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Abstract

We characterize the completeness of fuzzy quasi-metric spaces by means of a fixed point theorem of Kannan-type.
Thus, we extend the classical characterization of metric completeness due to Subrahmanyam as well as recent results
in the literature on the characterization of quasi-metric completeness and fuzzy metric completeness, respectively. We
also introduce and discuss contractions of Chatterjea-type in this asymmetric context.
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1. Introduction

The problem of characterizing complete fuzzy metric spaces with the help of fixed point results has been recently
discussed in [1, 16, 18, 19, 21, 22] as a natural prolongation of the classical problem of obtaining necessary and
sufficient conditions for the metric completeness via fixed point theorems (see e.g. [11, 13, 20, 23, 24, 25]). In
particular, Subrahmanyam proved in [23] that both the famous Kannan fixed point theorem [12] and its ‘companion’
Chatterjea fixed point theorem [4] provide nice characterizations of metric completeness. Quasi-metric and fuzzy
metric extensions of Subrahmanyam characterization for the Kannan case were obtained in [2] and [18], respectively.
In this paper we investigate the problem of extending that characterizations to the realm of complete fuzzy quasi-metric
spaces. In Section 3 we observe that the quasi-metric generalization of Chatterjea’s theorem continues to be a good
‘companion’ of the quasi-metric generalization of Kannan’s theorem obtained in [2]. Section 4 is devoted to trying the
close of this natural puzzle researching the fuzzy (quasi-)metric case. We will show that while a satisfactory answer
is reached in the Kannan setting, the Chatterjea setting presents certain difficulties; despite this, a partial solution to
this case is also presented.
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2. Background

Our main reference for quasi-metric spaces is [6] and for fuzzy quasi-metric spaces they are [10] and [5].

We remind that a quasi-metric on a set X is a function d : X × X → [0,∞) such that for all x, y, z ∈ X : (i)
x = y⇔ d(x, y) = d(y, x) = 0, and (ii) d(x, z) ≤ d(x, y) + d(y, z).

By a quasi-metric space we mean a pair (X, d) such that X is a set and d is a quasi-metric on X.

Let d be a quasi-metric on a set X. For each x ∈ X and ε > 0 set Bd(x, ε) = {y ∈ X : d(x, y) < ε}. Then, the family
{Bd(x, ε) : x ∈ X, ε > 0} is a base of open sets for a T0 topology τd on X, called the topology induced by d.

Given a quasi-metric d on X, the function ds : X × X → [0,∞) defined by ds(x, y) = max{d(x, y), d(y, x)} for all
x, y ∈ X, is a metric on X.

There exist many interesting instances of quasi-metric spaces in the literature, see e.g. [6, 7] (a few examples may
also be found at the end of Section 3).

On the other hand, the lack of symmetry yields several different notions of Cauchyness and quasi-metric com-
pleteness which coincide with the classical notions when dealing with a metric space. In our context, a sequence
(xn)n∈N in a quasi-metric space (X, d) will be called a Cauchy sequence if it is a Cauchy sequence in the metric space
(X, ds), and we shall use the following very general notion of completeness:

A quasi-metric space (X, d) is complete provided that every Cauchy sequence (xn)n∈N is τd-convergent, i.e., if
there exists some x ∈ X such that limn→∞ d(x, xn) = 0.

Let us recall [14] that a binary operation ∗ : [0, 1]× [0, 1]→ [0, 1] is a continuous t-norm provided that it satisfies
the following conditions: (i) ∗ is associative and commutative; (ii) ∗ is continuous; (iii) a ∗ 1 = a for every a ∈ [0, 1];
(iv) a ∗ b ≤ c ∗ d whenever a ≤ c and b ≤ d, with a, b, c, d ∈ [0, 1].

It is well known that if ∗ is a continuous t-norm, then ∗ ≤ ∧, where ∧ is the continuous t-norm given by a ∧ b =
min{a, b}.

In [10] (see also [5]) were introduced and discussed the following notions as a natural asymmetric generalization
of the classical notions of fuzzy metric space in the senses of Kramosil and Michalek [15] and George and Veeramani
[8, 9], respectively.

Definition 2.1. [5, 10]. A KM-fuzzy quasi-metric on a set X is a pair (M, ∗) such that ∗ is a continuous t-norm and M
is a fuzzy set in X × X × [0,∞) fulfilling the following four conditions for every x, y, z ∈ X :

(KM1) M(x, y, 0) = 0;

(KM2) x = y if and only if M(x, y, t) = M(y, x, t) = 1 for all t > 0;

(KM3) M(x, z, t + s) ≥ M(x, y, t) ∗ M(y, z, s) for all t, s ≥ 0;

(KM4) M(x, y, ·) : [0,∞)→ [0, 1] is left continuous.

A KM-fuzzy quasi-metric (M, ∗) on X fulfilling for every x, y ∈ X :

(KM5) M(x, y, t) = M(y, x, t) for all t > 0,

is said to be a KM-fuzzy metric on X.

Definition 2.2. [5, 10]. A KM-fuzzy (quasi-)metric space is a triple (X,M, ∗) such that X is a set and (M, ∗) is a
KM-fuzzy (quasi-)metric on X.

Definition 2.3. [5, 10]. A GV-fuzzy quasi-metric on a set X is a pair (M, ∗) such that ∗ is a continuous t-norm and M
is a fuzzy set in X × X × (0,∞) fulfilling the following four conditions for every x, y, z ∈ X :

(GV1) M(x, y, t) > 0 for all t > 0;

(GV2) x = y if and only if M(x, y, t) = M(y, x, t) = 1 for some t > 0;

(GV3) M(x, z, t + s) ≥ M(x, y, t) ∗ M(y, z, s) for all t, s > 0;

(GV4) M(x, y, ·) : (0,∞)→ [0, 1] is continuous.



S. Romaguera, Results in Nonlinear Anal. 5 (2022), 347–359. 349

A GV-fuzzy quasi-metric (M, ∗) on X fulfilling for every x, y ∈ X :

(GV5) M(x, y, t) = M(y, x, t) for all t > 0

is said to be a GV-fuzzy metric on X.

Definition 2.4. [5, 10]. A GV-fuzzy (quasi-)metric space is a triple (X,M, ∗) such that X is a set and (M, ∗) is a
GV-fuzzy (quasi-)metric on X.

Remark 2.5. [5, 10]. If (M, ∗) is a KM-fuzzy quasi-metric on a set X, then, for each x, y ∈ X the function M(x, y, ·) is
nondecreasing.

Remark 2.6. It easily follows from Remark 2.5 that, given x, y ∈ X, if M(x, y, t) > 1− t for all t > 0, then M(x, y, t) = 1
for all t > 0.

Remark 2.7. Note that the class of KM-fuzzy metric spaces (X,M, ∗) coincides with the class of fuzzy metric spaces
in the sense of Kramosil and Michalek [15], with the exception of the condition limt→∞ M(x, y, t) = 1 for all x, y ∈ X,
which is required in [15], whereas the class of GV-fuzzy metric spaces is exactly the class of fuzzy metric spaces in
the sense of George and Veeramani [8, 9].

Analogous to the quasi-metric case, if (M, ∗) is a KM-fuzzy quasi-metric (resp. a GV-fuzzy quasi-metric) on a set
X, the pair (Mmin, ∗) is a KM-fuzzy metric (resp. a GV-fuzzy metric) on X,where Mmin is the fuzzy set in X×X×[0,∞)
(resp. in X × X × (0,∞)) given by Mmin(x, y, t) = min{M(x, y, t),M(y, x, t)}. We shall refer to (X,Mmin, ∗) as the KM-
fuzzy metric (resp. the GV-fuzzy metric) space induced by (X,M, ∗).

On the other hand, and as in the quasi-metric setting, if (M, ∗) is a KM-fuzzy quasi-metric on a set X and for each
x ∈ X, ε ∈ (0, 1) and t > 0 we put BM(x, ε, t) = {y ∈ X : M(x, y, t) > 1 − ε}, then, the family {BM(x, ε, t) : x ∈ X,
ε ∈ (0, 1), t > 0} is a base of open sets for a T0 topology τM on X, called the topology induced by (M, ∗) (see e.g. [10,
p. 131]).

From the definition of the topology τM we deduce the following well-known and useful fact [10, Proposition 2.8]:

A sequence (xn)n∈N in a KM-fuzzy quasi-metric space (X,M, ∗) τM-converges to an x ∈ X if and only if limn→∞ M(x, xn, t) =
1 for all t > 0. (By N we denote the set of all positive integers).

Before to define the notions of Cauchyness and completeness for KM-fuzzy quasi-metric spaces that we will
employ here, remind that a sequence (xn)n∈N in a KM-fuzzy metric space (X,M, ∗) is a Cauchy sequence provided
that for each ε ∈ (0, 1) and each t > 0 there is an n0 ∈ N such that M(xn, xm, t) > 1 − ε for all n,m ≥ n0.

Definition 2.8. A sequence in a KM-fuzzy quasi-metric space (X,M, ∗) is said to be a Cauchy sequence if it is a
Cauchy sequence in the fuzzy metric space (X,Mmin, ∗).

Definition 2.9. A KM-fuzzy quasi-metric space (X,M, ∗) is said to be complete if every Cauchy sequence is τM-
convergent.

Remark 2.10. Each GV-fuzzy (quasi-)metric space (X,M, ∗) can be considered as a KM-fuzzy (quasi-)metric space
simply by defining M(x, y, 0) = 0 for all x, y ∈ X. Hence, any GV-fuzzy quasi-metric induces a topology defined as
in the KM-case. Furthermore, the notions and properties for KM-fuzzy quasi-metric spaces given above hold for
GV-fuzzy quasi-metric spaces.

The following is an important instance of a KM-fuzzy quasi-metric space which is not a GV-fuzzy quasi-metric
space, in general.

Example 2.11. [3] Let (X, d) be a quasi-metric space. Then (X,Md,01, ∗) is a KM-fuzzy quasi-metric space for any
continuous t-norm ∗, where M is the fuzzy set in X × X × [0,∞) defined as Md,01(x, y, t) = 0 if d(x, y) ≥ t and
Md,01(x, y, t) = 1 if d(x, y) < t. Furthermore, the topologies τd and τMd,01 agree on X, and (X,Md,01, ∗) is complete if
and only if (X, d) is complete.
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We finish this section with a typical example of a GV-fuzzy quasi-metric space.

Example 2.12. [10]. Let (X, d) be a quasi-metric space. Then (X,Md,s, ∗) is a GV-fuzzy quasi-metric space for any
continuous t-norm ∗, where Md,s is the fuzzy set in X × X × (0,∞) defined as

Md,s(x, y, t) =
t

t + d(x, y)
,

for all t > 0. (X,Md,s, ∗) is said to be the standard GV-fuzzy quasi-metric space of (X, d). Furthermore, the topologies
τd and τMd,s agree on X, and (X,Md,s, ∗) is complete if and only if (X, d) is complete.

3. The quasi-metric setting

We begin this section by proposing the following natural quasi-metric generalizations of the notions of Kannan
contraction and Chatterjea contraction for metric spaces.

Definition 3.1. We say that a self map T of a quasi-metric space (X, d) is a Kannan contraction (a d-Kannan mapping
in [2]) if there is a constant c ∈ (0, 1/2) such that

d(T x,Ty) ≤ c[d(x,T x) + d(y,Ty)],

for all x, y ∈ X.

Definition 3.2. We say that a self map T of a quasi-metric space (X, d) is a Chatterjea contraction if there is a constant
c ∈ (0, 1/2) such that

d(T x,Ty) ≤ c[d(x,Ty) + d(y,T x)],

for all x, y ∈ X.

Remark 3.3. It is clear that every Kannan contraction (resp. every Chatterjea contraction) on a quasi-metric space
(X, d), is a Kannan contraction (resp. a Chatterjea contraction) on the metric space (X, ds). However, the reverse
implications do not hold, in general (see Example 3.6 below).

The next result will be crucial.

Proposition 3.4. A quasi-metric space (X, d) is complete if each self map T of X satisfying

ds(T x,Ty) ≤
1
3

min{d(x,T x) + d(y,Ty), d(x,Ty) + d(y,T x)},

for all x, y ∈ X, has a fixed point.

Proof. Suppose that (X, d) is not complete. Then, there is a non τd-convergent Cauchy sequence (xn)n∈ω in (X, d).
Following the proof of [2, Theorem 2.8] we can construct a self map T of X without fixed points and such that

ds(T x,Ty) ≤
1
5

[d(x,T x) + d(y,Ty)],

for all x, y ∈ X. (The original proof of [2, Theorem 2.8] is given for c = 1/4, but it is also valid, for instance, for
c = 1/5, without any change). From the triangle inequality it follows that

ds(T x,Ty) ≤
1
5

[d(x,Ty) + ds(Ty,T x) + d(y,T x) + ds(T x,Ty)],

for all x, y ∈ X. Therefore

ds(T x,Ty) ≤
1
3

[d(x,Ty) + d(y,T x)],

for all x, y ∈ X. Consequently

ds(T x,Ty) ≤
1
3

min{d(x,T x) + d(y,Ty), d(x,Ty) + d(y,T x)},

for all x, y ∈ X. We have reached a contradiction, which concludes the proof. □
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Theorem 3.5. For a quasi-metric space (X, d) the following conditions are equivalent.

(1) (X, d) is complete.

(2) Every Kannan contraction on (X,d) has a (unique) fixed point.

(3) Every Chatterjea contraction on (X,d) has a (unique) fixed point.

Proof. (1)⇔ (2) [2, Theorem 2.8].

(1) ⇒ (3) Let T be a Chatterjea contraction on the complete quasi-metric space (X, d). Then, there is c ∈ (0, 1/2)
such that

d(T x,Ty) ≤ c[d(x,Ty) + d(y,T x)],

for all x, y ∈ X. It immediately follows that

ds(T x,Ty) ≤ c[ds(x,Ty) + ds(y,T x)],

for all x, y ∈ X, so T is a Chatterjea contraction on the metric space (X, ds).

Fix an x0 ∈ X. Then, the classical proof of Chatterjea’s theorem shows that (T nx0)n∈N is a Cauchy sequence in
(X, ds). By completeness of (X, d) there exists z ∈ X such that limn→∞ d(z,T nx0) = 0. We show that Tz is the unique

fixed point of T. Indeed, we get

d(T n+1x0,Tz) ≤ c[d(T nx0,Tz) + d(z,T n+1x0)]

≤ c[d(T nx0,T n+1x0) + d(T n+1x0,Tz) + d(z,T n+1x0)],

for all n ∈ N. Therefore
d(T n+1x0,Tz) ≤

c
1 − c

[d(T nx0,T n+1x0) + d(z,T n+1x0)],

for all n ∈ N, so that limn→∞ d(T n+1x0,Tz) = 0. By the triangle inequality d(z,Tz) = 0. Thus, we have

d(Tz,T 2z) ≤ c[d(z,T 2z) + d(Tz,Tz)] ≤ c[d(z,Tz) + d(Tz,T 2z)] = cd(Tz,T 2z),

so d(Tz,T 2z) = 0, and also

d(T 2z,Tz) ≤ c[d(Tz,Tz) + d(z,T 2z)] ≤ c[d(z,Tz) + d(Tz,T 2z)] = 0.

Hence Tz = T 2z.
Finally, let u ∈ X such that u = Tu. Then

ds(u,Tz) = ds(Tu,T 2z) ≤ c[ds(u,T 2z) + ds(Tz,Tu)] = 2cds(u,Tz).

Since 2c < 1, ds(u,Tz) = 0, i.e., u = Tz.

(3)⇒ (1) Let T be a self map of X such that

ds(T x,Ty) ≤
1
3

min{d(x,T x) + d(y,Ty), d(x,Ty) + d(y,T x)},

for all x, y ∈ X. Then

d(T x,Ty) ≤
1
3

[d(x,Ty) + d(y,T x)],

for all x, y ∈ X, so T is a Chatterjea contraction on (X, d). By assumption T has a fixed point. Hence (X, d) is complete
by Proposition 3.4. □

Regarding our comment at the end of Remark 3.3 we present the following example.



S. Romaguera, Results in Nonlinear Anal. 5 (2022), 347–359. 352

Example 3.6. Let X = [0, 2] and let d be the quasi-metric on X given by d(x, y) = max{y − x, 0} for all x, y ∈ X.
Since ds is the restriction to X of the usual metric on the set R of all reals, it follows that (X, ds) is a compact metric
space, so (X, d) is a complete quasi-metric space. Now let T : X → X defined by T x = 0 if x ∈ [0, 1] and T x = x/4 if
x ∈ (1, 2]. We show that T is both a Kannan contraction and a Chatterjea contraction on the metric space (X, ds).

• If x, y ∈ [0, 1] we have ds(T x,Ty) = 0.

• If x ∈ [0, 1] and y ∈ (1, 2] we get ds(T x,Ty) = y/4, ds(x,T x) = x, ds(y,Ty) = 3y/4, ds(x,Ty) = |x − y/4| and
ds(y,T x) = y, so

ds(T x,Ty) =
1
3

ds(y,Ty) <
1
3

ds(y,T x).

• If x, y ∈ (1, 2], we get ds(T x,Ty) = |x − y| /4, ds(x,T x) = 3x/4, ds(y,Ty) = 3y/4, ds(x,Ty) = (4x − y)/4 and
ds(y,T x) = (4.y − x)/4, so

ds(T x,Ty) <
1
3

ds(x,T x) <
1
3

[ds(x,Ty) + ds(y,T x)].

Therefore T is both a Kannan contraction and a Chatterjea contraction on (X, ds), with c = 1/3. However, for
x = 0 and y ∈ (1, 2] we obtain ds(T x,Ty) = d(x,Ty) = y/4, and d(x,T x) = d(y,Ty) = d(y,T x) = 0, so T it is not a
Kannan contraction neither a Chatterjea contraction on (X, d).

The following is an example of a self map T on a complete quasi-metric space (X, d) which is a Kannan contrac-
tion on (X, d), and thus a Kannan contraction of (X, ds) but is not a Chatterjea contaction on (X, ds), and thus not a
Chatterjea contraction on (X, d).

Example 3.7. Let X = {0, 1, 2} and let d be the quasi-metric on X given by d(x, x) = 0 for all x ∈ X, d(0, 1) = d(0, 2) =
d(2, 0) = d(2, 1) = 1, d(1, 0) = 2 and d(1, 2) = 3. Evidently (X, d) is complete because the Cauchy sequences in (X, ds)
are those that are eventually constant.

Now let T : X → X defined by T0 = T2 = 0 and T1 = 2.
We show that T is a Kannan contraction on (X, d) (and thus on (X, ds)). To this end it suffices to check that

ds(T0,T1) = ds(T2,T1) = ds(0, 2) = 1 =
1
3

[d(0,T0) + d(1,T1)]

<
1
3

[d(2,T2) + d(1,T1)].

Note also that T is not a Chatterjea contraction on (X, ds) (and thus not on (X, d)) because

ds(T2,T1) = 1 =
1
2

[0 + 2] =
1
2

[ds(2,T1) + ds(1,T2)].

We finish this section with an example of a self map of a complete quasi-metric space (X, d) which is a Chatter-
jea contraction on (X, d), and, consequently, a Chatterjea contraction on the metric space (X, ds), but not a Kannan
contraction on (X, ds), and, consequently, not a Kannan contraction on (X, d).

Example 3.8. Let X = [0, 1] and let d be the quasi-metric on X given by d(x, y) = max{x − y, 0}. It is well known that
(X, d) is a complete quasi-metric space (note that ds is the usual metric on X).

Let T be the self map of X defined as T1 = 1/3, and T x = 0 for all x ∈ [0, 1).
We show that T is not a Kannan contraction on (X, ds) and thus is not a Kannan contraction on (X, d). Indeed, we

get

ds(T1,T0) = ds(1/3, 0) =
1
3
=

1
2

[
2
3
+ 0] =

1
2

[ds(1,T1) + ds(0,T0)].

However T is a Chatterjea contraction on (X, d) and thus on (X, ds). Indeed, for x = 1 and y ∈ [0, 1) we get

ds(T x,Ty) = ds(1/3, 0) =
1
3
≤

1
3

[d(x,Ty) + d(y,T x)].
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4. The fuzzy quasi-metric setting

In this section KM-fuzzy quasi-metric will be simply called fuzzy quasi-metric spaces.

In [18] we introduced the notions of (1)-Kannan contraction and (1/2)-Kannan contraction for fuzzy metric spaces.
We generalize that notions in a natural way as follows.

Definition 4.1. Let (X,M, ∗) be a fuzzy quasi-metric space. We say that a self map T of X is a (1)-Kannan contraction
on (X,M, ∗) if there is a constant c ∈ (0, 1) such that for any x, y ∈ X and t > 0,

min{M(x,T x, t),M(y,Ty, t)} > 1 − t ⇒ M(T x,Ty, ct) > 1 − ct. (1Kn)

Analogous to the quasi-metric setting, we say that a self map Tof X is a (1/2)-Kannan contraction on (X,M, ∗) if
there is a constant c ∈ (0, 1/2) such that for any x, y ∈ X and t > 0,

min{M(x,T x, t),M(y,Ty, t)} > 1 − t ⇒ M(T x,Ty, ct) > 1 − ct.

Remark 4.2. If T is a (1)-Kannan contraction on a fuzzy quasi-metric space (X,M, ∗) and we interchange x and y in
condition (1Kn), then that condition can be reformulated as follows:

min{M(x,T x, t),M(y,Ty, t)} > 1 − t ⇒ Mmin(T x,Ty, ct) > 1 − ct. (1Knm)

Clearly, any (1/2)-Kannan contraction is a (1)-Kannan contraction. However the converse does not hold even for
fuzzy metric spaces (see [18, Example 2]).

In the proof of our next theorem we use ideas and methods from [18, Theorem 3]. In particular, we shall apply
the following auxiliary result whose demo is almost identical to the first part of the proof of [18, Theorem 3], so it is
omitted.

Lemma 4.3. Let T be a (1)-Kannan contraction on a fuzzy quasi-metric space (X,M, ∗). Fix x0 ∈ X. Then (T nx0)n∈N

is a Cauchy sequence in (X,M, ∗).

Theorem 4.4. Every (1)-Kannan contraction on a complete fuzzy quasi-metric space has a unique fixed point.

Proof. Let (X,M, ∗) be a complete fuzzy quasi-metric metric space and let T be a (1)-Kannan contraction on X. Then,
there is a constant c ∈ (0, 1) for which condition (1Kn) is fulfilled. Furthermore T is a (1)-Kannan contraction on the
fuzzy metric space (X,Mmin, ∗) with constant of contraction c, by Remark 4.2.

Fix t0 > 1 and r, s > 0 such that c < s < r < 1. For each k ∈ N, define

Ak,r,s := {ε ∈ (0, 1) : ε + srk−1t0 < rkt0}.

Now fix x0 ∈ X. Applying Lemma 4.3 we get that (xn)n∈N is a Cauchy sequence in (X,M, ∗), where xn := T nx0 for
all n ∈ N∪{0}. So there is z ∈ X such that the sequence (xn)n∈N converges to z in τM, i.e., limn→∞ M(z, xn, t) = 1 for
all t > 0.

Following the proof of [18, Theorem 3], joint with Remark 4.2, we deduce that M(z,Tz, t) = 1 for all t > 0 (the
details are omitted).

In the sequel we show that Tz is a fixed point of T .

To reach it we first check, by mathematical induction, that for each k ∈ N,

Mmin(Tz,T 2z, rkt0) ≥ 1 − rkt0. (†)

where we assume, without loss of generality, that rkt0 ≤ 1.

Indeed, since M(Tz,T 2z, t0) > 1 − t0 and M(xn, xn+1, t0) > 1 − t0, we deduce from Remarks 2.5 and 4.2 that

Mmin(T 2z, xn+1, st0) ≥ Mmin(T 2z, xn+1, ct0) > 1 − ct0 > 1 − st0,
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for all n ∈ N∪{0}.

Given t > 0 there is nt ∈ N such that M(xn, xn+1, t) > 1 − t for all n ≥ nt. Since M(z,Tz, t) = 1, it follows from
condition (1Knm) that

Mmin(Tz, xn+1, ct) > 1 − ct,

for all n ≥ nt. Hence, for each ε ∈ A1,r,s (taking t = ε/c) there is nε ≥ nt such that Mmin(Tz, xnε , ε) > 1 − ε. Therefore

Mmin(Tz,T 2z, rt0) ≥ Mmin(Tz, xnε , ε) ∗ Mmin(xnε ,T
2z, st0)

≥ (1 − ε) ∗ (1 − st0) ≥ (1 − ε) ∗ (1 − rt0).

From the continuity of ∗ we get
Mmin(Tz,T 2z, rt0) ≥ 1 − rt0.

So, we have proved the inequality (†) for k = 1.

Now suppose that the inequality (†) is true for k = j, j ∈ N. We shall check that Mmin(Tz,T 2z, r j+1t0) ≥ 1− r j+1t0.

Since (xn)n∈N is a Cauchy sequence, there is n j ∈ N such that

M(xn, xn+1, r jt0) > 1 − r jt0,

for all n ≥ n j. This fact along with our induction hypothesis and condition (1Knm) implies that

Mmin(T 2z, xn+1, cr jt0) > 1 − cr jt0,

for all n ≥ n j. Therefore
Mmin(T 2z, xn+1, sr jt0) > 1 − sr jt0,

for all n ≥ n j.

Now let ε ∈ A j+1,r,s. Then ε + sr jt0 < r j+1t0, and there is nε > n j for which Mmin(Tz, xnε , ε) > 1 − ε. Hence

Mmin(Tz,T 2z, r j+1t0) ≥ Mmin(Tz, xnε , ε) ∗ Mmin(xnε ,T
2z, sr jt0)

≥ (1 − ε) ∗ (1 − sr jt0) ≥ (1 − ε) ∗ (1 − r j+1t0).

Again, from the continuity of ∗ we deduce that

Mmin(Tz,T 2z, r j+1t0) ≥ 1 − r j+1t0.

We conclude that inequality (†) is true.

Take any t > 0. Then, there exists k ∈ N such that rkt0 < t, so

Mmin(Tz,T 2z, t) ≥ Mmin(Tz,T 2z, rkt0) > 1 − rkt0 > 1 − t.

From Remark 2.6 it follows that Mmin(Tz,T 2z, t) = 1 for all t > 0. Hence Tz = T 2z, so Tz is a fixed point of T.

Finally, let u ∈ X such that u = Tu. So min{M(Tz,T 2z, t),M(u,Tu, t)} = 1, for all t > 0. By condition (1Knm) we
deduce that Mmin(T 2z,Tu, ct) > 1 − ct for all t > 0. Consequently T 2z = Tu, i.e., Tz = u, so Tz is the unique fixed
point of T. □

Corollary 4.5. Every (1/2)-Kannan contraction on a complete fuzzy quasi-metric space has a unique fixed point.

Remark 4.6. [18, Example 2] shows that Theorem 4.4 is a real generalization of Corollary 4.5.

The next is an example of a self map of a complete quasi-metric space (X, d) which is not a Kannan contraction
on (X, d) but, instead, it is a (1)-Kannan contraction on the complete fuzzy quasi-metric space (X,Md,01, ∗) for any
continuous t-norm ∗.
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Example 4.7. Let (X, d) be the complete quasi-metric space where X = [0, 1] and d is the quasi-metric on X given by
d(x, y) = max{x − y, 0}. It was shown in Example 3.8 above that the self map T of X defined as T1 = 1/3 and T x = 0
for all x ∈ [0, 1), is not a Kannan contraction on (X, d).

Let (X,Md,01, ∗) be the complete fuzzy quasi-metric space as constructed in Example 2.11 above. We are going to
prove that T is a (1)-Kannan contraction on (X,Md,01, ∗) for c = 1/2. Thus, it will verify the conditions of Theorem
4.4.

Indeed, let x, y ∈ X and t > 0 such that min{Md,01(x,T x, t),Md,01(y,Ty, t} > 1 − t.

Then, we shall check that Md,01(T x,Ty, t/2) > 1 − t/2.

If Md,01(T x,Ty, t/2) = 1, the conclusion is obvious. Hence, we will assume in the sequel that Md,01(T x,Ty, t/2) =
0. Thus, we get d(T x,Ty) ≥ t/2.

By the construction of T it suffices to consider two cases, namely:

Case 1. x = 1, y ∈ [0, 1).

Case 2. x ∈ [0, 1), y = 1.

In Case 1, from d(T x,Ty) ≥ t/2 we get d(1/3, 0) = 1/3 ≥ t/2, so t ≤ 2/3.
If, in addition, Md,01(1,T1, t) = 0, we deduce, by hypothesis, that t > 1, a contradiction.
Hence, we will have that Md,01(1,T1, t) = 1. This implies that d(1, 1/3) = 2/3 < t, which yields again a

contradiction.

In Case 2, from d(T x,Ty) ≥ t/2 we get d(0, 1/3) = 0 ≥ t/2, a contradiction.

We conclude that Md,01(T x,Ty, t/2) = 1, and thus Md,01(T x,Ty, t/2) > 1 − t/2. Therefore T is a (1)-Kannan
contraction on (X,Md,01, ∗).

Our main result (Theorem 4.10 below) provides a full quasi-metric extension of [18, Theorem 5]. In its proof we
shall use the next quasi-metric generalization of an important result due to Radu [17, Proposition 2.1.1], which can be
partially found in [3, Example 2] and in [5, Remark 7.6.1] (let us recall that the famous Łukasiewicz t-norm ∗L is the
continuous t-norm defined by a ∗L b = max{a + b − 1, 0} for all a, b ∈ [0, 1]).

Proposition 4.8. Let (X,M, ∗) be a fuzzy quasi-metric space. For each x, y ∈ X put

dM(x, y) = sup{t ≥ 0 : M(x, y, t) ≤ 1 − t}.

Then dM satisfies the following condition

dM(x, y) < t ⇔ M(x, y, t) > 1 − t, (C1)

for all t > 0. Furthermore, if ∗L ≤ ∗, then dM is a quasi-metric on X whose induced topology agrees with τM, and
(X, dM) is complete if and only if (X,M, ∗) is complete.

We shall also use the following essentially well-known fact.

Lemma 4.9. If a Cauchy sequence (xn)n∈N in a fuzzy quasi-metric space (X,M, ∗) has a subsequence which is τM-
convergent to some z ∈ X, then (xn)n∈N is τM-convergent to z.

Proof. Let (xn(k))k∈N be a subsequence of (xn)n∈N for which there is some z ∈ X such that (xn(k)) τM-converges to z.
Choose an arbitrary ε ∈ (0, 1). By the continuity of ∗ we can find a δ ∈ (0, ε/2) such that (1 − δ) ∗ (1 − δ) > 1 − ε.

Then, there exists nδ ∈ N such that Mmin(xn, xm, δ) > 1 − δ for all n,m ≥ nδ. Since for any m ≥ nδ there exists k0 ∈ N

with n(k0) ≥ m and M(z, xn(k0), δ) > 1 − δ, we deduce that, for m ≥ nδ,

M(z, xm, ε) ≥ M(z, xn(k0), δ) ∗ M(xn(k0), xm, δ) ≥ (1 − δ) ∗ (1 − δ) > 1 − ε.

Consequently, the sequence (xn)n∈N τM-converges to z. □
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Theorem 4.10. For a fuzzy quasi-metric space (X,M, ∗) the following conditions are equivalent.

(1) (X,M, ∗) is complete.

(2) Every (1)-Kannan contraction on X has a (unique) fixed point.

(3) Every (1/2)-Kannan contraction on X has a (unique) fixed point.

Proof. (1)⇒ (2) Theorem 4.4.
(2)⇒ (3) Obvious.
(3)⇒ (1) Suppose that (X,M, ∗) is not complete. Then there exists a Cauchy sequence (xn)n∈N in (X,M, ∗) which

is not τM-convergent.
We divide the rest of the proof in the following claims.

Claim 1. For each y ∈ X there is an n(y) ∈ N such that dM(y, xn) > 0 for all n ≥ n(y).

Indeed, suppose that there are y ∈ X and a subsequence (xn(i))i∈N of (xn)n∈N such that dM(y, xn(i)) = 0 for all i ∈ N.
By condition (C1) we get M(y, xn(i), t) > 1 − t for all t > 0. Therefore (xn)n∈N τM-converges to y by Remark 2.6 and
Proposition 4.8, a contradiction.

Claim 2. For each y ∈ X there is a k(y) ≥ n(y) such that dM(y, xn) ≥ 1/k(y) for all n ≥ k(y).

Indeed, suppose that there is y ∈ X such that for any k ≥ n(y) there exists nk > k satisfying dM(y, xnk ) < 1/k. By
condition (C1) we get M(y, xnk , 1/k) > 1 − 1/k, which implies that (xnk )k∈N τM-converges to y. By Lemma 4.9, this
yields a contradiction.

Now, since (xn)n∈N is a Cauchy sequence in (X,M, ∗), for each y ∈ X there is a j(y) ∈ N such that j(y) ≥ k(y) and

M(xn, xm, 1/3 j(y)) > 1 − 1/3 j(y),

whenever n,m ≥ j(y). Hence dM(xn, xm) < 1/3 j(y), whenever n,m ≥ j(y).

Define a self map T of X as follows:

Ty = x j(y) for all y ∈ X.

Claim 3. The self map T has no fixed points in X.

Indeed, put F := {xn : n ∈ N}. If y ∈ X\F is obvious that Ty , y. If y ∈ F there is i ∈ N such that y = xi. Since
j(y) ≥ k(y) ≥ n(y), it follows from Claim 1 that dM(y, x j(y)) > 0, so y , x j(y).

Claim 4. T is a (1/2)-Kannan contraction on (X,M, ∗) (with constant c = 1/3).

Indeed, let y, z ∈ X and t > 0 such that min{M(y,Ty, t),M(z,Tz, t)} > 1− t. Then dM(y,Ty) < t and dM(z,Tz) < t.

If j(y) < j(z) we obtain

dM(Ty,Tz) = dM(x j(y), x j(z)) < 1/3 j(y) ≤ 1/3k(y)

≤ dM(y, x j(y))/3 = dM(y,Ty)/3 < t/3.

Therefore M(Ty,Tz, t/3) > 1 − t/3.

If j(y) > j(z) we obtain

dM(Ty,Tz) = dM(x j(y), x j(z)) < 1/3 j(z) ≤ 1/3k(z)

≤ dM(z, x j(z))/3 = dM(z,Tz)/3 < t/3.

Therefore M(Ty,Tz, t/3) > 1 − t/3.

We have constructed a (1/2)-Kannan contraction on (X,M, ∗) without fixed points. This contradiction concludes
the proof. □

The last part of this paper is devoted to discuss the extension of Theorems 4.4 and 4.10 above to contractions
of Chatterjea-type on complete fuzzy quasi-metric spaces. Although we have not been able to obtain results as
resounding as such theorems, some partial results can found in Propositions 4.13, 4.14 and 4.16 below.
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Definition 4.11. Let (X,M, ∗) be a fuzzy quasi-metric space. We say that a self map T of X is a (1)-Chatterjea
contraction on (X,M, ∗) if there is a constant c ∈ (0, 1) such that for any x, y ∈ X and t > 0,

min{M(x,Ty, t),M(y,T x, t)} > 1 − t ⇒ M(T x,Ty, ct) > 1 − ct. (1Ch)

By analogy with the quasi-metric setting, we say that a self map Tof X is a (1/2)-Chatterjea contraction on
(X,M, ∗) if there is a constant c ∈ (0, 1/2) such that for any x, y ∈ X and t > 0,

min{M(x,Ty, t),M(y,T x, t)} > 1 − t ⇒ M(T x,Ty, ct) > 1 − ct.

Remark 4.12. If T is a (1)-Chatterjea contraction on a fuzzy quasi-metric space (X,M, ∗) and we interchange x and
y in condition (1Ch), then that condition can be reformulated as follows:

min{M(x,Ty, t),M(y,T x, t)} > 1 − t ⇒ Mmin(T x,Ty, ct) > 1 − ct. (1Chm)

Clearly, any (1/2)-Chatterjea contraction is a (1)-Chatterjea contraction.

If T is a (1)-Chatterjea contraction on a fuzzy (quasi-)metric space (X,M, ∗) it is possible to show that for any
x0 ∈ X, (T nx0)n∈N is a Cauchy sequence in (X,M, ∗) (see Proposition 4.13 below). Thus, if (X,M, ∗) is complete, the
sequence (xn)n∈N τM-converges to some z ∈ X. Unfortunately, and in contrast to the Kannan case, we don’t know if
M(z,Tz, t) = 1 for all t > 0 (compare with Theorem 4.4 above and [18, Theorem 3]). Nevertheless, and as we pointed
out above, a partial result is provided in Proposition 4.14 below.

Proposition 4.13. Let T be a (1)-Chatterjea contraction on a fuzzy quasi-metric space (X,M, ∗). Fix x0 ∈ X. Then
(T nx0)n∈N is a Cauchy sequence in (X,M, ∗).

Proof. Let c ∈ (0, 1) for which condition (1Ch) in Definition 4.11 is fulfilled. Fix t0 > 1. For any x, y ∈ X we get
M(x,Ty, t0) > 1 − t0 and M(y,T x, t0) > 1 − t0.

Thus, by the contraction condition (1Ch), M(T x,Ty, ct0) > 1 − ct0.

In particular, from M(x,T 2y, t0) > 1 − t0 and M(Ty,T x, t0) > 1 − t0, it follows that

M(T x,T 2y, ct0) > 1 − ct0.

Analogously,
M(Ty,T 2x, ct0) > 1 − ct0.

Then, it follows from Remark 4.12 that

Mmin(T 2x,T 2y, c2t0) > 1 − c2t0.

Repeating this process we obtain, for each n ∈ N,

Mmin(T nx,T ny, cnt0) > 1 − cnt0.

Put xn := T nx0 for all n ∈ N ∪ {0}. We see that (xn)n∈N is a Cauchy sequence in (X,M, ∗).

Indeed, given t > 0 and ε ∈ (0, 1), there is nε ∈ N such that cnt0 < min{ε, t} for all n ≥ nε. Let m, n ≥ nε. Assume
that m > n. Then m = n + k for some k ∈ N, and thus

Mmin(xn, xm, t) = Mmin(T nx0,T nT kx0, t) ≥ Mmin(T nx0,T nT kx0, cnt0)

> 1 − cnt0 > 1 − ε.

We conclude that (xn)n∈N is a Cauchy sequence in (X,M, ∗). □

Proposition 4.14. Every (1/2)-Chatterjea contraction on a complete fuzzy quasi-metric space (X,M, ∗) such that
∗L ≤ ∗ has a unique fixed point.
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Proof. Let T be a (1/2)-Chatterjea contraction (with constant c ∈ (0, 1/2)) on (X,M, ∗). We shall show that T is a
Chatterjea contraction on the complete quasi-metric space (X, dM) as constructed in Proposition 4.8.

Indeed, let x, y ∈ X and let t ≥ 0 such that M(T x,Ty, t) ≤ 1 − t. Then

min{M(x,Ty, t/c),M(y,T x, t/c)} ≤ 1 − t/c,

so, by condition (C1) in Proposition 4.8,

max{dM(x,Ty), dM(y,T x)} ≥ t/c.

Hence t ≤ c max{dM(x,Ty), dM(y,T x)}. Thus

dM(T x,Ty) = sup{t ≥ 0 : M(T x,Ty, t) ≤ 1 − t}

≤ c max{dM(x,Ty), dM(y,T x)} ≤ c[dM(x,Ty) + dM(y,T x)].

We have proved that T is a Chatterjea contraction on (X, dM), so, by Theorem 3.5, it has a unique fixed point. □

The following example illustrates Proposition 4.14.

Example 4.15. Let (X, d) the complete quasi-metric space where X = [0, 1] and d is given by d(x, y) = max{x − y, 0}
for all x, y ∈ X. Consider the complete fuzzy quasi-metric space (X,Md,01, ∗) and fix an x0 ∈ (0, 1/2). Then, we define
the self map T of X given by T1 = x0 and T x = 0 otherwise.

We shall check that T is a (1/2)-Chatterjea contraction on (X,Md,01, ∗) with constant c = x0.

Indeed, let x, y ∈ X and t > 0 such that min{Md,01(x,Ty, t),Md,01(y,T x, t)} > 1 − t.

Suppose that Md,01(T x,Ty, ct) = 0. Then d(T x,Ty) ≥ ct = x0t.

It suffices to consider two cases.

Case 1. x = 1, y ∈ [0, 1).
From d(T x,Ty) ≥ x0t we deduce that x0 ≥ x0t, so t ≤ 1. Since, by hypothesis, Md,01(x,Ty, t) > 1 − t we deduce

that Md,01(x,Ty, t) = 1, thus d(1, 0) = 1 < t, a contradiction.

Case 2. x ∈ [0, 1) and y = 1. From d(T x,Ty) ≥ ct we deduce that d(0, x0) = 0 ≥ ct, a contradiction.

We conclude that Md,01(T x,Ty, ct) = 1 > 1 − ct, so T is a (1/2)-Chatterjea contraction on (X,Md,01, ∗), and all
conditions of Proposition 4.14 are satisfied.

We finish with the following partial converse of Proposition 4.14.

Proposition 4.16. A fuzzy quasi-metric space (X,M, ∗) such that ∗L ≤ ∗ is complete if every (1)-Chatterjea contrac-
tion has a fixed point.

Proof. Let T be a Chatterjea contraction (with constant c ∈ (0, 1/2)) on the quasi-metric space (X, dM). Then, for any
x, y ∈ X we have

dM(T x,Ty) ≤ c[dM(x,Ty) + dM(y,T x)].

We check that T is a (1)-Chatterjea contraction on (X,M, ∗) (with constant 2c).

Indeed, let x, y ∈ X and t > 0 such that min{M(x,Ty, t),M(y,T x, t)} > 1 − t. By condition (C1), we get
max{dM(x,Ty), d(y,T x)} < t. Then

dM(T x,Ty) < 2ct,

and thus M(T x,Ty, 2ct) > 1 − 2ct. By our assumption T has a fixed point. It follows from Theorem 3.5 that (X, dM)
is a complete quasi-metric space, so (X,M, ∗) is complete by Proposition 4.8. □
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