Erciyes Universites: Fen Bilimieri Dergisi 2. 123-128. (1986)

CONVERGENCE OF CERTAIN COSINE SUMS IN THE METRIC SPACE L1

Hüseyin BOR

ĭ∵Ü, Fen-Edebiyat Fakültesi, KAYSERİ

SUMMARY

n this study a new and short proof of the theorem of Ahmad and Zaini [1] as been obtained, by considering the condition $S^2(r)$ instead of S(r).

1 METRÍK UZAYINDA BAZI KOSUNÜS TOPLAMLARININ YAKINSAKLIĞI

ZET

u çalışmada S(r) şartı yerine $S^2(r)$ şartı alınarak Ahmad ve Zaini [1] nin eoreminin yeni ve kısa bir ispatı elde edilmiştir.

- INTRODUCTION

sequence (a_n) is said to be convex if Δ^2 $a_n > 0$, and it is said to be uasi-convex if

$$\sum_{n=1}^{\infty} (n+1) |\Delta^2 a_n| < \infty$$
 (1.1)

sequence (a_n) of positive numbers is said to be quasi-monotone if $\Delta a_n \geqslant -\gamma - \frac{a_n}{n}$ or some positive γ . It is obvious that every null monotonic decreasing sequence is quasi-monotone. A sequence (a_n) is said to be r-quasi-monotone if $1 \rightarrow 0$, $a_n > 0$ ultimately and $\Delta a_n \geqslant -r_n$, where (r_n) is a sequence of positive mbers (see [2]). Clearly a null quasi-monotone sequence is r-quasi-monotone with $r_n = \gamma - \frac{a_n}{n}$.

we concept of quasi-convex sequence was generalized by Sidon [5] and \exists lyakovskii [7]. A sequence (a_n) is said to be belong to class S, or $a_n \in S$, $a_n \to 0$, as $n \to \infty$, and there exits a sequence of numbers (A_R) such that

(a)
$$A_k \downarrow 0$$

(b)
$$\sum_{k=1}^{\infty} A_k < \infty$$
, and (1.2)

(c)
$$|\Delta a_k| \leqslant A_k$$
, for all k.

This class S of sequences has been further generalized to the class S and S(r) by Singh and Sharma [6] and, Zaini and Hasan [8], respectively:

 $(a_n) \in S^1$ if (1.2) holds with the condition (a) replaced by:

 $(a_n) \in S(r)$ if (1.2) holds with the condition (a) replaced by:

(a") (A
$$_k$$
) is r-quasi - monotone and $\sum k r_k < \infty$.

For the class S the following equivalent definition was given by Garret, Rees and Stanojevic [4].

DEFINITION A. A null - sequence (a_k) belongs to class S^2 if there exits a null - sequence (A_k) of non - negative numbers such that

$$\sum_{k=1}^{\infty} k |\Delta A_k| < \infty \text{, and}$$

$$|\Delta a_k| \le A_k, \text{ for all } k$$
(1.3)

Now, we shall give the following definition.

DEFINITION: A sequence (a_k) belongs to class $S^2(r)$, if $a_k \to 0$, as $k \to \infty$, and there exits a sequence of numbers (A_k) such that it is r-quasi-monoton and $\sum k r_k < \infty$, and (1.3) holds.

2. Let
$$f(x) = \frac{1}{2} a_0 + \sum_{n=1}^{\infty} a_n \cos nx$$

$$f_n(x) = \frac{1}{2} \sum_{k=0}^{n} \Delta a_k + \sum_{k=1}^{n} \sum_{j=k}^{n} \Delta a_j \cos kx.$$

The following theorems are known:

THEOREM A ([6]). If an \in S', then $f_n(x)$ converges to f(x) in L-metric

THEOREM B ([1]). If an \in S (r), then $f_n(x)$ converges to f(x) in L-metric.

In this paper we shall prove the Theorem B by replacing the class of S(r) by the class $S^2(r)$.

3. Now, we shall prove the following:

THEOREM. If $a_n \in S^2(r)$, then $f_n(x)$ converges to f(x) in L-metric.

4. We need the following lemmas for the proof of our theorem.

LEMMA 1 ([3]). If the sequence of numbers (t $_{i}$) satisfies the condition $|{\rm t_{i}}| \leqslant$ 1, then

$$\int_{0}^{\pi} \left| \sum_{i=0}^{n} t_{i} D_{i}(x) \right| dx < C(n+1)$$
 (4.1)

where $D_i(x) = \frac{1}{2} + \cos x + \cos 2x + \cos 3x + \dots + \cos ix$ and C is a positive absolute constant.

LEMMA 2. If (a_n) is r-quasi-monotone with $\sum nr_n < \infty$, then the convergence of $\sum a_n$ implies that $na_n \to 0$ as $n \to \infty$. This lemma is a special case of Theorem 1 of Boas [2].

5. PROOF OF THE THEOREM. By summation by parts, we have

$$f(x) = \lim_{n \to \infty} \left\{ \frac{1}{2} a_0 + \sum_{k=1}^{n} a_k \cos kx \right\}$$

$$= \lim_{n \to \infty} \left\{ \frac{1}{2} a_0 + \sum_{k=1}^{n-1} D_k(x) \Delta a_k + a_n D_n(x) - \frac{1}{2} a_0 \right\}$$

$$= \lim_{n \to \infty} \left\{ \sum_{k=1}^{n-1} D_k(x) \Delta a_k + a_n D_n(x) \right\} = \sum_{k=0}^{\infty} D_k(x) \Delta a_k$$

by the fact that $\lim_{n\to\infty} a_n D_n(x) = 0$ if $x \neq 0$, where

$$D_n(x) = \frac{1}{2} + \cos x + \cos 2x + \dots + \cos nx.$$

Similarly by summation by parts, we have

$$f_n(x) = \frac{1}{2} \sum_{k=0}^{n} \Delta a_k + \sum_{k=1}^{n} \left(\sum_{j=k}^{n} \Delta a_j \right) \cos kx = \sum_{k=0}^{n} D_k(x) \Delta a_k.$$

Again using summation by parts, we have

$$\sum_{k=n+1}^{N} D_{k}(x) \Delta a_{k} = \sum_{k=n+1}^{N} A_{k}D_{k}(x) \frac{\Delta^{a}_{k}}{A_{k}} = \sum_{k=n+1}^{N-1} T_{k}(x) \Delta a_{k} + T_{N}(x)A_{N} - T_{n}(x) A_{n+1}$$

$$T_n(x) = \sum_{k=0}^n D_k(x) \frac{\Delta a_k}{A_k}$$

Taking $t_k = \frac{\Delta a_k}{A_k}$, we observe by virture of the Lemma 1 that

$$\int_{0}^{\pi} \left| \sum_{k=n+1}^{N} D_{k}(x) \Delta a_{k} \right| dx \leq \int_{0}^{\pi} \left| \sum_{k=n+1}^{N-1} T_{k}(x) \Delta a_{k}(x) \right| dx + A_{N} \int_{0}^{\pi} T_{N}(x) dx + A_{n+1} \int_{0}^{\pi} T_{n}(x) dx$$

$$\leq \sum_{k=n+1}^{N-1} \left| \Delta^{A_{k}} \right| \int_{0}^{\pi} \left| T_{k}(x) \right| dx + A_{N} \int_{0}^{\pi} \left| T_{N}(x) \right| dx + A_{n+1} \int_{0}^{\pi} \left| T_{n}(x) \right| dx$$

$$< C \sum_{k=n+1}^{N-1} (k+1) |\Delta A_k| + C(N+1) A_N + C (n+1) A_{n+1}$$

Making $N \rightarrow \infty$, we have

$$\int_{0}^{\pi} \left| \sum_{k=n+1}^{\infty} D_{k}(x) \Delta a_{k} \right| dx \leq C \sum_{k=n+1}^{\infty} (k+1) \left| \Delta A_{k} \right| + C (n+1)^{-1} A_{n+1}$$

Since $(N+1)A_N = O(1)$ as $n \rightarrow \infty$, by Lemma 2.

Hence,

$$\int_{0}^{\pi} |f(x) - f_{n}(x)| dx = \int_{0}^{\pi} |\sum_{k=n+1}^{\infty} D_{k}(x) \Delta a_{k}| dx \leq C \sum_{k=n+1}^{\infty} (k+1) |\Delta A_{k}|$$

$$+ C(n+1) A_{n+1}$$

and therefore, by virtue of the hypothesis and Lemma 2, we obtain.

$$\lim_{n\to\infty}\int_0^{\pi}|f(x)-f_n(x)|\ dx=o(1).$$

This completes the proof of the theorem.

REFERENCES

- 1- Ahmad, Z.U.and S.Z.Ali Zaini, Convergence of certain cosine sums in the metric space L¹. Tamkang J.Math., 12 (1981), 1-5
- 2- Boas, R.P., Quasi-positive sequences and trigonometric series. Proc. Lond. Math. Soc., 14 A (1965), 38 46

- 3- Fomin, G.A., On linear methods for summing Fourier Series, Mat. Sb., 66 (107), (1964), 144 152.
- 4- Garret, J.W., C.S Rees and C.V. Stanojevic, L¹ convergence of Fourier Series with coefficients of bounded variation. Proc.Amer.Math.Soc., 80 (1980), 423 430
- 5- Sidon, S. Hinreichende Bedingungen für den Fourier-Charakter einer trigonometrischen Reihe, J.Lond.Math. Soc., 14 (1939), 158 160
- 6- Singh, N. and K.M. Sharma, Convergence of certain cosine sums in a metric space L, Proc. Amer. Math. Soc., 72 (1978), 117 120
- 7- Telyakovskii, S.A., Concerning a sufficient condition of Sidon for the integrability of trigonometric series, Math. Notes, 14(1973), 742-748
- 8- Zaini, S.Z.A. and Sabir Hasan, Integrability of Rees-Stanojevic's sums. Math.Seminar Notes, 10(1982), 637 641