundedness was introduced and discussed by Nanda, [3]. The object of this paper is to obtain necessary and sufficient conditions to characterize the matrices of the classes (m(p):ms), (ms(p):m) and (ms(p):ms). Those sequence spaces are described below.

HEMEN HEMEN SINIRLI DİZİ UZAYI İÇİNE BAZI MATRİS TRANSFORMASYONLAR

ÖZET

Hemen hemen sınırlılık kavramı Nanda tarafından tanıtıldı ve tartışıldı, [3]. Bu çalışmanın amacı (m(p):ms), (ms(p):m) ve (ms(p):ms) matris sınıflarını karakterize elmek için gerek ve yeler şartları elde etmektir. Bu dizi uzayları aşağıda belirtilmiştir.

1. INTRODUCTION, DEFINITIONS AND NOTATIONS

In this paper, by m and ms we respectively denote the linear spaces of all real bounded sequences and series. The shift operator D is defined on m by

$$Dx=(x_k)^{\infty}_{k=1}$$
, $D^2x=(x_k)^{\infty}_{k=2}$ and so on.

The following sequence space was defined by Simons [5] and Maddox,[2];

$$m(p)=\{x=(x_k):\sup_k |x_k|^{p_k}<\infty\},$$

where $p=(p_k)$ denotes a sequence of strictly positive numbers such that $\sup_k p_k < \infty$ (This assumption is made throught). The boundedness of (p_k) is not necessary, in general, but it is sufficient for the space m(p) to be linear.

 Υ , the space of entire sequences introduced by Ganapathy Iyer, [1] and its dual Υ become particular cases respectively of $c_0(p)$ and m(p), the generalized sequence spaces introduced by Maddox, [2];

$$\Upsilon = \{x = (x_k): |x_k| \rightarrow 0 \text{ as } k \rightarrow \infty\},$$

$$1/k$$

$$\Upsilon = \{x = (x_k): \sup_{k} |x_k| < \infty\}.$$

The space $\widehat{m}(p)$ of almost bounded sequences was introduced by Nanda, [3];

$$\widehat{m}(p) = \{x = (x_k) : \sup_{m \in \mathbb{N}} |t_{mn}(x)|^{p_m} < \infty \}.$$

where

$$t_{mn}(x) = \frac{1}{m+1} \sum_{i=0}^{m} D^{i} x_{n_i} (D^{o} = 1).$$

It is proved by Nanda [3] that m c n.

It is natural to expect that the space ms can be extended to ms (p) just as m was extended to m(p). Then we define ms (p) as follows;

$$ms(p)=\{x=(x_k): (\sum_{n=0}^k x_n) \in m(p)\}.$$

By using similar argument, we also define

$$\widehat{m}s(p) = \{x = (x_k) : (\sum_{n=0}^k x_n) \in \widehat{m}(p)\}.$$

When $p_k=p$ for all k, we have $m(p)=m,\widehat{m}(p)=\widehat{m},ms(p)=ms$ and $\widehat{m}s(p)=\widehat{m}s$. By $\widehat{m}s$, we denote the space of almost bounded series. If $p_k=1/k$ for all k, we also have $m(p)=\Upsilon^*$ and $ms(p)=\Upsilon^*s$, where

$$\Upsilon$$
 $s = \{x = (x_k) : (\sum_{n=0}^{k} x_n) \in \Upsilon$.

LetA=(a_{nk}) be an infinite matrix of real numbers a_{nk} (n,k=0,1,....) and λ,μ two non-empty subsets of the space s of real sequences. We say that the matrix A defines a transformation from λ , into μ , if for every sequence x= (x_k) $\epsilon \lambda$, the sequence Ax=((Ax)_n)-which is called the A-transform of the sequence x-exists and is in μ , where (Ax)_n= $\sum\limits_{k=0}^{\infty} a_{nk} x_k$. For simplicity in notations, here and after we write $\sum\limits_{k=0}^{\infty} a_{nk} x_k$ instead of $\sum\limits_{k=0}^{\infty}$. By (λ,μ) we denote the class of all such matrices.

Throught the paper, we shall use the notation a(n,k) instead of $a_{n,k}$ and by $s=(s_k)$ we donete the sequence of partial sums of the series $\sum x_n$. Thus, it is clear that sem (or \widehat{m}) whenever xems (or \widehat{m} s).

2. WE ESTABLISH THE FOLLOWING THEOREMS

In this section, we examine the classes $(m(p):\widehat{m}s)$, $(ms(p):\widehat{m})$ and $(ms(p):\widehat{m}s)$. We start with the following lemma due to Nanda [3] which requires in the proof of Theorem 2.1.

Lemma. Aε(m(p):m) if and only if, for every integer N>1

$$\sup_{n,m} \sum_{k} |a(n,k,m)| N^{1/p_k} < \infty$$
 (2.1)

where

$$a(n,k,m) = \frac{1}{m+1} \sum_{i=0}^{m} a(n+i,k).$$

we now have,

Theorem 2.1. $A_{\varepsilon}(m(p):\widehat{m}s)$ if and only if, for every integer N>1

$$\sup_{n,m} \sum_{k} |\sum_{j=0}^{n} a(j,k,m)| N^{1/p_{k}} < \infty$$
 (2.2)

Proof. Let $x \in m(p)$. Consider the following equality obtained from the n,q^{th} partial sums of $(Ax)_i$;

$$\sum_{j=0}^{n} \sum_{k=0}^{q} a(j,k)x_{k} = \sum_{k=0}^{q} (\sum_{j=0}^{n} a(j,k))x_{k}; q,n=0,1,...$$
 (2.3)

which yields by letting q → ∞ that

$$\sum_{i=0}^{n} \sum_{k} a(j,k) x_{k} = \sum_{k} (\sum_{i=0}^{n} a(j,k)) x_{k} ; n=0,1,...$$
 (2.4)

Thus, it is seen in (2,4) that $B = (b(n, k)) \varepsilon (m(p):\widehat{m})$ if and only if

 $A\varepsilon(m(p):\widehat{m}s)$, where $b(n,k)=\sum\limits_{j=0}^{n}a(j,k)$. This completes the proof.

By Theorem 2.1, we have

Corollary 2.2. A ϵ (r^* : $\widehat{m}s$) if and only if the condition (2.2) holds with $p_k=1/k$ for all k.

Theorem 2.3. A ε (ms(p): \widehat{m}) if and only if for every integer N>1

$$\sup_{n,m} \sum_{k} |\Delta a(n,k,m)| N^{1/p_k} < \infty$$
 (2.5)

$$\lim_{k} a(n,k) = 0$$
 for each n, (2,6)
where $\Delta a(n,k,m)=a(n,k,m)-a(n,k+1,m)$.

Proof. Necessity. Let $A_{\epsilon}(ms(p):\widehat{m})$ and $x_{\epsilon}ms(p)$. To show the necessity of (2.6), we assume that (2.6) is not satisfied for some n and obtain a contradiction as in Theorem 2.1 of Öztürk, [4]. Indeed, under this assumption we can find some $x_{\epsilon}ms(p)$ such that Ax does not belong to \widehat{m} . For example, if we choose $x_{\epsilon}((-1)^n)_{\epsilon}ms(p)$, then $(Ax)_{n} = \sum_{k} a(n,k)(-1)^k$. However, that series $\sum_{k} a(n,k)(-1)^k$ does not converge for each n. That is to say that A-transform of the series $\sum_{k} (-1)^n$, which belongs to ms(p), does not even exists. But this contradicts the fact that $A_{\epsilon}(ms(p):\widehat{m})$. Hence (2.6) is necessary.

Let us consider the equality

$$\sum_{k=0}^{m} a(n,k) x_k = \sum_{k=0}^{m-1} \Delta a(n,k) s_k + a(n,m) s_m ; m,n=0,1,...$$
 (2.7)

obtained by applying the Abel's partial summation on the mth partial sums of Ax. From (2.6), it is obtained by leting $m \rightarrow \infty$ in (2.7) that

$$\sum_{k} a(n,k)x_{k} = \sum_{k} \Delta a(n,k)s_{k} ; n=0,1,...$$
 (2.8)

Thus, it is seen that $C=(c(n,k))\epsilon(m(p):\widehat{m})$ satisfies (2.1) which is equivalent to (2.5), where $c(n,k)=\Delta a(n,k)$ for all n and k.

Sufficieny. Suppose that the conditions hold and xems(p). Now, reconsider $C=(\Delta a(n,k))$ in (2.8). Therefore "C satisfies (2.1) if and only if A satisfies (2.5)" is true. So, $Ce(m(p):\widehat{m})$. This implies by (2.8) that $Ae(ms(p):\widehat{m})$ and the proof of Theorem is completed.

By Theorem 2.3, we have

Corollary 2.4. As $(\Upsilon^{\bullet}s:\widehat{m})$ if and only if (2.6) holds, (2.5) also holds with $p_k=1/k$ for all k.

Theorem 2.5.
$$A_{\epsilon}(ms(p):\hat{m}s)$$
 if and only if (2.6) holds and $\sup_{m,n} \sum_{k} \prod_{j=0}^{n} \Delta a(j,k,m) | N^{1/p_k} < \infty$ (2.9)

for every integer N>1.

Proof. Let $A_{\epsilon}(ms(p):\widehat{ms})$ and $x_{\epsilon}(ms(p).\widehat{ms})$ $\subset (ms(p):\widehat{m})$, the necessity of (2.6) is obvious by Theorem 2.3.

Now, consider the equality which is obtained in a similar way of (2.7);

$$\sum_{j=0}^{n} \sum_{k=0}^{m} a(j,k) x_{k} = \sum_{k=0}^{m-1} \sum_{j=0}^{n} \Delta a(j,k) s_{k} + \sum_{j=0}^{n} a(j,m) s_{m}; m,n=0,1,...$$
 (2.10)

Therefore we get by considering (2.6) and letting $m \rightarrow \infty$ in (2.10) that

$$\sum_{j=0}^{n} \sum_{k} a(j,k) x_{k} = \sum_{k} (\sum_{j=0}^{n} \Delta a(j,k) s_{k} ; n=0,1,...$$
 (2.11)

Thus, it is seen that B = (b(n,k)) ϵ $(m(p):\widehat{m})$ satisfies (2.1) which is equivelent to (2.9), where $b(n,k) = \sum_{j=0}^{n} \Delta a(j,k)$ for all n and k.

The sufficiency is trivial.

Finally, we have

Corollary 2.6. A ϵ (Υ^* s: \widehat{m} s) if and only if (2.6) holds, (2.9) also holds with $p_k=1/k$ for all k.

REFERENCES

- [1]. Iyer, G. On the space of integral functions-I,J.Indian Math. Soc. (2),12,13-30 (1948).
- [2]. Maddox, I. J. Space of strongly summable series. Quart, J. Math. Oxford (2) 18, 345-355 (1967).
- [3]. Nanda, S. Matrix transformations and almost boundedness. Glasnik Math. (4), 345, 99-107 (1979).
- [4]. Öztürk, E. On strongly-regular dual summability methods. Commun. Fac. Sci. Univ. Ank. Series Al, 32,1-5 (1983).
- [5]. Simons, S. The sequence spaces $I(p_{\upsilon})$ and $m(p_{\upsilon})$. Proc. London. Math. Soc. (3), 15, 422-436 (1965).