PERIYODİK BİR f FONKSIYONUNUN HEMEN HEMEN RIESZ ORTALAMASI YARDIMI İLE YAKLAŞIM DERECESİ

İlhan ÖZTÜRK
E.O. Meslek Yüksekokulu, KAYSERİ

ÖZET

f, 2π periyodlu, periyodik ve Lebesgue anlamında integrallenebilen bir fonksiyon olsun. $\text{Lip } \alpha \ (0 < \alpha \leq 1)$ sınıfına ait f fonksiyonunun Fourier serisinin hemen hemen Riesz ortalaması yardımı ile yaklaşım derecesi:

$$\max_{0 \leq x \leq 2\pi} \left| f(x) - \sum_{n=p}^{p_n} a_n \right| = \begin{cases} 0 \left(\frac{p_n}{p_{n+1}} \right)^{\alpha} & ; \ 0 < \alpha < 1 \\ 0 \left(\frac{p_n}{p_{n+1}} \right) \log \left(\frac{p_n}{p_{n+1}} \right) & ; \ \alpha = 1 \end{cases}$$

Birlikte verilir.

THE DEGREE OF APPROXIMATION OF PERIODIC FUNCTION f BY ALMOST RIESZ MEANS

SUMMARY

Let f be periodic function with period 2π and integrable in the sense of Lebesgue. The degree of approximation of a periodic function f belonging to the class of $\text{Lip } \alpha \ (0 < \alpha \leq 1)$ by almost Riesz means of its Fourier series is given by

$$\max_{0 \leq x \leq 2\pi} \left| f(x) - \sum_{n=p}^{p_n} a_n \right| = \begin{cases} 0 \left(\frac{p_n}{p_{n+1}} \right)^{\alpha} & ; \ 0 < \alpha < 1 \\ 0 \left(\frac{p_n}{p_{n+1}} \right) \log \left(\frac{p_n}{p_{n+1}} \right) & ; \ \alpha = 1 \end{cases}$$

1- GİRİŞ

Lorentz [1] 1948 yılında bir $\{s_n\}$ dizisinin hemen hemen yakınsakliğini tanımladı. Sharma ve Qureshi [2] de hemen hemen Riesz anlamında toplanabilme tanımını verdiler ve yakınsaklığın bir genelleştirilmesi olarak hemen hemen...

2- TANIMLAR

2.1- TANIM:

\(\{p_n\} \) dizisi, \(p_0 > 0, p_n = p_0 + p_1 + \ldots + p_n \to \infty (n \to \infty) \) olmak üzere negatif olmayan sabitlerin bir dizisi olsun.

\[
t_n = \frac{1}{p_n} \sum_{k=0}^{n} p_k s_k
\]

(2.1)

yazalım. \(t_n \) ye \(\sum a_n \) serisinin kısmi toplam dizisi olan \(\{s_n\} \) dizisinin Riesz ortalaması veya kısaca \((R, p_n) \)-ortalaması denir [3].

2.2- TANIM:

Eğer \(0 < \alpha \leq 1 \) için

\[
f(x+h) - f(x) = O(|h|^\alpha)
\]

(2.2)

ise, \(f \) fonksiyonuna Lip \(\alpha \) sınıfına ait bir fonksiyondur denir ve \(f \in \text{Lip} \alpha \) seklinde gösterilir [3].

2.3- TANIM:

Eğer \(p \) ye göre düzgün olarak

\[
\lim_{n \to \infty} \frac{1}{(n+1)} \sum_{k=p}^{n+p} s_k = s
\]

(2.3)

ise \(\{s_n\} \) dizisi, \(s \) limite hemen hemen yakışar denir [1].

2.4- TANIM:

\[
\sum a_n \quad \text{serisinin kısmi toplamlar dizisi} \quad \{s_n\} \quad \text{dizisi olmak üzere, eğer} \quad p \quad \text{ye}
\]
göre düzgün olarak

\[t_{n,p} = \frac{1}{p_n} \sum_{k=0}^{n} p_k s_{k,p} \rightarrow s, \quad (n \to \infty) \]

(2.4)

ise, \(\sum a_n \) serisi s limitine hemen hemen Riesz anlamlında toplanabilir dir denir. Burada

\[s_{k,p} = \frac{1}{(k+1)} \sum_{u=p}^{k+p} s_{u} \]

(2.5)

ve \(\{p_n\} \) dizisi; \(p_0 > 0, \quad p_n = p_0 + p_1 + \ldots + p_n \) olmak üzere negatif olmayan sabitlerin bir dizisidir [2].

3. TEOREM

2 \(\pi \) periyodlu, periyodik ve \(\text{Lip} \alpha \) (\(0 < \alpha \leq 1 \)) sınıfına ait bir \(f \) fonksiyonunun Fourier serisinin hemen hemen Riesz ortalaması yardımı ile yaklaşım derecesi;

\[
\text{Max} \quad |f(x) - t_{n,p}(x)| = \begin{cases}
0 \left\{ \left(\frac{p_n}{p_n} \right)^a \right\} & ; 0 < \alpha < 1 \\
0 \left\{ \left(\frac{p_n}{p_n} \right) \log \left(\frac{p_n}{p_n} \right) \right\} & ; \alpha = 1
\end{cases}
\]

şeklinde verilir. Burada \((R,p_n) \) -ortalaması regüllerdir ve \(n \geq n_0 \) için \(p_n > 0 \) artandır [2].

İSPAT:

\(f \) fonksiyonunun Fourier serisi

\[f(x) \sim \frac{1}{2} a_0 + \sum_{n=1}^{\infty} (a_n \cos nx + b_n \sin nx) \]

(3.1)
olsun. Bu serinin kısmi toplamlar dizisi \(s_\mu (x) \) ise

\[
s_\mu (x) = \frac{1}{2} a_0 + \sum_{\nu=1}^{\mu} (a_\nu \cos \nu x + b_\nu \sin \nu x)
\]

(3.2)

yazılabilir. Diğer taraftan (3.1) ifadesinde verilen Fourier serisinin kat-

sayıları;

\[
a_0 = \frac{1}{\pi} \int_{0}^{2\pi} f(u) \, du, \quad a_\nu = \frac{1}{\pi} \int_{0}^{2\pi} f(u) \cos \nu u \, du, \quad b_\nu = \frac{1}{\pi} \int_{0}^{2\pi} f(u) \sin \nu u \, du
\]

olduğundan, bu eşitlikleri (3.2) ifadesinde değerlendirirsek

\[
s_\mu(x) = \frac{1}{\pi} \int_{0}^{2\pi} \left\{ \frac{1}{2} - \sum_{\nu=1}^{\mu} \cos \nu (x-u) \right\} f(u) \, du
\]

(3.3)

elede ederiz. Halbuki

\[
\frac{1}{2} + \sum_{\nu=1}^{\mu} \cos \nu u = \frac{\sin \left(\nu + \frac{1}{2} \right) u}{2\sin \frac{1}{2} u}
\]

olduğundan (3.3) ifadesi

\[
s_\mu(x) = \frac{1}{2\pi} \int_{0}^{2\pi} \frac{\sin \left(\nu + \frac{1}{2} \right) (x-u)}{\sin \frac{1}{2} (x-u)} f(u) \, du
\]

şeklinde yazılabilir ve buradanda gerekli düzenlemeler yapılırsa

\[
s_\mu(x) = \frac{1}{2\pi} \int_{0}^{\pi} \left\{ f(x+t) + f(x-t) \right\} \frac{\sin \left(\nu + \frac{1}{2} \right) t}{\sin \frac{1}{2} t} \, dt
\]

(3.4)

elede ederiz. Diğer taraftan

\[
1 = \frac{1}{\pi} \int_{0}^{\pi} \frac{\sin \left(\nu + \frac{1}{2} \right) t}{\sin \frac{1}{2} t} \, dt \quad \text{[4]}
\]
oldukundan
\[
S_{\mu}(x) - f(x) = \frac{1}{2\pi} \int_0^\infty \left[f(x+t) + f(x-t) - 2f(x) \right] \frac{\sin(\mu + \frac{1}{2} \pi t)}{\sin \frac{1}{2} t} \, dt \quad (3.5)
\]
yazılabilir. Halbuki (2.5) ifadesini dikkate alırsak
\[
S_{k,p}(x) - f(x) = \frac{1}{(k+1)} \sum_{\mu=p}^{k+p} S_{\mu}(x) - f(x) = \frac{1}{(k+1)} \sum_{\mu=p}^{k+p} (S_{\mu}(x) - f(x)) \quad (3.6)
\]
esitsizliğini bulmuş oluruz. (3.5) ifadesini (3.6) eşitliğinde değerlendirirsek
\[
S_{k,p}(x) - f(x) = \frac{1}{2\pi (k+1)} \int_0^\infty \left[f(x+t) + f(x-t) - 2f(x) \right] \sum_{\mu=p}^{k+p} \frac{\sin(\mu + \frac{1}{2} \pi t)}{\sin \frac{1}{2} t} \, dt \quad (3.7)
\]
buluruz.
\[
\sum_{\mu=p}^{k+p} \frac{\sin(\mu + \frac{1}{2} \pi t)}{\sin \frac{1}{2} t} = \frac{\cos \pi t - \cos(k+p+1)t}{2\sin^2 \frac{1}{2} t}
\]
olduğunu dikkate alır ve \(\theta(t) = \{ f(x+t) + f(x-t) - 2f(x) \} \) dersek (3.7) eşitliğini
\[
S_{k,p}(x) - f(x) = \frac{1}{2\pi (k+1)} \int_0^\infty \theta(t) \frac{[\cos \pi t - \cos(k+p+1)t]}{2\sin^2 \frac{1}{2} t} \, dt \quad (3.8)
\]
şeklinde ifade etmek mümkün olur. Şimdi (2.4) ifadesinden faydalanarak
\(f(t) - t_{n,p}(t) \) ifadesini teşkil edelim.
\[
f(t) - t_{n,p}(t) = f(t) - \frac{1}{p_n} \sum_{k=0}^{n} p_k S_{k,p}(t)
\]
\[
= \frac{1}{p_n} \sum_{k=0}^{n} p_k \{ f(t) - S_{k,p}(t) \}
\]
dir.
(3.8) eşitliğini göz önüne alırsak

\[f(t)-t_{n,p}(t)=\sum_{k=0}^{n} p_k \left\{ \frac{1}{2\pi(k+1)} \int_{0}^{x} \phi(t) \left[\cos(k+1)t - \cos pt \right] dt \right\} (3.9) \]

elde ederiz. Halbuki,

\[\cos(k+pt) - \cos pt = -2\sin(k+2p+1) \cdot \frac{t}{2} \cdot \sin(k+1) \cdot \frac{t}{2} \]

olduğundan (3.9) eşitliği

\[f(t)-t_{n,p}(t)=\frac{1}{2\pi p_n} \int_{0}^{x} \phi(t) \sum_{k=0}^{n} \left\{ -\frac{p_k}{(k+1)} \cdot \frac{\sin(k+2p+1) \cdot \frac{t}{2} - \sin(k+1) \cdot \frac{t}{2}}{\sin^{2} \cdot \frac{t}{2}} \right\} dt \]

şeklinde ifade edilebilir. Şimdi

\[|f(t)-t_{n,p}(t)| \leq \frac{1}{2\pi p_n} \int_{0}^{x} |\phi(t)| \sum_{k=0}^{n} \left\{ -\frac{p_k}{(k+1)} \cdot \frac{\sin(k+2p+1) \cdot \frac{t}{2} - \sin(k+1) \cdot \frac{t}{2}}{\sin^{2} \cdot \frac{t}{2}} \right\} dt \]

\[+ \frac{1}{2\pi p_n} \int_{0}^{x} |\phi(t)| \sum_{k=0}^{n} \frac{p_k}{(k+1)} \cdot \frac{\sin(k+2p+1) \cdot \frac{t}{2} \cdot \sin(k+1) \cdot \frac{t}{2}}{\sin^{2} \cdot \frac{t}{2}} dt \]

\[= I_1 + I_2 \]

yazalım.

\[I_1 \text{ ve } I_2 \text{ ifadelerini ayrı ayrı inceleyelim.} \]

\[|\sin(k+1) \cdot \frac{t}{2}| \leq (k+1) |\sin \frac{t}{2}| \text{ ve } \frac{1}{\sin \frac{t}{2}} = 0(\frac{1}{t}) \text{ [5] olduğundan} \]

\[I_1 = 0 \left\{ \frac{1}{p_n} \int_{0}^{x} \phi(t) \sum_{k=0}^{n} \frac{p_k}{k+1} \cdot \frac{\sin(k+2p+1) \cdot \frac{t}{2} \cdot |(k+1)| \sin \frac{t}{2}}{|\sin \frac{t}{2}|} dt \right\} \]

\[= 0 \left\{ \frac{1}{p_n} \int_{0}^{x} \phi(t) \sum_{k=0}^{n} p_k \cdot |\sin(k+2p+1) \cdot \frac{t}{2} | dt \right\} \]
elde edilir. Diğer taraftan $\sin(k+2p+1) \frac{t}{2} = O(1)$ alınıbileceğinden

$$I_1 = 0 \left\{ \frac{1}{p_n} \int_0^t \frac{|\varnothing(t)|}{t} \sum_{k=0}^n p_k \cdot dt \right\} = 0 \left\{ \frac{p_n/p_n}{t} \right\}$$

bulunur. Ayrıca (2.2) ifadesini dikkate alırsak $\varnothing(t) = O(t^\alpha)$ olur.

0 halde $0 < \alpha < 1$ için

$$I_1 = 0 \left\{ \int_0^t t^\alpha dt \right\} = 0 \left(\frac{p_n}{p_n} \right)^{\alpha} \quad (3.10)$$

elde edilir. Şimdi de I_2 ifadesini göзонüne alalım. I_1 ifadesinin ispatında olduğu gibi hareket ederek

$$I_2 = 0 \left\{ \frac{1}{p_n} \int_0^t \frac{|\varnothing(t)|}{\sin \frac{t}{2}} \sum_{k=0}^n p_k \cdot \sin(k+2p+1) \frac{t}{2} \cdot dt \right\}$$

dir.

$$\sum_{k=0}^n p_k \cdot \sin(k+2p+1) \frac{t}{2} = O\left(\frac{p_n}{t} \right) \quad [6]$$

olduğunu dikkate alırsak $0 < \alpha < 1$ için

$$I_2 = 0 \left\{ \frac{1}{p_n} \int_0^t \frac{t^\alpha}{t^\alpha} \cdot \frac{p_n}{t} \cdot dt \right\} \quad (3.11)$$

$$= 0 \left(\frac{p_n}{p_n} \right)^{\alpha-1} \cdot 0 \left(\frac{p_n}{p_n} \right)^{\alpha} \quad (3.12)$$

elde edilir. (3.11) ifadesinde $\alpha = 1$ alalım. Bu takdirde
\[I_2 = 0 \left\{ \frac{1}{p_n} \int_0^\pi \frac{t}{t - \frac{p_n}{p_n}} \, dt \right\} = 0 \left\{ \frac{p_n}{p_n} \int_0^\pi \frac{dt}{t} \right\} \]

\[= 0\left(\frac{p_n}{p_n} \log \frac{p_n}{p_n} \right) \tag{3.13} \]

elde edilir. (3.10), (3.12) ve (3.13) ifadeleri dikkate alınrsa

\[\text{Max} \quad |f(x)-t_{n,p}(x)| = \begin{cases} 0 \left(\frac{p_n}{p_n} \right) & ; 0 < \alpha < 1 \\ \frac{p_n}{p_n} \log \frac{p_n}{p_n} & ; \alpha = 1 \end{cases} \]

elde edilmiş olur, bu da teoremin ispatını tamamlar.

KAYNAKLAR