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Bu galigymada. ikinci basamaktan lineer diferansiyel denklemler igin bi-
linen salinim ve karsilagtirma teoremlerine iligkin sonuglar fark denk-
lemleri igin incelenmigtir.

NOTE ON OSCILLATION AND COMPARISON THEOREMS USING DISCRETE METHODS
SUMMARY

In this paper, some well knowing results in the continous case about the
oscillation and comparison theorems vuvn second order linear differential
equations, have been criticized and try to answer the question when does
difference equation have oscillatory properties.

1. INTRODUCTION

The literature on the oscillation of solutions of second-order linear
differential equations is voluminous. The purpose of this study is to
extend the results of various authors on the second-order ordinary
differential equations to the form of difference equaticns. Consider the
second-order non-homogeneous linear differential equation.

y" +p (x) y = f(x) (1)

We shall suppose that p{x) and f(x) are of classe C2 on an interval

I:la, = ) , a30 .

With equation (1) we associate the corresponding homogeneous equation

+p{x) y=20 (2)
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Definition 1 : A solution y(x) of (1) or {2) is said to be oscillatory on
I =1"[0a, =) if it has an infinite number of zeros on [ x, = )} for every
x 2a. The equation (1) or (2) will be said to be oscillatory, 'if one
{and therefore all) of its solutions have an infinite number of zeros
for x > a.

Definition 2 : A solution y(x) of (1) or (2} is said to be non-oscillatory
on I if it has only a finite number of zeros on I for some x 3 a.

Definition 3 : A solution y(x} of (2) is said to be quickly oscillatory
on 1 if it is oscillatory and the sequence of zeros | xn} is such that
lim _
N-e on(xn+1 - xn) = 0.

Definition 4 : A solution y(x) of (1) or (2) is said to be aZ-type solution
on I if 1t has arbitrarily large zeros but is ultimately non-negative or
non-positive.

Definition 5 : A solution y(x) of (1) or (2) is said to be disconjugate
if it has at most one zeroc on I.

Definition 6 : A point x = b is colled conjugate to x = a {b # a), If there
exists a non-null solution of the differential equation that vanishes at
both these points.

Many of the properties associated with second-order linear differential
equation usually also holds for the difference equation form. An essential
property of the majority of computational methods for the solution of
differential equations is that of discretization. Thus we seek an appnox-
imate solution, not on the continous interval a € b <« b, but on the
discrete point set

{xnf n=20,1,2, ..., {b-a)nt

On the set of points, ¥ = y(xn), Xopl = % 4 h, Xo = 8 X, =b, (n =0, 1

2, ..., N), h >0 is the stepsize and N is sufficiently large integer.
Generally speaking a discrete variable method for solving a differential
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equation consists in an algorithm which corresponding to each lattice
point x_, furnishes a number ¥n which is to be regarded as an approximation
to the value y(xn) of the exact solution at the point X Frequently

though not always, the points X, are equidistant.

Let us write equations (1) and (2) in the form of difference equations
using the linear multistip method.

Ynat + (PP~ 2) y, +y, 4 = b2 f, (3)

1
o

Yoy * (thn =2} Yyt Vg = (4)

respectively where, P p(xn} and ﬂ}z_ﬂxn) on the interval I : (0 < Xo
< Xy < X eee <K<l <xN] such that N is a sufficiently large positive
integer.

2. MAIN RESULTS

Now we study the oscillatory behaviour of solutions ¥a and Uy of equation
(3) and (4) r=spectively.

THEOREM 1. Assume that the sign of f, is constant and Uy is solution of
equation (4) such that

uo>0,u1<0,-..,un<0,u >0, ...onl1:[ a, =)

n+1

(or vice versa) on the interval I. The sign of solution ¥, of equation
(3) cannot be constant.

PROOF. Without loss of generality suppose that the sign of solution ¥y
of equation (3) is positive on I. Multiplying the equation (3) by Un and
equation (4) by - ¥, and adding these two equations we have

2

Un¥net = Unst¥n * Un¥pog T YpUneg = PTRU, (5)
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If the partial sum of the left hand member of (5) is performed.
UpYp = Up¥q * Ug¥y - Yy

Ugdig = Uiy + Uk - Uj¥s

Un-1¥n = Un¥n-1 t Unoa¥noz 7 Unlo¥nag
uy

et T Ynetn P UnYnor T Ynoa Yy

and finally we obtain

n M=
=

Un¥ngt T Yngt¥n T Uy T YUYy S K

1
While the sign of right hand side of equation (6) will change according

to the sign of u,, the sign of left hand side will remain constant. This

k,
contradiction concludes the proof of the theorem.

THEOREM 2. Consider the equation {1) where p(x)e C [a,= ), f(x)e C2
[a, =) and f{x) £ 0 on the intervgl 1. If f(x) is a oscillatory type
solution of equation (2) then the solution y(x) of equation (1} is
oscillatory.

PROOF. Suppose that the solution of y(x) equation (1) is not oscillatory
and solution of f{x) of eguation (2) such that

fo >0, f, <0, ..., fn < 0, fn+ 0y seen

1 1
on the interval I : [a,* ). Thus

f*+p(x) f=0 (7)

After discretization of the equations (1) and (7) following results can
be obtain.
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2 .
fn+1 + (h Pp - 2) fn + fn—1

2
Yot + (0°Py - 2) ¥ vy g = ROF

The earlier procedure is readily adapted to the present status and yields
the following equation.

n 2.2
=); h fk (8)

Yofnet = Yoerfo * #4170 - Yoy = :

k

The proof is obvious because of the appearing contradiction.

THEOREM 3. Consider the pair of linear differential equations on I

[ a: @ )-
y' o+ plx) y = fix) (N

{1a)

2" + plx) z

i
[fa]
—
>
—

where p{x) is of C-class on I, f(x) < g(x) (or vice versa) are not
constant on a common subinterval and their sign are constant on [. If the
solution y(x} of equation (1) oscillatory then the solution z(x) of
equation (1a}) will be so.

PROGF. Using the linear multistep method

2.
Vi & (thn - 2) s ol p = BT (3)

+ (thn -2z +z = hzgn {3a)

z n n-1

n+1

Assume that Yy is solution of equation {3) such that

y >0, ¥y < 0, ..., YiS 0, Yagr © 0,... and fn <4,

o}

{or vice versa) and the sign of 25 is constant on the interval [. Using
the well-known procedure one can easily obtain the following equation.
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2
Za¥ne1 T ZnatYn * Z¥nog C Znoq¥, = O (ZfL - yg,) (9)
Perform the partial sum of the left hand side of (9) we have

n 2 i
Vet - Znet¥n * LY 2gYe < kf1 h (zkfk - YS! (10)

The proof follows from usual contradiction. This result leads Js to the
following theorem.

THEOREM 4. Consider the pair of equations on I :[ a, = ).

It

y' + plx) y = f(x) (1)

z" + qlx) z = g{x) (11)

where p(x), q(x) are of class € and assum that q(x) >p(x) on I. f{x} and
g(x) are of class 01 and not constant on common subinterval and the sign
of f(x) and g(x) are constants on the interval I.

If y(x) be a oscillatory solution of (1) then a nonnull solution z(x) of
(11) will also be oscillatory on 1.

PROOF. Repeating the same procedure we get

Ynat + (%0 = 2) y, 4y, 4 = 0%F, (3)

2 2
Z,.q* (h q. = 2) Z, +Z, 4 =h 9n (12)

Without loss of generality assume that ¥, is solution of (3) such that

¥y ¥ 0, ¥y < Ocany ¥, % 0, Yois ® 0,... and fn < g,

and the sign of solution z, of (12} is constant on I With the similar
procedure we can get
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zny

n+1

2
T netYn t Zp¥nay C Zqg¥p = (ynzn(qn'pn)+(znfn' gnyn) (13)

and finally

n
2
“afnet T Znaidn * Ti¥o T Zo¥y = T NN GeR+H (2 F - ) (18)

The procf of Theorem 4 is analogous to Theorem 3.
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