The Reflections On Hyperboloidal Model of Hyperbolic Plane H^2

Baki KARLIĞA

Department of Mathematics, Arts and Sciences Faculty, Gazi University 06500 Ankara, TURKEY.

ABSTRACT

The purpose of the present paper is to define two types of reflections on H^2 and to obtain some geometric results .

ÖZET

Bu dcalışmanın amacı,[13] de verilen H-doğru boyunca, yansıma tanımlamak ve bu yansımanın bazı geometrik zelliklerini elde etmektir.

1. Introduction. The high point of the prehistory of the model H^2 is Lambert's idea of an "imaginer sphere" in 1766. "Hyperbolic geometry" introduced by Klein in 1871. The parametrization of H^2 is used as Weiestrass coordinates by Killing [8], [9]. Meanwhile, in 1881, that parametrization is named "hyperbolic coordinates"

by Poincarè [11]. The comformal disc model of hyperbolic space and the quadratic geometries on arbitrary quadratic surfaces in 3-space are developed by Poincarè [12]. Some unpublished works of Poincarè in 1880 related to H^2 are discussed by Gans [3]. H^2 is studied by Minkowski [10], Sommer-

feld [14], Varicak [18] in special relativity without mentioning hyperboloidal model. In [6], hyperboloidal model is studied by Jansen. Recently, H^2 appeared in Reynold's paper [13]. Kinematics of H^2 is studied by Garnier [4], Frank [2], Tölke [17] and the other many authors.

Tits has proved [15],[16] every finitely generated Coxeter groups can be represented as a group of projective maps generated by reflections and acting discretely in some domain of projective space. An algebraic description of all representations of this form has been obtained by Vinberg [20], [21]. Among the non-Euclidean Coxeter groups hyperbolic ones has also been studied using projective sphere by Vinberg [22].

The purpose of the present paper is to define two types of reflections on H^2 and to obtain some geometric results . We can summarize some important properties as following:

- (i) The product of two reflections along H^1 is a translation along H^1 through twice the H-distance between their reflecting lines. One clearly see that this is an anologue of well-known proposition " The product of two Euclidean reflections is a rotation through twice the angle between their reflecting lines"
- (ii) The product of two reflections along H^1 is a translation through the difference areas of two hyperbolic sectors which are one vertex origin and the other vertices on H^1 .
- (iii)In H^2 ,the order of subgroups generated by two reflections along H^1 is infinite.
- (iv)Reflection along any H-line is determined uniquely by reflection along H^1
- 2. Minkowski 3-Space and Hyperboloidal Model In this section, we give some definitions and the lemma due to [13].

Let V be real vector spaces with three dimensional and q be the real valued function on it such that

$$q:V\to R$$

$$q(x) = q(\sum_{i=0}^{2} x_i e_i)$$

$$= -x_0^2 + x_1^2 + x_2^2$$

for some basis $\{e_0, e_1, e_2\}$ of V. Then, the Minkowski 3-space is denoted by $M^3 = (V, q)$.

The set $H^2=\{x\in M^3\mid q(x)=-1,x_0>0\}$ is called hyperboloidal model of hyperbolic plane. The elements of H^2 are called H-points when considered in H^2 . We consider them as either points or vectors when considered in M^3 . The H-lines are defined being all nonempty intersections of H^2 with two dimensional subspaces of M^3 . Each pair of distinct H-points A and B lie on a unique H-line, namely the intrsection of H^2 with the plane OAB of M^3 two distinct H-lines have one or zero H-points in common according to the line of intersection of the planes of M^3 in which they lie intersects H^2 or not. The complement of each H-line in H^2 consist of two H-half plane which are called its sides. From now on, we get $M^2=sp\{e_0,e_1\}$, $H^1=M^2\cap H^2$. Let A,B be two elements of H^1 such that $A=x_0e_0+x_1e_1$, $B=y_0e_0+y_1e_1$, $x_1< y_1$ and F be one to one smooth mapping of the intervale $x_1\leq t\leq y_1$, then the distance A and B is defined by

$$d_{H^1}(A,B) = \int_{x_1}^{y_1} \sqrt{q(F(t))} dt$$

$$= arcshv_1 - arcshx_1$$

The parametrization of H^1 by H-length is

$$h(s) = \cosh s \ e_0 + \sinh s \ e_1, -\infty < s < +\infty \tag{1}$$

The isometries of M^3 is expressed, in terms of matrices, $O_1(3)$. We denote G, G_1, G_0 the subgroups of $O_1(3)$ such that fix H^2, H^1 and e_0 respectively. Then we see that

$$g = L_s E_1^i E_2^j, 0 \le i, j \le 1, g \in G_1$$
 (2)

and

$$g = R_{\theta} E_2^j, 0 \le j \le 1, g \in G_0 \tag{3}$$

where

$$E_1 = \left(\begin{array}{ccc} 1 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & 1 \end{array}\right), E_2 = \left(\begin{array}{ccc} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & -1 \end{array}\right),$$

$$L_s = \begin{pmatrix} \cosh s & \sinh s & 0 \\ \sinh s & \cosh s & 0 \\ 0 & 0 & 1 \end{pmatrix}, R_\theta = \begin{pmatrix} 1 & 0 & 0 \\ 0 & \cos \theta & -\sin \theta \\ 0 & \sin \theta & \cos \theta \end{pmatrix}$$

By (2) and (3), we have $G_1 \cap G_0 = (E_1, E_2)$.

If the matrix representation of the parametrization (1) is $ilde{h}(r)$, then

$$R_{\theta}\tilde{h}(r) = \tilde{H}(r,\theta)$$

and

$$H(s,\theta) = \cosh s \ e_0 + \sinh s \cos \theta \ e_1 + \sinh s \sin \theta \ e_2, -\infty < s < +\infty \quad (4)$$

(4) is the parametrization of H^2 and

$$L_r \tilde{H}(s,0) = \tilde{H}(s+r,0). \tag{5}$$

The matrix L_{τ} is called the matrix of H-translation along H^1 [1],[13].Since the matrix L_{τ} plays a role of Euclidean rotation in the motions of M^2 ,it is also called Minkowskian rotation [19]. Since $R_{\theta}\tilde{H}(s,\phi)=\tilde{H}(s,\phi+\theta)$, R_{θ} is considered as a matrix of rotation about e_0 . The H-distance between A and B in H^2 is given by

$$d_H(A,B) = \operatorname{arcosh}(-p(A,B)) \tag{6}$$

where

$$p(x,y) = \frac{1}{2}[q(x+y) - q(x) - q(y)]$$

The H- angle $\langle BAC \text{ is } \overrightarrow{AB} \cup \overrightarrow{AC} \text{ where } \overrightarrow{AB} \neq \overrightarrow{AC}.\text{Its measure } m(\langle BAC)$ is defined as follows:Let V,W be the vectors in M^3 tangent to $\overline{AB}, \overline{AC}$ respectively at A such that q(V)=q(W)=1, then

$$m(\langle BAC) = \arccos(p(V, W)).$$
 (7)

LEMMA 2.1 Let $l_j \vec{AB} \neq \vec{AC}$ be H-line, $A_j \vec{B}_j$ a ray on $l_j, 1 \leq j \leq 2$ and S_j a side of l_j . Then there exists exactly one $T \in G$ such that $T(A_1) = A_2, T(l_1) = l_2, T(A_1 \vec{B}_1) = A_2 \vec{B}_2$ and $T(S_1) = S_2$.

Proof.It follows from Theorem 8 [13]■

3.Reflections along H^1 Now,we define a reflection along H^1 .Since it is analogue of the half turn in Euclidean Kinematics [1], It may be called half translation along H^1 in H^2 .

Let t, \dot{t}, \ddot{t} be lines which are tangent to H^1 at $h(s_0)$ in (1) ,passing through O and parallel to t ,passing through x and parallel to t,respectively.Let ℓ be the line passing through O , $h(s_0)$ and \mathcal{H} be the intersection point of ℓ, \ddot{t} .If $\tilde{S}_{h(s_0)}(x)$ is a point such that it has distance $\sqrt{q(h-x)}$ to x and on different side with x with respect to ℓ in \mathcal{H} which is a plane determined by ℓ, x , then

$$\tilde{S}_{h\dot{s}_{0}}(x) = x - 2p(x, \dot{h(s_{0})})\dot{h(s_{0})}$$

Οľ

$$S_{h(s_0)} = \begin{pmatrix} \cosh 2s_0 & -\sinh 2s_0 & 0\\ \sinh 2s_0 & -\cosh 2s_0 & 0\\ 0 & 0 & 1 \end{pmatrix}$$
(8)

The above matrix $S_{h(s_0)}$ is called *reflection matrix along* H^1 . From now on , we mean dot derivative of .

THEOREM 3.1 Let $S_{h(s)}, S_{h(t)}$ be two reflection along H^1 and $\lambda \in R, g \in O_1(3)$. Then

$$(\mathbf{i})S_{h(s)}^{2} = I_3,$$

$$(\mathbf{ii}) S_{\dot{h(s)}} S_{\dot{h(t)}} S_{\dot{h(s)}} = S_{S_{\dot{h(s)}}} \dot{h(t)},$$

$$(\mathbf{iii})detS_{h(s)} = -1,$$

$$(\mathbf{iv})S_{\lambda\dot{h(s)}} = S_{\dot{h(s)}},$$

$$(\mathbf{v})S_{h(s)} \in G_1,$$

$$(\mathbf{vi})gS_{h(s)}g^{-}1 = S_{gh(s)},$$

$$(\mathbf{vii})S_{h(s)}(h(t)) = h(2s - t),$$

$$(\mathbf{viii})S_{h(s)}(\dot{h(t)}) = -\dot{h(2s-t)}$$

Proof. (i),(ii),(iii),(iv),(vi) are the same as Semi-Euclidean reflections and may be seen in [7].(v) is evident by (3) and $S_{h(s)} = L_{2s}E_1$.(vii),(viii) are obtained by matrix calculation

Theorem 3.2 The product of two reflections along H^1 is a translation along H^1 through twice the H-distance between their reflecting lines.

Proof. It is obvious by definition of reflection along H^1 and translation along H^1

Then we have the following result.

COROLLARY.3.3 Let A_1 , A_2 be areas of hyperbolic sectors in M^3 which are one vertex origin and the other vertices on H^1 , then the product of two reflections along H^1 is a translation through the $A_2 - A_1$.

Theorem 3.4 Let $S_{h(s)}, S_{h(t)}$ be two reflection along H^1 .Then

$$(\mathbf{i})S_{h(s)}L_{2t} = S_{\dot{\alpha}(s-t)}$$

$$(\mathbf{ii})L_{2t}S_{h(s)} = S_{h(s+t)}$$

$$(iii)S_{h(s)}L_tS_{h(s)}=L_{-t}$$

$$(\mathbf{iv})(S_{h(s)}S_{h(t)})^p = S_{h(ps)}S_{h(pt)}, p \in R$$

Proof.It follows from Theorem 3.2 and $L_tL_s=L_{s+t}$

Now we can say that the product of a translation and a reflection along H^1 is another reflection along H^1 .

Corollary 3.5 Let $S_{h(s)}, S_{h(t)}$ be two reflection along H^1 . Then

$$(S_{h(s)}S_{h(t)})^m = L_{2m(s-t)}, m \in R$$

Proof.It can be seen from Theorem 3.2 and the definition of translation along H^1 .

Theorem 3.6 If we take $l_1 = H^1$ in Lemma 2.1,then reflection along any H-line is determined uniquely by reflection along H^1 .

Proof. By Lemma 2.1, there is a unique $g\in G$ such that $g(H^1)=H$. By (iv) of Theorem 3.1, $gS_{h(s)}g^{-1}=S_{gh(s)}$. The proof is complete \blacksquare

4.Reflections Along the s- Curves In this section we give another reflections in H^2 . This kind of reflections in H^2 are obtained by the curve s=constant in (4). Therefore, we call such reflections as reflections along the s- curves.

If we take $\alpha(\theta) = \cosh s \ e_0 + \sinh s \cos \theta \ e_1 + \sinh s \sin \theta \ e_2$ for s=constant, then, we have

$$\overline{S}_{\dot{\alpha}}(\theta) = \begin{pmatrix} 1 & 0 & 0 \\ 0 & \cos 2\theta & \sin 2\theta \\ 0 & \sin 2\theta & -\cos 2\theta \end{pmatrix}$$
(9)

We call the reflection matrix along the s- curves to (9).

THEOREM 4.1 Let $\overline{S}_{\dot{\alpha}(\theta_1)}, \overline{S}_{\dot{\alpha}(\theta_2)}$ be two reflections along the s-curves . Then

$$(\mathbf{i})\overline{S}_{\dot{\alpha}(\theta)}^2 = I_3,$$

$$(\mathbf{i}\mathbf{i})\overline{S}_{\dot{\alpha}(\theta_1)}\overline{S}_{\dot{\alpha}(\theta_2)}\overline{S}_{\dot{\alpha}(\theta_1)}=\overline{S}_{\overline{S}_{\dot{\alpha}(\theta_1)}}(\dot{\alpha}(\theta_2)),$$

(iii)
$$det \overline{S}_{\dot{\alpha}(\theta)} = -1$$
,

$$(\mathbf{iv})\overline{S}_{\lambda\dot{\alpha}(\theta)} = \overline{S}_{\dot{\alpha}(\theta)}, \lambda \in R,$$

$$(\mathbf{v})\overline{S}_{\dot{\alpha}(\theta)} \in G_0$$

$$(\mathbf{vi})g\overline{S}_{\dot{\alpha}(\theta)}g^{-}1 = \overline{S}_{g\dot{\alpha}(\theta)}, g \in O_1(3),$$

$$(\mathbf{vii})\overline{S}_{\dot{\alpha}(\theta_1)}\dot{\alpha}(\theta_2) = -\dot{\alpha}(2\theta_1 - \theta_2)$$

$$(\mathbf{viii})\overline{S}_{\dot{\alpha}(\theta_1)}(\alpha(\theta_2)) = \alpha(2\theta_1 - \theta_2)$$

Proof. (i),(ii),(iii),(iv),(vi) is same with Euclidean reflections which is seen in [5].(v) is evident by (9) and $\overline{S}_{\dot{\alpha}(\theta)} = R_{2\theta} E_2$.the others are followed by matrix calculations

Theorem 4.2Let $\overline{S}_{\dot{\alpha}(\theta_1)},\overline{S}_{\dot{\alpha}(\theta_2)}$ be two reflections along the s- curves . Then

$$\overline{S}_{\dot{\alpha}(\theta_1)}\overline{S}_{\dot{\alpha}(\theta_2)} = R_{2(\theta_1 - \theta_2)}$$

Proof.It follows from (9)

THEOREM 4.3

$$(S_{h(s)}\overline{S}_{\dot{\alpha}(\theta)})^m=I_3$$
 if and only if $s=0$ and $\theta=\frac{m-2}{2m}\pi$.

Proof. If $(S_{h(s)}\overline{S}_{\dot{\alpha}(\theta)})^m=I_3$, using matrix calculations , we see that s must be zero. Since

$$S_{h(0)}\overline{S}_{\dot{\alpha}(\theta)} = R_{\pi-2\theta}$$

we find

$$\left(S_{h(0)}\overline{S}_{\dot{\alpha}(\theta)}\right)^{m} = R_{m(\pi-2\theta)} \tag{10}$$

By (10), we see that θ must be $\frac{m-2}{2m}\pi$. Reverse of theorem is evident.

COROLLARY 4.4 (i) If m is even integer ,then,

$$(S_{h(0)}\overline{S}_{\dot{\alpha}(\pi/m)})^m = I_3$$

(ii) If m is odd integer, then

$$(S_{h(0)}\overline{S}_{\dot{\alpha}(\pi/2m)})^m = I_3$$

Proof. It is evident by Theorem 4.3

COROLLARY 4.5

- (i) The order of the product any two reflections along H^1 is infinite
- (ii) The order of the product any reflection along the s- curves $s \neq 0$ with $S_{h(0)}$ is an integer if $\theta = \pi/m$ or $\theta = \pi/2m$ where m is order of product.
- (iii) The order of the product any two reflections along the s- curves is an integer if $\theta_2 = \theta_1 + \pi/m$ where m is order of product.

Proof. It follows from Theorem.3.3, Corollary 4.4 and Theorem 4.2 \blacksquare

References

- BOTTEMA, O. and ROTH, B., Theoretical Kinematics, North-Holland Publishing Company, Amsterdam, 1979.
- [2] FRANK, H., Zur ebenen hyperbolischen Kinematik, Elm. Math. 26(121-131), 1971.
- [3] GANS,D.,A new model of hyperbolic plane, Amer. Math. Mounth.73(1966), 291-295.

- [4] GARNIER, R., Cours de Cinèmatique. (TomeIII), Géométrie et Cinèmatique cayleyennes, Paris p.p. 376, 1951.
- [5] L. C. GROVE and C. T. BENSON, Finite Reflection Groups, Springer Verlag, New York, 1985.
- [6] Jansen, H., Abbildung der hyperbolischen Geometrie auf ein zweischaliges Hyperboloid,
 Mitt.Math.Gesellsch., Hamburg, 4(1909) 409-440.
- [7] KARLIĞA,B. and HALICIOĞLU ,S., Subgroups of Semi-Orthogonal Groups, Submitted publication ,1995.
- [8] Killing, W., Die Nicht-Euklidischen Raumformen in Analytischer Behandlung, Teubner, Lipzig, 1885.
- [9] KILLING, W., Die rechnung in den Nicht-Euklidischen Raumformen , J.Reine Angew.Math.89,1880.
- [10] Minkowski, H., Das Relativitätsprinzip, Jeber. Deutsch. Math. Verein, 24(1915)372-382.
- [11] POINCARÉ, H., Sur les applications de la gèomètrie non euclidienne á la théorie des formes quadratiques, Compte Rends de l'Association Française pour l'Avencement des Sciences, 10^e session, 1881.
- [12] Poincaré, H., Sur les hypothèses fondementales de la gèomètrie, Bull.Soc.Math.France, 15(1887)203-216.
- [13] REYNOLDS, W.F., Hyperbolic Geometry on a Hyperboloid, AMER. MATH. MOUNTHLY, MAY 1993.

- [14] Sommerfeld, A., Uber die Zusammensetzung der Geschwindigkeiten in der Relativtheorie, Physikalische Zeitschrift, 10(1909)826-829
- [15] Tits, J., Structures de groupes de Weyl , sèm. Bourbaki 1964/1965, Fèvrier 1965, 1-16.
- [16] Tits, J., Le proplème des nots dans les groupes de Coxeter, Symp. Math. Vol. 1,175-185, Acad. Press, London, 1969.
- [17] Tôlke, J., Kinematik der hyperbolischen Ebene I, II, III ,
 I.J.Reine Angew. Math. 265(1975), 145-153, II. IDEM, 267(1974)143-150, III. IDEM 273(1975)99-108.
- [18] VARICAK, V., Anwendung der Lobatscefskijschen Geometrie in der Relativtheorie,
 PHYSIKALISCHE ZEITSCHRIFT, 11 (1910) 93-96.
- [19] YAGLOM,I.M., A simple Non-Euclidean Geometry and Its Physical Basis, HAIDELBERG SCIENCE LIBRARY, 1979.
- [20] VINBERG, E.B., Geometric representations of the Coxeter groups, USPEKHI MAT. NAUK. 25:2(1970), 267-268.
- [21] VINBERG, E.B., Discreate linear groups generated by reflections, IZV. AKAD. NAUK USSR SER. MAT. 35(1971), 1072-1112.
- [22] VINBERG, E.B., Hyperbolic reflection groups, USPEKHI MAT. NAUK. 40:1(1985), 29-66.