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METHODS TO DETERMINE SOLID - LIQUID SURFACE ENERGIES II
~-The grain boundary groove method-

Mehmet GUNDUZ
E.li. fen - Fdebiyat Fakidltesi, KAYSERI

SUMMARY

Theoretical and experimental grain boundery groove methods are discussed. The application
of the methods for transparent organic materials and binary eutectic alloys are examined
critically.

bzer

leorik ve deneysel "grein boundary groove" metodlar: tartisildi. Metodlarin, saydam orga-
nik maddelere ve ikili dtektik alasamlarz uygqulanmzsi incelendi.

1. INTRODUCTION

The most effective methods for measuring solid-liquid surface energy,
Ogp s experimentally involve the direct application of Gibbs - Thomson
equation. This equation is formed by combining the condition of mechanical
equilibrium of & curved interface and the condition of chemical equilibrium.
If all other intensive variables {such as composition, pressure and
strain energy) remain constant, a solid bounded by an interfacial element
having principle radii of curvature r and ry measured in the solid will
be in equilibrium with its melt at a temperature Tr {which is not equal
to the phase diagram liquids Tm) the Gibbs - Thomson equation for this
is given by,

%L Vs
m-r r S

where vsj is the partial volume of the solid ith component, a5 is the
entropy of fusion, {in the case of an alloy system weighted entropy
fusion, aS¥ is used instead of 4S).
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The solid-liquid surface energy, g can be evaluated directly from the
Gibbs-Thomson equation provided that ATr is measured for known values
of r and rs for a system at equilibrium and oS is known independantly.

A number of theoretical and experimental techniques to measure 9% have
been discussed in the previous paper{ }1; in fact most of the experi-
mental techniques have based directly or indirectly on the Gibbs-Thomson

equation. Probably the most attractive method of measuring g_, directly

for macroscopic systems involves observing the “equilibriu;Lshapes of
grain boundary grooves" (Fig.l). These grooves are formed by the
intersection of planer grain boundaries with an otherwise plarnar sclid-
liquid interface stabilised by an applied temperature gradient. At large
distance away from the grain boundary groove (5h< x <-5h see fig.1) the
groove curvature becomes zero (i.e. : dx/dy = 0) so thus the interface
becomes planar. The curvature of the interface towards the root groove
in the x-y plane increases (curvature, r, becomes smaller) so as to
balance the decreasing interfacial temperature (increasing A Tr)
according to the Gibbs-Thomson equation. At each point on the interface
in the vicinity of the groove, the local curvature 1is given by

—

(2/r) = 1/r1 + 1/r2 where Ty and ro are the principle radii of curvature
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Fig.1. Schematic illustration of a grain boundary groove
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For the case of a blanar grain boundary intersecting a planar solid-liquid interface,
P The remaining curvature 1/r% is related to the curvature under-cocling A Tr
from the zero curvature equilibrium temperature by the Gibbs-Thomson
equation which may be written as :

(8}
5 4T s (2.)

T
r
ASf?"

(= 0) " Tex,y)

where A Sf is the;éﬁtropy of fusion per unit volume and the rest of the
variables are as described before, {see also fig.1).

The equilibrium grain boundary groove shape in an applied uniform
temperature gfédient, in a two dimensional groove has been calculated
theoretically using equation (2) by Bolling and Tiller [ 2 1 for the
case K5 = KL‘ by Nash and Glicksman [ 31 and Gindiz and Hunt [ 4]

for the case K5=# KL (where K¢ and KL are the thermal conductivities of
the solid and liquid phases respectively) and observed experimentally in
situ by Jones and Chadwick [ 5, 6 1, Jones [ 7, 81 Schaefer et al

[ 91 Nash and Glicksman [ 81 and Hardy [10 1 . The solid-liquid
surface energies have been derived from the measurements of the observed
grain boundary grooves in an applied temperature gradient by these
authors [4 -101].

5.2.4.1. Grain Boundary Groove Method for KL = KS

When the thermal conductivities of the solid phase (KS) and liquid phase
(KL) are equal, the temperature distribution in the region of the grain
boundary groove is a simple linear function of "y" (fig.l'} which is
independent of a interface shape. This gives a linear temperature gradient,
G along the y-axis and ATF = Gy, so thus the linear temperature distri-
bution allows equation (2} to be integrated. This special case was
solved by Bolliing and Tiller (for isotropic e SL) writing equation (2 )

as [2 ]

2 _ -3/2

ag.
SLoy [T +y' ] (3a)

AT, = Gy = —-

or
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y 1+ y'2 ]3/2 = K2 y" {where K2 __osL ) ( 3 b)
G ASf
A simple integration of equation (3 b) gives
2 2 s R g
Y- _KE 1 +yC] + KB {4)
2

where B is an arbitrary constant of integration. Bolling and Tiller have
solved this eguation for B>1, B = 1 and B< 1 and obtained representa-
tions of the interface shapes in each case. If I is isotropic then
y' =0, when y = 0 and from equation (4) B = 1. Thus the grove {with
y' = = at x = 0) 1s described by

2 /2
M+ KE2-1In(¥2+1)]

(%)

2K + 4K% - y°

X = fly) = Kln [ ]-(4K2-y

which gives the interface shape in fig. 2.

-2

-5 A L 1 A t

Fig.2. Interface shape for isotropic O,
and several values of X {Ffrom ref.?)
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Equation ( 3p ) has also been integrated by Schaefer et al [ 97 to
give the equilibrium shape of the interface surrounding the grain
boundary for KS = KL. The result of this integration (for dimensianless
coordinates) is

e 1 [ - (1 -4 2)1/2 € ot Inf tan (g /2))
2 2,1/2 2
1'('r|)

+ Cosg (6)
where y = X/2K ; n = y/20 ; £ =( n- ¢/4 ) the groove depth h 1is found
to be h = 2KSin g. For the case of p = 0 and = =/4 the simple useful
result

g
h, = (_31__£§;_)1/2 (7))
G a Sf

is obtained. Thus if G and h can be measured and if a Sf is known
independently, then the solid-liquid surface energy can be calculated
from equation (7). The accuracy of the method depends on the measurement
of the G and h values (and thus the equilibrium conditicn). Consequently,
a well controlled, shallow temperature gradient should be used, so that
the groove depth will be large enough for accurate optical measurements
'in situ',

Schaerfer et al [ 9 ] also applied this method, to measure the solid-
liquid surface energy in highly purified succinonitrile (which has egual
thermal conductivities in both phases).
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The value of ¢ - obtained was 8.94 + 0. 48 erg/cm This value is very
different from the value of 28 + 5 erg/cm obtained by Jones and Chadwick
[ 5] with the same method for succinonitrile. This difference was
explained as being due to the a Sf value used in the evaluation. Jones
and Chadwick [ 5] wused an = 8.5 cal/mole K originating from the work
of de Vliced [ 1l ]. Schaefer et al [9] used ASf = 2.68 cal/mole K
from the work of Wulff and Westrum, [ 2] . When the Wullf and Westrum's
value was applied to jones and Chadwick's result, a value for ¢ sL of
94+ 2 erg/cm was obtained which is in good agreement with Schaefer et

al's result.
5.2.4.2. Grain Boundary Groove Method for l(L # KS

Unfortunately values of the interfacial free energy obtained assuming
equal thermal conductivities are often suspect. This is due to the fact
that the Bolling and Tiller analysis is only applicable to systems where
K and KL are equal. When the thermal conductivities are not equal,
however, there is a discontinuity in the temperature distributicon and
the temperature gradient at the interface.

This difficult problem was treated by Nash and Glicksman [ 3 ] in a
detailed numerical analysis. The problem is formulated using dimension-
less coordinates n = y/» and y = x/x . The computer solutions for the
interface were obtained using a solid-liquid interface intersected by a
parallel array of grain boundaries spaced periodically along the X,( )
coordinate (fig.3) with the appropriate boundary and temperature distri-
bution conditions. The groove shape was predicted as functions of the
thermal conductivity ratio R = KS/KL, the dihedral angle, ¢ and @,(Fig.4 ).
B8 is given as

0f= oy [ as 61" (8)

where » 1s the half width of a single cell and the rest of the parametres
are as described before.
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The entire calculated interface profile can be characterised by ¢ and a
dimensionless distance & (Fig.5 } which was determined as

wmicre d
along the bisector (Fiq.5 ).

Nash and Glicksman's method is theoretically applicable to systems having

unequal thermal conductivities but

(9 a)

is the dimensional distance from the origin to the interface

it is too complicated to apply for

observed groove shape for the following reasons :

a) An identical numerically calculated grain boundary groove profile
must be obtained for each observed groove shape for the same R and w

values.
b) A respective 8

value must be found related to & for the same R

and ¢ values and the dependence of 6 an ¢ must be known.

c¢) For accurate 9L

measurements 6 must be smaller than 0.25 but

larger than 0.05 (Fig.®6 ). In order to obtain this condition, Gy must be

experimentally adjustable to obtain suitable a and d values (6 = d/a ).

When x is very large compared to

and 9
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Fig. 6 verus @ for three values of
R (R:KS/KL, from Ref. 3 )

d, all calculations must be modified

| Must be defined as a function of X (Fig.7).
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Fig.7 .Variation of with
(from ref. 3)
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Yet only a few illustrative applications of the Nash and Glicksman
method have been made by Nash and Glicksman for lead [ 3] by Hardy for
ice-water [I3 1 , and Jones for various transparent organic materials
(5-81, (Fig.8.).

In order to obtain equilibrated grain boundary groove shapes for binary
alloys, an experimental system was constructed by Giinddz and Hunt f34]
The experimental system developed involves maintaining a radial temperature gradient with
minimal longitudinal temperature differences with temperature stable to within + 0.1%
up to 600°C.

The system holds the specimen in a very stable temperature field over a
period of a week to achieve equilibration of microstructure and grove
shape. It was necessary pp‘ensure that the central annular liquid core
was sufficiently thin to ensure an effective gquench when the current
supplying the axial heating element was turned off. The groove shapes
where grain boundaries meet the quenched-in solid-liquid interface could
then be determined by careful multiple matellegraphic sectioning,
polishing and etchirg. fhermal conductivities were determined for the
solid phases involved in seperate experiments using the same radial heat
flow apparatus and for the liquid phases by thermal analysis during
unidirectional solidification. In this way equilibrated grain boundary
groove shapes, KS, KL and GS values were obtained experimentally.
Glindlz and Hunt [4 7] numerically solved the heat flow problem through
the experimentallx obtained grain boundary groove shape using KL’ KS
and GS values with appropriate boundary and temperature distribution
conditions. They integrated the equation (2 ) 1in thetyidirection from the
flat surface to a point on the cusp {Fig.9'). That is ;
Y

> 1 o
faT dy = A f—‘ dy (where A= _—-—3-_) (LL)
r
0 s r a Sf

A finite difference method was used to calculate the difference in
temperature betiween the flat surface and points on the groove shape. The
numerical method presented by Ginduz and Hunt [ 4 ] merely calculates
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Ll

Fig.9. Showing the defination of & d8, ds, X,y and
the points used for the calculation (from ref.4).

the temperature along the interface of a measured equilibrium shape
rather than attemp to predict the equilibrated groove shape. The nume-
rical method allows to obtain A for any equilibrated groove shape in a
applied temperature gradient provided that the temperature gradient Gs
the thermal conductuities of the phases KL and KS and the actual size of
the grocve 1s knewn. Then o gL s obtained from A = ¢ s/ 8 Sg-

Glindliz and Hunt alsc appiied the finite difference method to measure
o In Al-Cu, Al-Si and Pb-Sn systems, (Fig.1Q). This numerical method
was used to analyse grain boundary grooves obtained by other workers
[ 3.9, I07. Gindiz and Hunt's numerical method gave the results
similar to those given by the Nash and Glicksman's method.

CONCLUSION

The measurement of the solid-liquid surface energy QEL is not easy and
vaiues obtained using different methods (even using the same method)
of measurement shows variations as great as 50 % {sece Table-1, ad

ref. 1 Y. None of the methods, except the grain boundary groove
method 1s suitable to use for measuring G;L for the macroscopic systems.
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a) Solid Al-Licuid Alou, 6=20.36 C/am b) Solid Cul,- liquid AlCu, G=17.69 °C/cm
ot = 160.69 erg/am, 0= 147.80 erg/or® 07= 103.68 erg/on?, o!=100.80 erg/an’

¢) Solid Al-liquid AISi, &7.71 %/am d) Solid Si-liquid AlSi, G=37.04 c/om

OéL= 157.75 erg/cm2 U‘_I?)L: 193.%5 erg/cmz G'SL= 416.60 erg/cmi’ O;L= 412.53 erg/(mz

e) Solid Pb-liquid PbSn, G=13.64 °C/am £) Solid Sn-liquid PbSn, 66.41 ¢/am

"'sL = 43,14 erg/on?, G;f 64.65 erg/an® = 121.18 erg/am®, "'él_: 116.57 erg/an?

1
s

Fig.10. Observed grain boungaﬁry groove shapes for binary eutectic systems
L1
(from ref.4 ) { L:EQ'L' Vo=V )
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Table.l. Measured solid-liquid surface energies

{erg/cm?®)

z61

From From From Crystal
Metecdals Homo pereous Experimental Growth
Nucleations Determination
Stearic acid 105 EQ 150 [z8]
150 £ 10 (291
+ "
Myristic acid %0 : 10 (28]
0I5 {29]
Lauric acid 21.7 ¥ 2.0 (30)
20.4 18] 22 22 (303
Benzens 4 S 10181 5 [al
26.1 [19] 44 T 10 [ 8] 16 to 25 [20, 213
" 24.2 1 6] 29.1 0.9 [10] 20 %2 [24)
0.8 18] 41 tg(5)
35526
3.7 [36]
12.6 1163 10.5 2 2.0 (5] 0.93 7 0.05 [25]
Hhite pROSPADEUS 12520 8] 0.7 221
+
Camphane b 1 L8l
537009 [53
2825 [5]
Succinonitrile 28 + 4 [8)
8.904 2 0.5 9]
7.47 (361
Waphthalene 30.1 [18] 56 11 [ 8]
Diphenyl 24 [18) 50 110¢€ 4]
Ethylene Dipromide 21.0 [i8) 157 8]
Carbontetrabromida 10.7 to 21.8 (18] 10 to 2008
54.5 [141 62 =10 [31) 49 to 61 {231
Tin 59 [16]
55 {19
70,6 351
33 04 40 27 033 3.6 to 42,7 [23]
Lead 89 (171 % (3]
56.2 [4]
78.% {36
Gold 152 04 270 10 (34 ]
s (14 3% to A0 (321
: a2 (16 6.3 (271
Bismuth 9.1 [35)
L.Phase S.Phase - 163.4721.2 | 4]
Al = 163.4521.2 [ 4]
AlCu cunl, - 87.8%10.8 [ 4]
S a1 - 168.9%20.0 [ 4]
s = 35245584 1 4]
P sn - 132.4%18.9 [ 4]

56.278.2 [ 4)
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The grain boundary groove method allowso g to be measured for multi-component
systems as well as for pure materials, for opaque systems as well as for
transparent materials, for any observed grain boundary groove shape. The
measurement of 4 s using Bolling and Tiller's method (grain boundary groove
technique with equal thermal conductivities, KS=Kt)is only applicable for systems

having aqual solid and liquid thermal conductivities. Nash and Glicksman's
method is theoretically applicable to systems unequal thermal conductivities
but it is too complicated to apply for any observed groove shape. Gindliz and
Hunt's method allows to obtain A, numerically for any equilibrated grain boundary
groove shape for any R (R = KL/KS) value by just knowing G and actual size of
the groove shape. Then selid-liquid surface energy, og can be evaluated from
A =c1$]ASfif' AS¢ is konwn independently.
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