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ABSTRACT

A method for calculating the directivity of the E-plane and H-plane sectoral horn
antennas, based on the artificial neural networks, is presented. The extended-delta-bar-delta
algorithm is used to train the networks. The directivity results obtained by using this method

are in very good agreement with the results available in the literature.

E-DUZLEM VE H-DUZLEM SEKTOREL HUNi ANTENLERIN
YAPAY SINIR AGLARI iLE YONELTICILIK HESABI
OZET

Yapay sinir aglarina dayanan bir metod, E-dizlem ve H-dlizlem sektdrel huni antenlerin
ybnelticilifini hesaplamak i¢in sunulmustur. Aglan egitmek igin, genisletilmis delta-bar-
delta algoritmas: kullanilmistir. Bu metod kullanilarak elde edilen yonelticilik sonuglari,

literatiirdeki mevcut sonuglarla uyumluluk igindedir.

1. INTRODUCTION
The electromagnetic horn is a widely used antenna at microwave
frequencies due to its simplicity in construction, ease of excitation,

versatility, large gain, and preferred overall performance [1-2]. Its most



K. Giiney, M. Erler, §. Safiiroglu 33

common uses include feed elements of reflector antennas and calibration
standards. The horn antenna consists of a waveguide which has its walls
flared into a wider opening at one end. Both circular and rectangular
waveguides are commonly used. Rectangular horn antennas can take on
several forms. The simplest form is that of an open-ended waveguide. This
antenna is not actually a horn, but simply a rectangular waveguide with one
end left open, from which the internal electromagnetic fields propagate.
Horn antennas, then, can be viewed as open-ended waveguides with a flared
wall section added to the open end. These antennas with walls flared only in
the direction parallel to the E-field and H-field are known as the E-plane and
H-plane sectoral horn antennas, respectively. A horn antenna flared in both
the E-plane and H-plane is known as a pyramidal horn antenna.

The one way of computing the directivity of the horn antennas involves
the complicated sine and cosine Fresnel integrals {1-2]. In this work, a
simple method based on artificial neural networks (ANNSs) for calculating
the directivity of the E-plane and H-plane sectoral horn antennas has been
presented. ANNs [3-4] are developed from neurophysiology by
morphologically and computationally mimicking human brains. Although
the precise operation details of artificial neural networks are quite different
from human brains, they are similar in three aspects: they consist of a very
large number of processing elements (the neurons), each neuron connects to
a large number of other neurons, and the functionality of networks is
determined by modifying the strengths of connections during a learning
phase.

Ability and adaptability to learn, generalizability, smaller information

requirement, fast real-time operation, and ease of implementation features
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have made artificial neural networks popular in the last few years [3-21].
Because of these fascinating features, artificial neural networks in this article
are used to calculate the directivity of the E-plane and H-plane sectoral horn
antennas. First, the antenna parameters related to the directivity are
determined, then the directivity depending on these parameters are
calculated by using the neural model. The directivity results calculated by
using this model are in very good agreement with the results reported
elsewhere. The extended-delta-bar-delta (EDBD) algorithm [11] is used to
train the network.

In previous works [14-21], we also successfully introduced the artificial
neural networks to model a robot sensor, and to compute the various

parameters of the triangular, rectangular and circular microstrip antennas.

2. DIRECTIVITY OF SECTORAL HORN ANTENNAS
Consider the E-plane and H-plane sectoral horn antennas, as shown in

Figure 1. The directivity of the E-plane sectoral horn antenna can be

expressed as [1-2]
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where a and b, are the aperture dimensions, p; is the horn length, A is the
wavelength, and C(x) and S(x) are the cosine and sine Fresnel integrals.

The directivity of the H-plane sectoral horn antenna is given by [1-2]
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where a; and b are the aperture dimensions, and p; is the horn length.
The directivity of a pyramidal horn can be written as [1-2]

N )2
P 32ab

DDy (3)
It is clear from eqns. (1)-(3) that the aperture dimensions, horn length and
wavelength are needed to describe the directivity.

In the following sections, the artificial neural networks and the EDBD
used in training the networks are described briefly and the application of the
networks to the calculation of the directivity of the sectoral horn antennas is

then explained.
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Figure 1. E-planc and H-plane sectoral horn antennas.

3. ARTIFICIAL NEURAL NETWORKS

Artificial neural networks have many structures and architectures [4-5].
Multilayered perceptrons (MLPs) [3-5] are the simplest and therefore most
commonly used neural network architectures. They have been adapted for
the calculation of the directivity of the sectoral horn antennas. MLPs can
be trained with the use of many different learning algorithms {3-8,11}].
In this work, the EDBD algorithm [11] has been used for training MLP. As
shown in Figure 2, an MLP consists of three layers: an input layer, an output
layer and an intermediate or hidden layer. Processing elements (PEs) or
neurons (indicated in Figure 2 with the circle) in the input layer only act as
buffers for distributing the input signals x; to PEs in the hidden layer. Each
PE j in the hidden layer sums up its input signals x; after weighting them
with the strengths of the respective connections wy; from the input layer and

computes its output y; as a function fof the sum, viz.,
p put y;

v, = w,x) 4)
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fean be a simple threshold function, a sigmeidal or hyperbolic tangent

function. The output of PEs in the output layer is computed similarly.
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Figure 2. General form of neural networks.

Training a network consists of adjusting weights of the network using the
learning algorithms. A learning algorithm gives the change Aw; (k) in the
weight of a connection between PEs i and j. In the following section, the

EDBD learning algorithm used in this study has been explained briefly.
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Extended Delta-Bar-Delta Algorithm
This algorithm is an extension of the delta-bar-delta algorithm {8] and based

on decreasing the training time for multilayered perceptrons. The use of the
momentum heuristics and avoiding the cause of the wild jumps in the
weights are the features of the algorithm developed by Minai and Williams
[11]. The EDBD algorithm includes a little-used ‘error recovery’ feature
which calculates the global error of the current epoch during training {11]. If
the error measured during the current epoch is greater than the error of the
previous epoch, then the network’s weights revert back to the last set of
weights (the weights which produced the lower error).

However, a patience factor has been included [6] into the error recovery
feature, which may produce the better performance of the networks through
the use of this feature. Instead of testing the error upon every epoch, as was
performed previously, the error is now tested upon n-th epoch, where n

equals the patience factor. In this algorithm, the changes in weights are

calculated as

Aw(k+1)= aB) (k) +uk) Aw(k) (5)
and the weights are then found as
wik+1)= w(l) + Aw(k+]) ©)

In eqn. (5), &k) is the gradient component of the weight change, and ofk)
and u(k) are the learning and momentum coefficients, respectively. ok} is

employed to implement the heuristic for incrementing and decrementing the
learning coefficients for each connection [8]. The weighted average S8 is

formed as
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8 (k)=(1-6) 8(k)+ 0 &(k-1) | (7
where @is the convex weighting factor.

The learning coefficient change is given as

Ko expra 100D it Sk-DEE) >0
Ad(k)=1—0, a(k) it Mk-1)&Kk) <0 (8)

0 otherwise

L

where K, is the constant learning coefficient scale factor, exp is the
exponential function, ¢y is the constant learning coefficient decrement
factor, and ¥, is the constant learning coefficient exponential factor. The

momentum coefficient change is also written as

K. expl-n | Q0D if Sk-DSR >0
An(k)=4—0, n(k) it Se-1)R) <0 )

0 otherwise

where K, is the constant momentum coefficient scale factor, ¢, is the
constant momentum coefficient decrement factor, and v, is the constant
momentum coefficient exponential factor.

As can be seen from eqgns.(8-9), the learning and the momentum
coefficients have separate constants controlling their increase and decrease.
o(k) is used whether an increase or decrease is appropriate. The adjustment
for decrease is identical in form to that for the delta-bar-delta algorithm.
Therefore, the increases in the both coefficients were modified to be

exponentially decreasing functions of the magnitude of the weighted
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gradient components |5 (k)|. Thus, greater increases will be applied in areas
of small slope or curvature than in areas of high curvature. This is partial
solution to the jump problem. In order to take a step further to prevent wild
jumps and oscillations in the weight space, ceilings are placed on the
individual connection learning and momentum coefficients. For this,
ak) <o, (10)
k) <ug,,
must be for all connections, where oimz 1S the upper bound on the learning
coefficient, and pmax is the upper bound on the momentum coefficient.
Finally, after each epoch presentation of training tuples, the accumulated
error is evaluated [6]. If the error E(k) is less than the previous minimum
error, the weights are saved as the current best. A recovery tolerance
parameter A controls this phase. Specifically, if the current error exceeds the
minimum previous error such that
E(k) > Epin A (1)
All connection weights revert to the stored best set of weights in memory.

Further, the both coefficients are decreased to begin the recovery.

4, APPLICATION OF ARTIFICIAL NEURAL NETWORKS TO
THE CALCULATION OF THE DIRECTIVITY

The proposed method involves training a neural network to calculate the
directivity (D) when the values of the aperture dimensions, hom length, and
wavelength are given. In this work, the normalized directivity (relative to the
constant aperture dimension a for the E-plane sectoral horn antenna and b

for the H-plane sectoral horn antenna) is calculated. A neural model used in -
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calculating the D for the E-plane sectoral horn antenna is shown in Figure 3.
In the MLP, the input and output layers have the linear transfer function and
the hidden layers have the tangent hyperbolic function. Training an MLP
with the use of the EDBD algorithm to compute the D involves presenting
them sequentially with different (the aperture dimensions, horn length, and
wavelength) sets and corresponding target values. Differences between the
target output and the actual output of the MLP are trained through the
EDBD algorithm to adapt their weights. The adaptation is carried out after
the presentation of each set (the aperture dimensions, homn length, and
wavelength) until the calculation accuracy of the network is deemed
satisfactory according to some criterion (for example, when the root-mean-
square (rms) error between the target output and the actual output for all the
training set falls below a given threshold) or the maximum allowable

number of epochs is reached.

NEURAL MODEL

FOR (Ma)Dg

DIRECTIVITY

Figure 3. Neural model for directivity.
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The training and test data sets used in this paper have been obtained from
the previous works [1-2]. The 350 data sets for training and 30 data sets for
testing were used for both the E-plane and H-plane sectoral horn antennas.

A set of random values distributed uniformly between -0.1 and +0.1 was
used to initialize the weights of the networks. However, the input data tuples
were scaled between -1.0 and +1.0 and the output data tuples were also
scaled between —0.8 and +0.8 before training. The number of epoch was
300,000 for training.

After several trials, it was found that two layers network achieved, as
indicated in [9-10,12], the task with high accuracy. The most suitable
network configuration found was 10 PEs and 5 PEs for the first and the
second hidden layers, respectively. The seed number was fixed to 257. Both
sequential and random procedures were used in training. The parameters of
the networks for EDBD are: x,=0.095, x,=0.01, ¥,=0.0, y,=0.0, ¢,=0.01,
©=0.1, 0=0.7, A=1.5.

5. RESULTS AND CONCLUSIONS
In order to demonstrate the computational effort of the neural model, the test
results of ANN for p;= 30A and p;=30% which are not used in training
process are compared with the results of well-known reliable method [1-2]
in Figures 4-5. The test results illustrate that the performance of the
proposed method is quite robust and precise. As can be seen from Figures 4-
5, there is excellent agreement with the data from the method [1-2]. This
excellent agreement supports the validity of ANN.

When the directivities of the E-plane and H-plane sectoral horn antennas

are known, the directivity of a pyramidal horn antenna can be computed by -7
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using eqn. (3). Thus, the neural directivity results for the E-plane and H-
plane sectoral horn antennas can be used for calculating the directivity of a
pyramidal horn antenna.

In this work, the different learning algorithms such as the
backpropagation, the delta-bar-delta, and the quick propagation were also
used to train the networks. However, the best results was obtained from the
EDBD. For this reason, only the results of the EDBD were given in this
paper. In our previous work [20], the best bandwidth results of microstrip

antennas were also obtained by using the EDBD.
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Figure 4. Normalized directivity of E-plane sectoral horn as a function of aperture size

and for p;=30A.
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Figure 5. Normalized directivity of H-plane sectoral horn as a function of aperture size

and for p,=30A.

A distinct advantage of neural computation is that, after proper training, a
neural network completely bypasses the repeated use of complex iterative
processes for new cases presented to it. These proposed neural model does
not require the computation of cosine and sine Fresnel integrals. The model
only requires the aperture dimensions, horn length, and wavelength. For
engineering applications, the simple models are very usable. Thus the neural
model given in this work can also be used for many engineering applications

and purposes.
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