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SUMMARY

In this werk, basic concepts (Gibbs free energy, equilibrium, driving
force, underceoo?ings) for the sclid-liquid phase transformation have been
briefly menticned. Solid-1liguid Surface energy a has been obtained for
pure materials and binary alloy systems. The effect of the crystallographic
orientaticen and nonspherical curvature effect on csL have been also dis-
cussed,

SAF MADDELER VE JKILT ALASIMLAR T1¢IN KATI-SIvI YUZEY ENERJISININ

HESAPLANMAS

BzET

Bu galigmada, kati-sivi faz doniigliminiin temel kavramiari {(Gibbs serbest
enerjisi, denge, itici glig, asirisodumelar) lUzerinde kisaca duruftmustur.
Saf maddeler ve ikil} alasimiar igin kati~sivt ylizey enerjisi Og elde
edilmigtir. Ogy, HUzerine kristalografik ySnelme ve kiresel olmayan egri-
1igin etkisY ayrica tartisitmigtir.

1- INTRODUCTION

The solid-liquid surface energy is an important factor in solidification
theory, nucleation theory, thermodynamics and solid-liquid phase transfor-
mation and is one of the basic physical constants (such as density, con-
ductivity, entropy, resistivity, melting temperature etc.} for materials.
Solid-liquid surface energy, 9. is difined as the work done to produce
unit area of surface at the solid-liquid interface.When the o energy is
isotropic, it is numerically equal to the solid-liquid surface tension per
unit length if expressed in similar units (1,21 . In order to understand
solid-liquid phase transformations and to obtain solid-liquid surface ener-
gy it is necessary to undarstand, Gibbs free energy, equilibrium, driving

force, and undercoolings.
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2- THE GIBBS FREE ENERGY and EQUILIBRIUM

The Gibbs free energy G, is defined as

G=H-TS (1)
where T is the absolute temperature, S is the entropy (measure of the
randomness of the system) and H is the enthalpy (measure of the heat content
of the system).H is defined as

H=E+PV (2)
where P is the pressure, ¥V is the volume and E is the internal energy of the
system. Internal energy arises from the increase of the total kinetic and
potential energies of the atoms within the system. When dealing with solid
and liquid phases, the PV term is usually very small in comparison to E,
that is H~E.

In classical thermodynamics a closed system is said to be in equilibrium
when it has its lowest possible value of the Gibbs free energy at constant
pressure and temperature, i.e.

(dG) =0 (3)
TP

As can be seen from fig.1 , equation (3) is satisfied at states A and B for
the system, However, A lies at a local minimum in free energy but does not
have the lowest possible free energy, G, of the system. Such states are
called metastable equilibrium states to distinguish them from the stable
equilibrium state. When the initial state of a system has a higher Gibbs
free energy, Gl, then the final state Gz, f.e. 4G =6, - Gl< 0 phase
transformation occurs. The phase transformation occurs because the initial
state of a system is less stable than the final state. For discussion of the
solid-liquid phase transformation and the equilibrium at the interface it
would be useful to look at the variation of G with T. This can be obtained
fram the following result of classical thermodynamics. For a system of fixed mass and compositior

dG = - SAT + VdP  at constant pressure dP = 0 and (4)

(_éﬁ. . =5 {5)
aT

P



GBS FREE ENERGY

M. GUNDUZ / CALCULATION OF SOLID L1QUID SURFACE ENERGY

Ed

Allmihalj

[Metastable Equihriim]

Fig.1.1

Blfinal]

{Stable Equilbrium |

Transformation from initial

to final

blCurved S-L Imterbae B> B

Fig.3

Pressures,

state of a system

S-L interface

relation (S and L refer to

solid and

liquid respectively)

@

o

o

GBBS FREE ENERGY

Fig.1.2 Gibbs free energy for solid

and liquid phases as a func-
tion of temperature near the
equilibrium melting point T .
(the curvature of the G an

GL lines has been neglegfed)

Fig.4

Volume free energy as a function
of temperature for solid and
liquid phases, showing the origin
of the curvature effect



6 M. GUnDUZ / CALCULATION OF SOLID LIQUID SURFACE ENERGY

This means when a pure sclid or pure liguid is heated up the Gibbs free
energy decreases. As can be seen from fig.2 the liquid free energy
decreases more rapidly than the solid free energy because of the larger
entropy [(aG/aT)P = - §1] of the liquid phase. For temperatures up to Tm
the solid phase has a lower free energy and thus is the stable equilibrium
phase; whereas above T the liquid phase has the lower free energy and is
thus the equilibrium state of the system. At the melting point the free
energies of both phases are the same, so that the two phases can co-exist
in equilibrium. If a liquid is undercooled by a T below its equilibrium
melting temperature, Tm, it might be expected that the liquid should trans-
form spontaneously to solid. However, this does not often occur. For exam-
ple under suitable conditions pure materials can be supercooled from a few
°C to over 300°C before solid forms spontanecusly [3,41 . In order for

a liquid to transform to the solid phase at some temperature AT below Tm,

a small number of atoms or molecules in the liquid must come together to
form embrycs or groups of atoms having solid like structures. As shown in
fig.2 the Gibbs free energy decreases for the solid-liquid phase transfor-
mation and this free energy decrease provides the driving force for the
solidification.

3- DRIVING FORCE

The magnitude of the free energy decrease (change) for the solidification
can be obtained as follows;

Assuming G, and G lines near T, are straight lines (fig.2}, He» Hos
(aGS/aT)P and(aG,_/aT)p do not vary with the temperature over the range of
temperatures from Tm - AT to Tm. Then the Gibbs free energy for liquid
and solid can be written as

-Ts,, G =H_-TS (6)
or

8G =6, - G =H - H -T(S -§)=aH-T2as (7)

At the equilibrium temperature, Tm, GL = Gs thus AG = 0. Therefore

aH L
AS:—T-n:'-—-ﬂr;— (8)
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where L is the latent heat of fusion. Consequently the decrease of the fres
energy can be expressed as

AGel-Y - L”:ATAS (9)

Tm Tm

This eguation gives the energy change which is the thermodynamic driving force
for solidification. Solidification, that is, transformation of a material from
the liquid state to the solid state (i.e. freezing) does not happen at the
equilibrium melting temperature, T, but at a temperature below this temper-

e
ature, T1 . The reason for this is that, when the first solid forms, 2 large
amount of energy is needed to form a new solid-liquid interface. The tempera-
ture difterence between Te and T1 is known as undercooling which is given
as [5]

To =T, = 8T = AT, +AT  + aT, (10)

4- UNBERCOOLING
4.1- Kinetic Undercooling, 4 T

In all materials there is an energy barrier to the transfer of atoms from
the liquid to the solid phase and vice versa. Growth of solid only takes
place if atoms jump more freguently from the liquid to the solid phase and
this can only occur if the interface is cooled below its equilibrium temper-
ature. It is this undercooling, necessary to drive the transfer of atoms
which is known as the kinetic undercooling. If atoms jump more frequently
from the solid to the liquid phase, the liquid phase grows, {melting occurs).
If addition of the atoms is exactly balanced by the rate of dissclution then
the system is said to be at equilibrium. From this definition, ATk=O ( At
the equilibrium condition for pure and multi-component systems)

4.2- Diffusion Undercooling, AT&

Diffusion undercooling occurs because of the composition gradient in the
liquid phase and this can be expressed az;

TRy (11)

where CLm is the liquid composition at the planar solid-liquid interface,
CLr is the liquid composition at the curved interface and m is the liquidus
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necessary to define chemical potential {partial molar free energy}. Generally
speaking chemical potential is the change in free energy of the whole system,
i.e.

i :( 1 ) (12)
an,
P,
iP5
where 1 and j refer to different componentis.

Regarding the properties of the bulk phases,[6] in a one-component system chemical
potential of the species i equals the increase in the value of G for the system
resulting from the addition of one mole of i at cohstant Tand P. That is AG=u,
and as the increase in the value of G of the one component system is simply the
molar free energy of 1 then

9; = ¥ (13)

Assume that a curved interface is in metastable equilibrium with its surrounding.
The chemical potential of each phase is then made equal on both sides of the
interface that is

Misr = ¥i (Wi = "qla ) (14)

The pressure inside a curved surface will always be greater than that outside due
to the tension in the surface (fig.3). Considering just mechanical equilibrium
that is no transfer of metarial

(P - P ) dV =0 de . (15)

where P is the pressure, $ and L refer to solid and liquid respectively, dv and
d ¢ volume and surface area change due to the curvature effet.

Assuming the curved surface is a sphere, ( i.e.: fe,..2 [141 )
dv r
AP:._Z,E.,:-
r {16}

5.1- Solid-liquid Surface Energy For Pure Materials

The molar volume of a pure material can be expressed using equation {13) as
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slope (which is negative when k<1t). Where k; is the distribution coefficient

As can be seen from equation (11) ATd is always zero for pure materials.
If multicomponent systems are at their equilibrium conditions the composi-
tion of the solid and liquid phases will be homogeneous so thus the compo-
sition gradient will be zero. Therefore, from equation (11)

0 (only at the equilibrium condition for multicomponent systems)
0 (always for pure materials)

AT
aT

d
d

Consequently at equilibrium,tctal undercocling is equal to the curvature
undercooling. In mathematical terms, from equation (10}

AT = ATr (at the equilibrium condition for pure, and multicomponent

systems)

4.3~ The Curvature Undercooling, & Tr

This is commonly known as the Gibbs-Thomson effect and arises from the fact
that there is a surface energy associated with a solid-liquid interface.
Solid - liquid surface energy, ¢ sL? related to the curvature under-
cooling, A Tr’ can be deduced by combining the condition of mechanical equi-
librium of a equilibrated curved interface and the condition of chemical
equilibrium. In the following sections, ATF, o, are going to be obtained
for pure materials and two-component systems. The effect of crystallographic
orientation and nonspherical curvature effect on AT  are also going to be
discussed. Finally a general curvature undercocling equation which allows

o] to be calculated for binary alloys is going to be obtained relating to

sL *
the radii of the curvatures r_, s and the weighted entropy of fusion AS .

1

5- DETERMINATION OF SOLID-LIQUID SURFACE ENERGY, ¢

when the solid-liquid interface is curved, there is an additional energy term,
-] sL which cannot be neglected. An eguation, relating to curvature under-
cooling can be deduced for this additional energy term, L by combining the
condition of mechanical equillbrium of a curved interface and the condition
of chemical equilibrium.

To understand chemical equilibrium and to derive the equation for o it is
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( ag )= 3;1 y= Y (17)
a a

For a pure material the molar free energy change (i.e. driving force)
between the phases can be expressed using equaticns (16) and (17) as follows
{for an incompressible solid):

g, -9, = | v (182)

1]

Ag

A PY Ag = ———— ¥ (18b)

49
From equation (9)or after the geometry of fig.4

6g = AT A5 [ ag=g,,. -9 _ = - 47T [(ggf) -(—2—%—)g= a7 85} (18¢)

5

Then the curvature undercooling related to the solid-liquid surface energy
for pure materials can be expressed from equation (18b) and {18c) as
follows;

AT =_._SLV (19)

5.2- Solid-liquid Surface Energy For Binary Alloys

For an alloy the choice of a térm to use for the thermodynamic driving force
AG, is not so obvious because the Gibbs free energy is not simple as for
pure materials, it is a function of the composition for both the solid and
liquid phases (fig.5). The important condition for the equilibrium of an
alloy is that the chemical potential must everywhere have the same value as
well as the fact T, = T_ at the solid-liquid interface.

In an A-B alloy the molar free energy can be written as
g=1, M,y ¥ ngkg £

where n, and n, are the number of atoms and 11Aand W are the chemical
potentials for components A and B respectively.

The effect of the curved surface for a binary alloy may be illustrated on
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a free energy composition diagram as shown in fig.5b. This diagram is a plot
of the average free energy per atom @Sm i §Lm and ésr against composi-
tion. As can be seen from fig.5 the chemical potential of a phase is given
by the intercept on the A and B axes of a tangential line to the free
energy curve for the composition concerned. Thus for two phases to be in
equilibrium, they must have a common tangential line. That is for a planar
interface ”fm" uimand uim = Em for compositicns CSw and CLm . As can
be seen from fig.5b the g~ curve is shifted up at constant composition to
allow for the curved surface to be in metastable equilibrium with the sur-
roundings. Metastable equilibrium occurs when the new plot has a common
tangential line with the liquid line. Thus ensuring that w%.- w}. and

w® _ B for the compositions C,, and C

sr Lr r Lr °

The corresponding molar free energy change (i.e. driving force) due to the
curvature effect for a spherical incompressible solid of constant composition
can be expressed as follows:

From equation (20)

B

aG _ dp au
it = n + n, { — {21a)
( aP ) A ( ab ) B( aP )

I'nA’nB T,nA.nB T'“A’“B

A A A

whgpe (—335} =V, ( aus) = V_  the partial atomic volumes of the

ap T,n_,n ap T,n_,n

nyng Nyt

components A and B respectively.

The free energy change can be written from equation (21a) as
Ps PS
Ag:nﬁj v, dP + nBJ' v, dP that is Ag:(nAV: m ) ap (21b)
PL P

Thus from equation {i6) (for an incompressible spherical solid)

ZOL A B
bg= —2E where V_ = n Vo +nV (21c)

As can be seen from the geometry of fig.5b a relation between 4g and 4C_
and from fig.6 a relation between AC_ and AT. can be obtained. Therefore,
4T may be expressed as a function of composition of both phases, liquidus
slope, ms equilibrium temperature, T, principal radius, r, and solid-liquid

surface energy, o .
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From the geometry of fig.5b s =C _ -Cgq

aC,_ is usually of small magnitude and so to a good approximation [71(from
similar triangles, AMNQ similar to ARSQ)

g - g-gu Ag {:sw-CLm

TR
5r S AG - 1 = CL:: (223)

In terms of the activation coefficients (at constant temperature and pres-
sure) A G is given as [7]

_ ViV
AG = Au = kTLn (——— ) (22b)

TLGDCLCD

Assuming that the activation coefficients v
range of composition considered. Therefore

. and v _are constant for the

C AC aC AC
In (-7 = (14 —S)2—" that is AG= kT ——= (22.¢)
Clo Lo Lo Cla
Equations (21.c), (22.a) and (22.c) thus give
20 (1 -¢ )C
QCL = sl Vs Lo " Leo (23)
rkT (CSw- CLw)

For small changes it is useful to note that aC_ is related to AT. by the
liquidus slope, m, (fig.6). That is maC_= AT_ . So that the curvature
undercooling can be related to composition of the phases, liquidus slope,
equilibrium temperature, principal radius and solid-liquid surface energy

by

2a my
oT = sL s (1 -Cly ) CL@ (24)
rkT ( ConCle )
. _ 2o
The atomic molar free energy change d.. - Qi =89= rsr Vo is valid even

when the composition and the temperature simultaneously change with the

principal curvature. This molar free energy change can be expressed as [14]
Tr

- _ 2o L * (CSw-CLw)
G, -G, bgm—kv, = [ astdT T ag = (25)
T (1-C_ )G,

5 B .
where 45 = [(1-C5.) (S: - S: ) + Co (5S¢ - S )] is the weighted entropy
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change V_ = {1 - Ceo )V: + Cs=y§ is the atomic volume of the solid. k is
Boltzmann's constant, T_, T. are the equilibrium and the curved interface
temperatures respectively. AC_ 1s the composition difference in the liquid
phase at the interface because of the curvature effect (fig.6). The change
in the liquid composition with radius r at constant temperature from

equation (25) is thus

BCL = sL Vs : Lee Lo {26}
rkT (C.-C, )

which is exactly the same as equation (23).

50 ‘Lo

*
Assuming that a S is reasonably constant over the temperature range considered,
thus the change in the temperature at constant composition (i.e. A C.=0)
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[ from equation (25)1 1is given by

2o ] 20 i
AT = —=2¢ V, = —%
T oras ’ raS; ()

*
*
where 85, = { iﬁ } entropy of fusion per unit volume which is of identical
s

form to that obtained for the pure materials (equation 19). The curvature
undercooling equations {related to solid-liquid surface energy osL) can
also be obtained by homogeneous nucleation theory [8] . Either equation(24)
or equation (27) may be used to calculate the solid-liquid surface energy,

o, , for binary alloys.

So far the curvature undercooling equations (so thus °5L) have been obtained
and discussed for the spherical solid-liquid surface and isotropic o for
pure materials and binary alloys. It was thought that it would be useful to
discuss

Non-spherical surface effect on &aT_, {( @) and
The crystallographic orientation effect on o  , (8T, )

6- THE GIBBS-THOMSON EQUATION FOR NON-SPHERICAL SURFACES [9]

Se far in the discussion spherical surfaces have been considered. Now the
treatments are going to be extended to non-spherical surfaces. As mentioned
in introduction the surface energy is the work done in creating unit area of
new surface and is thus numerically equal to the surface tension ih(force
per unit length).

Considering unit length of the segment & @ of a cylindrical surface shown
in fig.7a. There is an inward force, Fl, due to the surface tension of
ZosLSJn(—§J and this must be equal to the outward force, F, iraPeB, due

to the pressure difference across the surface so that asé8 =10

o 68 =4Prs0 or AP:—"—"I‘,L (28)

Now considering curvature in two directions (fig.7b) where ry and r, are the principal
radii of curvature. The two pressure differences will be added so that

AP =0 | P 1y (29)
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Fig.7 Diagrams used in calculation of the Gibbs~Thomson
equation for non-spherical surfaces

- df
T
tr tik

fl

Fig.8 Diagrams used Tn calculation of the crystallographic

orientation effect on UsL

Thus the increase in the chemical potential (equation 18b)

= ; . LSNP
MM, = VAP i.e. AP-osL(—r1- + rz)vs (30)

That is (—%— + —%—) replaces _%_ in equations (19, 23, 2527)obtained for
2
the curvature undercooling when the solid-liquid surface is non-spherical.

7~ CRYSTALLOGRAPHIC ORIENTATION EFFECT ON SURFACE ENERGY o, [10,11]

In the previous discussicns it has been assumed that the surface energy

5)

{energy per unit area) or surface tension (force per unit length) was identi-

cal to the surface stress and that the surface stress did not vary with
orientation f12,13]. These quantities are numerically equal when atomic
mobilities are sufficiently high to preserve the microscopic configuration
of the surface following the deformation. For a solid phase due toc the long
range correlatiorn in atomic positions and low atomic mobilities, it may not
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be possible in any reasonable experimental time to keep constant the local
configuration around any particular atom in the surface region where the
deformation of the surface area is performed. Hence in this case surface
tension will be dependant on the crystallographic orientation. Still even
if o Ji is a function of the crystallographic corientation, a general cur-

vature undercooling equation relating to o = can be obtained.

When o is a function of orientation a couple will be needed to prevent
a flat surface rotating to a lower energy position, fig.8a. The work done
against the couple is

W, = 2fth &8 (31}

where f is the force per unit length. (For descriptien of h, 2, 6 see fig.8)

For equilibrium wl must be equal to the change in free energy of the surface

doe 50 (32)
From equations {31) and (32)

d G (33)

d 8

Clearly, although there is a couple there is no net vertical force on the flat
surfaces of fig.8a. For a curved surface however the inward force,, fg on one
side is not equalto the outward force on the other g (f+ %g— 5 8) (see fig.8b).
So that there is a net inward force

2df d%s
Af = 60 = 7 5
de de

f =

Lso (34)

This inward force must be added to that arising from the surface tension.
So equation (27) becomes

zd‘é 2
Lsg  or  AP= —— (o, + L (35}

d o r d 02

APe r69=05@59+

Considering the curvature in two directions (fig.7b) gives

2 &
1 r 18 1 st :
AP =—— (0 +—3F) 41— (0 +—3) (36)
i st do, r, sL. 46,

so that from equations (28) and (29)
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2 2
1 dcsL 1 dusl.
T Y =Ag=VS[—(°SL+—-—2—)+—‘-'-{USL+“'—?)] (37)
sr S T'1 d 91 Y’2 d 92
If this “sr— £ < Vvalue is used in eguation (24}, AT is obtained (for
constant temperature) as
1 dzosL 1 dzC’:;L Vs ( CL\%!'.\]CLG° (38)
L\.Tr_ =— ( o = y o+ —{ a .t s )] —
B d 6 ¥ d g kT (C.-C, )

2 2

_ 1 USL 1 sL 3
ATI_ = [— (o Lt = )+ (GSL-+ )] — {39)
oo ° d g r, d g,

As can be seen easily when asLis not & function of the crystallographic
orientation i.e. 1isotropic, equation (38) and equation (39) become (for
the non-spherical surface)

o, my (1-C ic
AT'_ - st s L Lo (_1__+L) (40)
kT (Cm' Cw ) ¥ Ty
o, v
aT_ = 32ba 1 . 1, (41)
AS r r

When r = r, i.e: solid-liquid surface is spherical, equations (40) and (41)
becume equations (24) and (27) respectively.

8- CONCLUSION

Equation (41) is the form of the Gibbs-Thomson relation which is most useful

for the application of the solid-liquid interface in solidification and

melting as it expresses the effective change in melting point at a curved
interface, and it is the most powerful method at present available for measuring
solid-1iquid“Surface nergy experimentally, for the equilibrated solid-liquid
interface. For a binary alloy system when the solid-liquid interface is at
equilibrium, the solid and the liquid phase will be uniform, so thus compo-
sition difference in the phases will be negligible or zero.

The Gibbs-Thomson relation (the equation (41))has been successfully used to
measure solid-liguid surface energies for transparent organic materials by



18

M. GUNDUZ / CALCULATION OF SOLID LIQUID SURFACE ENERGY

Jones and Chadwick [151, Schaefer et al [161 and Hardy [17]1 , and for
binary metalic alloys by Gindiiz and Hunt [18] . In conclusion the equation
(41) can be used to calculate o, for pure materials and/or alloy systems,
provided that the equilibrated solid-liquid interface can be obtained.
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