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THEORETICAL EVALUATIONS OF APPARENT MASSES FOR CERTAIN CLASSES
OF BODIES IN FRICTIONLESS FLUID
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Bu makafede, hiz potansiyeli fonksiyenu kullanilarak, bazsit geometriye
haiz bazi cisimlerin, elipseid, kire ve eliptik silindir gibi, ilave
akigkan kitlelerinin teaorik hesabi wverilmigtir. Bu galigmadan, ilave
skiskan kitlelerinin sadece cismin geometrisine ve hareket dofrultusuna
bagly oldudu elde edilmigtir. Ayrica, cismin keyfi dogrultuda iki boyutlu
daimi olmayan tteleme hareketinde, cismin ana eksenleri dogrultusundaki
ilave akiskan kitle bilesenlerinin dejigmedigi gordlmigtir.

THEORETICAL EVALUATIONS OF APPARENT MASSES FOR CERTAIN CLASSES
OF BODIES IN FRICTIONLESS FLEID

SUMMARY

In this study, using the velocity potential function the theoretical
evaluations of apparent masses (or virtual masses) for certain classes
of bodies, such as elipsoid, sphere and elliptic cylinder, are given. It
was found that the apparent mass of the body depends on the geometry
of the body and its direction of motion., It was also found that when 2
body moves in .any arbitrary two dimensional unsteady pure translational
manner, the associated apparent mass components in the directions of the
main axes do not change.

1. INTRODUCTION

The existing theory for the determination of apparent mass is based on
the fact that, when a solid body is moving in the incompressible potential
flow, the entire velocity field depends upon the instantaneous velocity
of the submerged body and is quite independent of the past history of the
motion. Consequently, any change of the motion of the boay would be
propogated instantaneously to all the particles of the fluid. Thus, the
total kinetic energy imparted to the fluid during translation must vary
directly with the square of the linear velocity, and during rotational
motion, with the square of the angular velocity.
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A number of hydrodynamic theorems have been published by Munk [1] ,
Lagally [2 Jand Taylor [ 3] concerning the apparent masses of bodies and
the forces and moments which act upon them. These theorems enable the
apparent masses and hence the forces and moments to be determined when
the singularity distribution of sources, sinks and doublets within the
body which may be considered to generate the potential flow about it, are
known. '

For unsteady flow conditions, an impulse associated with any change in
the motion of the body is directly proportional to the change in the
value of the velocity potential function, ¢ , which specifies the flow.
Consequently, the determination of the apparent masses of bodies moving
through an ideal fluid must depend on the calculation of the velocity
potential or of the corresponding stream function. The apparent masses
are determined from this velocity potential functioning calculating the
kinetic energy T, by meads of the integral,

2T=—pJS’0 gﬁds (1)

where S denotes the surface of the body, ¢ the velocity potential
function, p the tensity of the fluid and n denotes an elemental length
drawn in the fluid normal to the surface s.

The general motion of a solid body of arbitrary shape has six degrees
of freedom represented by three components of linear velocity (U, V, W)
and three components of angular velocity (P, Q, R). For each velocity
component there is a corresponding fluid wvelocity potential.
Consequently, there are a number of different apparent mass components.
If the velocity potential is defined in terms of velocity components
Vi of the body, as ¢ = Vimi , where i ranges from 1 to 6, the apparent
mass components are given from the kinetic emergy equation (1) as

thus,
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ﬂll)i
ajj= e S 0y ——ds (3)
a n
in which i and j range from 1 to 6. aj represent a symmetric apparent
mass tensor, i.e.,
B i B e (4)

In the quadratic expressions for the energy, there could be six squares

and fifteen products of velocity components and therefore 21 distinct

apparent mass components

% 19 %12 *13 * 14 *15 16
& 22 “23 e 24 ® 25 %26

N %33 %34 “ 35 “ 36 (5)
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However, as shown certain components disappear when the body possesses
axes or planes of symmetry.

For an irrotational ideal fluid, the equation (3) shows that the apparent
mass components depend upon the shape and the orientation of the body as
well as on the mode of its motion. However, they do not depend upon its
linear or angular velocities and its linear or angular accelerations.

The apparent mass components can also be expressed in terms of a different
form of (3). By applying Green's Theorem, this equation can be written

as,

a9, a0, a0,
%i3=-p S L0 ——Ei ds + p f i (2 a_ﬂlA- 9; : n]) ds (6)
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where the last integral is taken over a surface which approaches infinity.
At infinity, ¢ is equivalent to the strength of the dipole, hence
equation {2.6) becomes [ 4]

e =41 p I P Volume of the object {7)

Where 9p is the dipole strength at infinity of the potential function.
This equation is valid for any symmetrical object moving in an infinite
fluid [ 41 it remains to evaluate the dipole strength, ap s for a
particular flow around a particular body.

If velocity potential singularities are known, i.e., the flow problem
about the body has been soclved, the apparent mass components can be
calculated directly from equation {3). Otheswise, it is more convenient
to use equation (6)[ 51

2. APPARENT MASSES OF AN ELLIPSOiD

Lamk [6 lshows how the principle of hydrodynamic theory can be used to
determine the values of the apparent mass components for all classes of
ellipsoids, moving in an ideal fluid with axial, transverse and rotational

motions.

Yy,
<

Fig.1 : Dimensions of ar ellipsoid.
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For an ellipsoid, for which

2
X y -
+ + o & 1 (8)

where if a =b »>¢, an oblate ellipsoid is obtained which can be used
as a model of parachute canopies. However, if a = b<c¢, a prolate spheroid
is obtained, which could be used -as a medel for an airship hull.

By employing equation (3} and considering the ellipsoid motion apparent
mass components can be determined directly from the defined velocity
potential functicn on the ellipsoid surface.

For rectlinear motion parallel to the x-axis with a velecity U, as seen
in Fig. 1, the velocity potential may be written [ 61 as

o =Cx [ d A (9)
A fa+a)a
where
a ={ (a2 + A )(b2 + A )(c2 + A ) }1/2 (9a)
¢ abc U (9b)
z - oy
and
aozabc I, ____d_.’\_,__ {9¢c)
{(a +a ) a
The surface condition is
8 . U g & for A =10
a A 3 A

For the motion in the direction of the other axes, {i.e. the vy and z axes)
the corresponding velocity potential and other variables {i.e. C and % )
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can be written by substituting the appropriate variables into equations (9), {9a) and {9c).
Hence, in the y and the z axes directions, the above equations become

e=Cy r —9%x (10)

c._abcV {10a)
2—30
B, =abc J - dit (10b)
b - a) a
and
e =Cz J —dx {11)
A (c2+ A) oa
c -3 (11a)
2—*{0
v, =abe J B8 . (11b)
° 2
f {c“+ a}a
respectively.

When the ellipsoid rotates about the x axis, with the angular velocity
w , the velocity potential may be given as, '

e =Cyz J g (12)
& (b2+ A)(c2+ A)a
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where

and the surfate condition is

a0

s u(z =L -y X
oA A a A

It may be further seen that, for the motion about any other axis, the
corresponding velocity potential can be written by substituting the
appropriate variables into equations (12).

Thus, the kinetic energy T of the ellipsoid moving in the x-axis
direction is evaluated from equation (1), as

a
2T=-pffgo 22 ds-—2 puszs x 2 ds (13)

n 2 - o

where g is the direction cosine in the x direction. Since the latter
integral gives the volume of the ellipsoid, the energy equation becomes

oo %0 A e P (14)
4

Consequently, the apparent mass in the x-axis direction may be written
from equaticn (14),

—ﬂ.— r abc p (15)

The corresponding apparent mass coefficient which is defined as the
ratio of the apparent mass to the mass of the fluid displaced by the
ellipsoid is obtained from equation (15),
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B i D (16)

By the same approach, the apparent mass coefficients along the other
two axes are determined as

k 9
Yoo 2. 8

Using the velocity potential function for the rotational motion of the
ellipsoid, the apparent moment of inertia coefficient whkich is defined
as the ratic of the apparent moment of inertia to the moment of inertia
of the fluid displaced by the ellipsoid about the x-axis is found from
equation (1),

4

e (B_ - )

&, = g To (19)
2 2

(2 - ") [(2e"-(2 - e7)(B

where e denctes the aspect ratio, as

&

a2

e=1- for an oblate ellipsoid

=1--2 fora prolate ellipsoid.

C2

]
i

Then, from equation (9b) and (10b}, the following equations result ;
for oblate spheroid

2 [ 41. J1-e2 _SiN_ & 4 (20a)
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2
_J1'e -—1 1'e (20b)

and, for prolate spheroid

2
_ 1 - e 1+ e
OLO = B 0o~ 2 (—EB—) (1/2 lOg - ~ E} (213)
2
1 1 -e 1+ e
YT = - log {21b)
g e2 2e3 i -e

The result cbtained for kXX = kyy’ kZZ and k;x are given as a function of
the aspect ratio in Fig. 2. For a = b = ¢, the shape of ellipsoid becomes
a sphere and kXX = kyy = kZZ = 0.5 , k;x = 0.0 . When a = b = 2¢, it

becomes a hemisphere and the apparent mass components are obtained as,

kXX = kyy = 0.3 . kZZ = 1.1 and kix = 0.4

Determining the strength of the dipole for a particular flow about

spherical sheels, using equation (7), lbrahim {7) determined the apparent

mass coefficient in the direction of the symmetry axis of the spherical

cups. He assumed that the included mass which is the mass of the fluid

inside the cup is a part of the apparent mass and consequently his results
obtained for & sphere and for a hemisphere are higher than those

previously calculated. If it is assumed that the included mass is carried

by the spherical shell as if it were part of the solid, Ibrahim's results

become identical with those developed above, and as seen in Fig. 3

3. APPARENT MASSES IN ARBITRARY TWO-DIMENSIONAL MOTION

Eiliptic Cylinder in Arbitrary Motion

Introducing the elliptic co-ordinates, & , n , the potential function for
an elliptic cylinder moving paraliel to its x-axis with a unit velocity,
U, as shown in Fig. 4, is given [8& ] as,
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Fig.2 : Theoretical apparent mass coefficients for the parachute's
aerodynamically related shapes.
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—— Ibrahim's results (V = Vsphorel
-== Included mass subtracted
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Concavity angle of spherical cup

Fig. 3 : Tangential apparent mass coefficient, k33, for
spherical cup.

o=-U. b (2012 ¢

a-b>b

sin n (22)

where a and b are the major and the minor axis if the motion of the
elliptic cylinder is parallel to the y-axis, the eguation will be,

¢ =-Va (*E—.'.—b-) e-g sin n (23)
a-»b

The resultant pressure, i.e. the force exerted by the surrounding fluid
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Fig. 4 : An elliptic cylinder in unsteady motion

on the unit length of the cylinder parallel to the x and the vy axes
respectively are determined by the eguations,

== b J;Z“p cos g d g {24)

-
!

Fy = -4 j;znp sin q dy (25)

where p is the pressure which is determined by the Bernculli equation
for unsteady fleow conditions,

P ___ 02 +1_q2 (26)

R at 2

where g 1is the velocity. Since the fluid is ideal and considering the
fact that an ideal fluid exerts zero net force on a body of any shape
wholly immersed in it {the d' Alembert paradox), the second term in the
right hand side of the equation {26) does not make any contribution to
force and only the first term will be considered. Hence, from equation
(24) and {26), the apparent masses for an elliptic cylinder in the x-axis
and the y-axis directions are found as

XX

Yy
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respectively.

Supposing the elliptic cylinder is moving in an arbitrary direction and
U,V are the velocity components in the x-axis and the y-axis directions
respectively. The potential function can then be expressed [9] as,

0 = - (—2—1—9)1/2 e & (Ubcos 5 +Va sing ) (27)
a-»b

Considering the resultant forces parallel to the x and the y axes
separately, therefore,

- 8
ad __(a+b)1/2€ [ chosﬁ'l' BV

at a->b at 8t

a sing] (28)

can be obtained.

Substituting this into (26) and using equations (24) and (25) forces Fx

and Fy are determined as,

Fx-_-_:p bzi
dt
F = - np 32 ﬁgi_
y dt
and finally,
2
x = TP b
2
o = mnp 3
Yy

Their values remaining the same as if they were determined separately.
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Ellipsoid in an Arbitrary Motion
If the ellipsoid moves in any arbitrary direction and U,V are the velocity

components in the x and y directions respectively, as seen in Fig. 5, the
velocity potential function is expressed as

Vy {29)

where o and B o are defined in section 2 .

® — The angle betwean the rasuttant
velocity and the x- axis

Fig. 5 : An ellipsoid in an unsteady two-dimensional motion.

The total forces acting on the ellipsoid in the x and y axes directions
are evaluated by considering the pressure distribution over the surface.
So,

Fo==-Jg pcos @ dA (30)

F. == IS psin & dA (31)

where these associated integrals are taken over the surface and dA is
small surface element. Since
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L Y
P at

then

a B
6L o du o] el') (32)

o B
Fx = p IS —= au_ .. g v y) cos e dA
2 - a 5 dt Z-B o dt
{(33)
%9 duy Bo dv
Fx=p—_ fsxcos 9dA+p--—-———f5yCDS e dA
2-&0 dt 2-80 dt

The first integral gives volume of the ellipsoid. The becond is zero,
thus

o
Fx A | W & ® abc p—dU (34)
2 - oy 3 dt
and likewise,
B
Foowe B o EBE 5o (35)
y Z2- B dt
0
wiere
o
k = g
K% 2 - «a
o
B
k = g
Yy 2 -8
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which are the same expressions as those obtained when the eilipsoid moves
parallel to its main axes separately.

4. CONCLUSIONS

It is concluded that, when the body moves in any arbitrary two-dimensional
unsteady pure translational manner, the associated apparent mass
components in the direction of the main axes do not change. As further
evidence, ibrahim [ 7 1 determined the complex potential function for a
circular arc moving in an arbitrary traslational direction making an
angle , with one of its main axis. He, thus, evaluated the apparent mass
components ; namely, the apparent masses in the direction of the two main
axes and also the coupling apparent mass component. He found that, the
sum of the apparent masses in the directions of the two main axes is
independent of the angle, ~ , showing that the sum of the apparent masses
in any two perpendicular directions of translational motion is invariant.
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