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ABSTRACT

In this study we show that homogenization and
dehamogenization are true for the (pre)-sheaves of rings and
homogenization functor commutes with sheafification whereas the same
is true for dehomogenization when the topological space is (quasi)
compact. Moreover we show that the campactness hypothesis cannot be

dropped.

OZET

Bu ¢aligmada, halkalarin demetleri (6ndemetleri) i¢in homogen
izeysin ve dehomogenizeysinin dogru oldugu ve topolojik uzay (quasi)
kompakt oldugunda demetlestirme, homogenizeysin funktoru ile
dehomogenizeysin funktorunu komutatif yaptigi gdsterilmistir. Ayrica

gosterilmigtir ki kompakhk hipotezden kaldirilamaz.

1, INTRODUCTION
In (commutative) algebraic geometry, homogenization and
dehomogenization techniques are used to reduce questions about

projective varieties to questions about associated affine varieties (at least
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if these questions can be answered by looking at the local rings, cfr.e.g.
[2].

After the introduction of noncommutative affine and projective
shemes (Cfr [1, 3, 4]), the question arose whether a similar technique
could be developped in this noncommutative setting. The aim of this
study is to prove that this is indeed possible. In the those sections we
treat the most general case, i.e. homogenization and dehomogenization
of (pre)-sheaves of rings. It is proved that the homogenization functor
commutes with sheafification whereas the same is true for
dehomogenization when the topological spaces is (quasi) compact. An
example is given to show that this compactness hypothesis cannot be
dropped.

Definitions 1.

(a) : A ring R is said to be graded (of type Z) if there is a family

of additive subgroup {Rn:n € Z} of R such that R=@R, and
Vi, je Z:RiRJ—CRHj.

(b) An M € R-med is said to be a graded left R-module if there is
a family {Mn:ne Z} of additive subgroup of M with the properties:
M=®M, and R;M;c M, for all i, j€ Z. The elements of h(R)=UR,
and h(M)={M,, are called the homogeneous element of R and M resp.

(c) If m#0, me M; ; then m is called an homogeneous element
of degree i and we write deg m=i. Any non-zero m € M may be written,
in a unique way, as a finite sum my+--+m  with
deg m; <deg m, <---<deg my; the elements m,...,m; (all non-zero)

are called the homogeneous components of m.
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R-gr is the Grothendieck-Category with objects the graded left R-
modules and morphisms the gradation preserving R-module homomorp-
hisms.

Let X be a fixed topological space. All sheaves and presheaves in
this paper will be defined over Open (X), the category obtained from X
in the usual way. Let R be a Gr-Ring, i.e. a sheaf of graded rings over
Open (X) such that for any U,V € Open (X) with VU, the restriction
morphisms pg :R(U) — R(V) preserve the gradation.

We will consider the following Grothendieck-Categories:

m{R) (resp.c (R)) will be category of presheaves (resp. sheaves)
of modules over the sheaf R.

grn(R) (resp.go(R)) will be the category of presheaves (resp.
sheaves) of graded modules over the sheaf R, i.e., M € gn(R) if and
only if M en(R) where (_):grm(R) = w(R) is the functor defined by
forgetting the gradaiton and for all
U e Open(X);M(U) e R~gr; VU, VeOpen(X), Vc U:
My : M(U) — M(V) is gradation preserving.

2. HOMOGENIZATION AND DEHOMOGENIZATION

From [3] we recollect the following definitions: Let R be a
graded ring. The ring of polynomials R[T] may be made into a graded
ring by putting:

degT=1; R[T], ={. L rPige Ri}
i+j=n
In the same way, we construct the graded module of polynomials

M[T] starting from an MeR-gr. If we decompose xeM into

homogeneous elements; X=X_,++X,+:+X, (X; € M), then we
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may associate to it an homogeneous element x* in M[T] which is given
by :

x*=x_ T4t x T"+--+x,. We say that x+ is the
homogenized of x.

Conversely, if u is homogeneous element of M[T], say
u=u_, T™™P 4 tu TP+ 40, TP with u; € M;, then
u, =U_p++U,+---+u, is said to be the dehomogenned of u.

If Me R—gr and N is a (not, necessarely graded) R-submodule
of M, then by N* we mean the R[T] submodule of M[T] generated by the
n*,neN.

Of course N* is a graded submodule of M[T], it is called the
homogenized of N. Any n € N is of the form T'n}, n; € N and r >0

Conversely, to a graded R[T]-submodule L of M[T] we may
associate L, = {u* ue h(L)}, It is clear that L, is an R-submodule of M.
Remark 2.1. Now, Let R be a Gr-Ring. We will form the Ring of
polynomials R[T] as follows: if U e Open(X), we put R[T] (U)=R(U)
[T] with gradation as in above if U, V eOpen(X) with VU, the

restriction morphism (p*)g is given by.

EW(T™ PR gt T Pt TP, | = T PRY(K_ ) +

o THPRR () 4+ + TPy (x,).

Because pg preserves the gradation, the same is true for (p")‘d,
hence R[T] is a Gr-Ring (the verification that R[T] is a sheaf is proved

along the lines of lemma 2.1. below).
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If M egn(R), we can define the module of polynomials M[T] in a
similar way.

Now, let Nen(R) be a subpresheaf of Megn(R). For all
UeOpen(X), define N*(U)=N(U)'cM[T]. The restriction
morphisms (N")} for V.c U e Open(X) are given by.

(NI ek TPy e TP, ) = T PMY(x_ )+

et TP MY (x )+ + TPMY(x,).

If follows that N is a graded subpresheaf of M[T].
Lemma 2.2: In the situation of remark 2.1. if Neo(R), then

N € go(RIT]).

Proof :

(i): Let UeOpen(X) and {Ui:i € I} and open covering of U.
Suppose n € N(U) and (N")gi (n")=0 for all i €1, then;

0=(N )y, ()= (MG @") = M (@)’ =N )" and  from
(x"), =x, it follows that Ngi(n)=0 for all ie1. Because N is a sheaf

we obtain n=0, thus n" = 0.
(ii) : Let nj € h(M*(U;)) with compatibility conditions :

(N, (@) = (M) ()

Every 1 is of the form n; :Tki(n;) with n; € N(U,). For all i, j we have
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THON) i ()" = (N (T = (M) s, (T

=T Mg, ()

Dehomogenizing both sides yields: Nlljjiinuj(ni) = Mgijnuj(ﬂj) for
all 1, j e I. Using the second sheaf condition for N we find an n e N(U)
such that N{ji (n)=n; for all i.

From the equalities above, it follow that k;=k;=k for all i, j.
n'=Tn".
Remark 2.3 : Let N be graded subpresheaf of M[T] with M e gnR. For
every UeOpen(X) we put: No(U)=(N(U))x. For Vc U e Open(X)
the restriction morfizm (N.)y is given in the following way : if
xeMd(U), then there exists an yeh(M(U)) such that
vs = %, put:(NDY(x) = (MJ (¥)s. One easily checks that this definition
is independent of the choice of y.
Lemma 2.4: In the situation of remark 2.3: if X is a compact topological

space and N e go(R]T]), then N, € o(R).

Proof:

(i) : Let UeOpen(X) and let {Ui:i € I} be an open covering of
U. Suppose x € N, (U} such that (N*)gi(x) =0 for will iel. There
exists an y € h(N (U)) such that y, =x.

Now, (NF.(9)) =(N)J.(x)=0, thus NJ(y)=0 for all iel
and the fact that N is a sheaf, yields y=0, hence x=0. Compactness is not

necessary for this part of proof.
(it) : The compactness hypothesis allows us to restrict to a finite
covering {Ui;i= 1,,..,n}. Take x; in N.(U;) such that
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Uj U P
(N)uinu; ()= (N.)Ufnuj(xj) for alli,j=1,...,n
There exist y; € h(U;) such that (y;.=x;. Put deg (y;)=d; and
m=maxd;; i=1,...,n. Replace y; by ¥; =T™ Yy, then (y}), = x; and :

(NG, (5D = (N ing, () =N, () = (N 7)),

, U;
Because deg (Ngilmuj(Yi')) =deg(N UjjﬂUi(y’j)) it follows that
; U;
Ngfnuj(}’i')zNUijnt(}"j) and therefore there exists an y € h(N(U))
such that Nl[fj (y)=y; for all i. y, is the required element in N,(U).

Corollary : The compactness condition cannot be dropped :

Example : Take N with the discrete topology and R the constant
sheaf of ring Z over it. Now, take N to be the graded subsheaf of Z[T] as
follows: if U is a finite open set of N, the NU)=T"Z[T] with n the
maximal element in U. If U is infinite, N(U) =0.

If U=&, N(U)=Z[T]. Restriction morphisms are inclusions or
the zero map. It is easily checked that N is a sheaf. N, is the presheaf
with N, (U)=Z if U is finite, N,(U)=0 if U is infinite and inclusion or
zero map for the restriction morphisms. (ii) fails, for, take U=N,
U, =i, i+1} and x;=1€ N(U;) There exist no element x in N,(N)
such that Ngi(x) =1.



A.A. Ogal and C. Yildiz 18

3. COMPATIBILITY WITH THE SHEAFIFICATION FUNCTOR
We recall the construction of the reflector a for the inclusion

o(R) - n(R), usually called the sheafification functor, cfr.e.g. [5].

First, define a functor L:m(R}-—>m(R) as follows. Let
U e Open(X) we give Cov,(U), i.e. the set of all open coverings of U,
the structure of a category: if U= {Ui;i (= I}, V= {VJ ;je I} are in
Cov,(U), a morphism U->V is given by a map €1 — 1T such that
Uic Vg forall iel. Let Men() and define [M,U] U eOpen(X),

by its action on a covering U= {Ui iie I} of U:

p

[M,U] (U)=Ker (iEHIM(Ui); (H M (U;NUy)

Jk) elxI

, Uj
Where the (j, k) - component of p is MUjﬂUk(mj) and the

U :
(j.k)component of q is Muj-(nuk(mk); with mi:HIM(Uj)—)M(Ui) be
Je

the restriction morphism. Note that [M,U]:Cov, (U) — R(U)-mod is a

contravariant functor. Hence we can define an object LM of =(R) by :
LM:Open(X)°P —»>set U—- lim [M, U}
UeCovy (L)

Note that LM(U)=  lim [lim (V)
-
UeCovg (U) V:U

The assigment M — LM defines a left exact endofunctor of m(R)
Satisfying : 1. If M €o(R), i.e. the class of separated objects in m(R)
(satisfying (i)), then the canonical morphism M —>LM is a
monomorphism and LM e o(R).
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2.If Men(R), the LM e o(R)

3. If M e o(R) then LM =M an Conversely.
Finally, define i.a=LoL where i:6(R) — n(R) is the cannonical

inclusion, then a is a left adjoint of i and is called sheafification functor.

Let us denote a’ for sheafification in 7(R{T]), then we have :
Lemma 3.1. If M € gn(R([T]), then a'(M) € go(R[T]).
Proof: For all UeOpen(X): R(U)-gr is closed under direct and inverse

limits, hence we are done by the remaks preceding the Lemma.
Theorem 3.2. Let N € m(R) be a subpresheaf of an M € gn(R), then:
a(N )= a(N )", i.e. the following diagnom "Commutes" for suitable N.

2(R)— > gr(RT])
al e

oR)—5 go(RIT])

Proof: First step: for every x € X:S,(N")=(S,(N))" where S, () ’s the

stalk at x.
Let a € h(S(N™)), then we can find a neighborhood U of x and an

clement ¥ € h(M'(U)) representing a. Let Y =Y T ety TP
with ¥ € M(U);. We consider the morphism :

£:8,(N")——(S,(N))’
a——> M () TP 4t M) TP 4+ M (y) TP

f does not depend on the choice of U and y, for, if V is another
neighborhood of x and
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y=y TPy yOTq+p'+---+qup’ e h(N™(V)) representing  a.
Then, there is a neighborhood W U1V of x such that
(NIw () =(N")y(y"). Hence

M) TP et My ) T™P 4o MY (3, ) TP =
(NOTANR N = NV N ) = MY (5 T
MY (Y )TEP et MY (TP

Moreover, f is injective, for f(a)=0, then M,? (y;)=0 for all i,
hence we can find a neighborhood W U of x such that M\&J,(y]v):O for

all i. Because the definition of f does not depend on U and y, x=0
follows. Also, f is surjective. Indeed, if ¥ € h(S,(N)"), then y is of the
form y =TP((y')") with y'€ S,(N), letting y'=y_,,+---+y,, then for all
i, we can find a neighborhood U; of x and an x;€h(M(U)))
representing y;. Take U={U; and Consider :

b'= MG (y_q) ++ MG () +-+ MR (y,,), then;
b=TP(b")" € h(N"(U)) represents y.

Second step : in view of lemma 2.3., both (;a(N))" and i’(N‘) are in
go(R[T]). In order to establish to isomorphism it will be sufficient to

establish isomorphisms between the stalks. Now, for all x € X:

Sx(@(N™) =8, (N") = (S,(N))" = (S,(a(N)))" =S, (a(N)")
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Theorem 3.3: Let X be a compact topological space and N € gn(R[T])
a graded subpresheaf of M[T] with M € n(R), then: @MN).=aN.),

i.e. the following diagram "Commutes" for suitable as above :
gn(RIT)—2>n(R)
ad Ya

go(R[T)— 5 o(R)

Proof: First step: for every xe X: S, (N,)=(S.(N)),. Let
aeS,(N,), then there is a neighborhood U of x and an element
v € N.(U) representing a. Pick ze h(N(U)) such that z, =y, and

define

£:8,(N,) > (S (N)).
a—>(NY(2))

This definition is independent of the choices made. For, let V be
another neighborhood of x and y* (with corresponding z') in N.(V)
(resp. in h{(N(V))) representing a, then we can find an open
X € WUV such that

(NDw ) =N

Hence (N{,J,,(Z))* :(N\\{,(z’))* and thus there exists a natural
number k such that, Ny(z) = Ny (z ) T*.

Finally :

(NS @), = (N (NG (@), = (N Ny (Z) T, = (NY (2)),
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Now, f is injective; for if £(a)=0, then NY(2)=0 and z (hence y)
represents the zero morphism, thus a=0.

Also, f is surjective; for if y € (S,(N)). then there exists an
element ze€ h(S,(N)) with z,=y. Take an element veh(N(U))
representing z, then put a=(N,)Y(v,) and one easily checks that f(a)=y.

Second siep: in view of lemma 2.4. (2'(N)), and a(N,) are both

in o(R). Isomorphism will follow from the stalkwise isomorphisms. For

every x € X:

S (@(N),) =S, (N)), =S, (N), =8,(N.)=S5,(a(N.))
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