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Abstract

In this paper, we investigate the existence of nontrivial solutions in the Bessel Potential space for nonlinear
fractional Schrodinger-Poisson system involving distributional Riesz fractional derivative. By using the
mountain pass theorem in combination with the perturbation method, we prove the existence of solutions.
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1. Introduction

In the last decades, fractional problems have garnered the attention of numerous authors, because of their
importance in quantum mechanics, nonlinear optics, semiconductor theory, and plasma physics. For more
details on the physics aspects, we refer the interested readers to [5] 6 9] and their references. In recent years,
several results and works have been published for fractional Schrédinger-Poisson systems on the multiplicity
of solutions, the existence of ground state solutions, and the existence of nontrivial solutions under various
assumptions and conditions, see for instance [3] [7, 12}, 13} [17, 19].
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In 1998, Benci and Fortunato [4] firstly proposed the following Schrédinger-Poisson system
—Au+ V(z)u+ ¢u = g(w,u) in R3 (1)
—A¢p = u? in R3.

for a bounded domain to describe the interaction of a charged particle for Schrédinger equations with an

unknown electrostatic field. Systems similar to has been widely studied via variational methods, see e.g,

[, 2} 18].

For the nonlocal case, by using the symmetric mountain pass theorem, authors [8] obtained the existence of

infinitely many solutions for the following fractional system with sign-changing potential and A > 0
(=AY + V(2)u+ Apu = g(z,u), in R3, 5
(=A)Pp = u? in R3, @

We notice that when A = 1, the multiplicity of solutions was obtained in [I4] via the Fountain theorem
without the Palais Smale condition. Moreover, Li in [15] proved the existence of non-trivial solutions when
V(z) =1 and A =1 for the following fractional Schrédinger-Poisson system
(=AY +u + ¢u = g(z,u), in R3, 3)
(=AY =u? in R3,

where 2 + 4a > 3 and (—A)?® is the fractional Laplacian operator for s = «, 5 € (0; 1].
Very recently, an increasing number of researchers focus their attention on the problems related to the
distributional Riesz fractional derivative in their works, see e.g [16] 21} 22], this fractional operator satisfies
three basic physical invariance requirements as proved in Silhavy paper [23]. In [21], the authors firstly
studied a new class of fractional PDEs related to the distributional fractional gradient, they showed that it
has interesting features of interest for the study of fractional problems in PDEs.
In light of the previous cited works, more precisely by [15] and [2I]], the main purpose of the present paper
is to prove the existence of nontrivial solutions for a new class of fractional Schrédinger-Poisson system
—DY.(D%) +u+ ¢u = g(z,u) in R3, A
—DP.(DP¢) = u? in R3. @)

where «, 5 € (0;1]; 284+4a > 3, and —D*.(Du) is the distributional Riesz fractional derivative, and we give
its consistency with the usual fractional Laplacian in this work. The starting point of research pursued in
[21] for the development of a general theory for fractional PDEs involving this operator, is the distributional
Riesz fractional gradient D® of order a € (0,1) which is called the a-gradient for short. For u € LP (]RN ),
1 < p < oo such that I1_, * u is well defined, they set

0%u 0

« _ _ .
(D U)j—%?—a—xjh_a*u, 0<a<l, j=1,..,N,

0
where —— is defined in the sense, for every w € C°(RY),

ax]—
0%u ow ow
<67?’w> = (=1){(J1—a *u), 87%> - _/RN(Il_a * U)aidﬂsv

where I, is the Riesz potential of order o, 0 < o < 1 (]24]):

(Io *u) (x) = v (N, ) / ‘xfg(/yl)v_ady where y(N,a) :=7"
RN
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Thus, the a-gradient (D%) and the a-divergence (D®.) can be written in finit integral form for sufficiently
smoothness functions u and vector ¢ [16] 21), 22, 23], respectively by

Du(x) = 4(N, a) /R i Ti_) mﬁ(fi? il

and

olz) —dly) z—y

ry |z —y|Nre Tz —y|

D% .¢(x) = (N, a) dy.

D? has nice properties for u € C§°(R”) as shown in [21], 23], it corresponds to the fractional Laplacian as
follows:

. g oo
(A = =D g

= —D°.(D%), (5)
where the fractional Laplacian may be given [10], for o € (0,1) by

(-8 u(w) = gV, [ HEEDEEE N Z 2,

Furthermore, for u,w € C§°(RY) equation (5] is to be understood in this sense

/Do‘u.Do‘wdx = /(—A)O‘u.wdx = /(—A)gu.(—A)gwdx,

RN RN RN
which is particularily helpful for the variational formulation of PDEs involving non-local operators. We refer
to [16] 211 22], 23] for more detailed informations about this fractional operator.
In order to state our main result, we introduce the assumptions on the nonlinearity g and the potential V:
(g1) : g € C(R3 x R;R) for every x € R? and u € R, there exists constant K1 > 0, and p € ]2;2%[ such that

lg9(z, )| < Ky (ful + [ul”™),

where 27, = ﬁ the fractional critical Sobolev exponent .
(92) : g(z,u) =0, |u| — 0 uniformly on R3,
(g3) : there exists k > 4 such that
0 < kG(z,u) < ug(z,u),

u

holds for every z € R3 and u € R\ {0}, where G(z,u) = /g(:(:, s)ds.

0
(V): Ve C(R*R), inf,cps V(z) > Vp > 0, where V; is a constant, for every M > 0 meas {z € R® V(z) < M} <
00, where meas represents the Lesbesgue measure. The main result is the following theorem:

Theorem 1.1. Suppose that (91)-(g3) and (V') are satisfied. Then, problem possesses at least a nontrivial
solution.

Remark 1.2. In this paper, we do not need the condition g € C*(R,R) since the perturbed method is used.
The main idea of this method is to obtain the existence of critical values of the perturbed functional Jy for
sufficiently small X > 0, and taking A — oo to get solutions of original problems.

This paper is organized as follows. In section 2, we present some facts about the fractional Sobolev spaces
and technical results. In section 3, we use the perturbation method and the mountain pass theorem to prove
our main result. In section 4, we give a discussion about our research results.

We next fix the following notations. Let LP (R?) (p € [1,00)) be the usual Lesbesgue space with the norm

1

Jull, = ([ 1apda)”

R3
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2. Preliminaries

In this section, we will give some basic definitions on the fractional Sobolev spaces which will be useful
along the paper. For any p € [1,+00) and « € (0, 1), the fractional Sobolev space WP (R?) is defined as

P
WP (R? LP(R?) : / / ule) ~uly)”,;,
(R?) = {ue o Jes |m— ‘3+po¢ rdy < +00 ¢,

endowed with the norm

1
DI Y
[ullwean@sy = </RS /R3 |x—y|5+P0‘ —————="dxdy + » lulPdz ) .

For p = 2, the space W®2(R3) is simply denoted by H*(R3). Moreover, The fractional Sobolev space
D*?(R3) for a € (0,1), is defined by

DoY) — {u € LA (RY) - \z|e< z) fffi” C LR Rg)}
T —Y|2

which is the completion of C§°(IR?) with respect to the Gagliardo norm

1
. We, Y}
ol sy = /|D wpaey’ = ([ [ MO )

endowed with the inner product
(U, W) pa2 = /Do‘u.Do‘wdx.
R3
Next, for @ € (0,1). Since the problem involves the distributional Riesz fractional gradient, we will

introduce the natural setting for solving , which is called the vector space of fractional differentiable
functions X*2(R?), and defined for u € C§°(R3) as the closure of C§°(R?) with the following norm

lullXe 2ray = lullz2s) + 1DullZ2@s)- (6)

By Theorem 1.7 in [21], X*?2(R3) it is exactly the Bessel potential space L*%(R3) defined for a« € Ry by
(21, 24)
LY2(R%) = {u:u=Guoxf for some f e L*(R3)},

where the Bessel potentials G, are defined by ([21], 24])

1 +oo — o) ai .
Ga<$) = gil—‘m e t 64‘” dt.
2 5 0

The norm of the Bessel potential space is ||u/|po.2®s) = || fllL2(rsy if u = Ga * [
Now, we summarize the main properties of this Bessel space (see [111 21]).

Theorem 2.1. 1. Ifa € (0,1), then H*(R?) = Wo2(R3) = L*2(R%) = X*2(R3).
2. If a > 0 and 2 < q < 2%, then L%%(R3) is continuously embedded in LY(R3), and the embedding is
locally compact if 2 < q < 2%

Remark 2.2. From Theorem the Bessel potential space L*?(R3) is topologically undistinguishable from
the well known fractional Sobolev space H*(R?), and the norms in the two spaces being equivalent given by

().
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The solvability of the linear fractional PDEs with variable coefficients is established by the following
theorem.

Theorem 2.3. ([21]) Let Q C R? is an arbitrary bounded open set. Suppose thatv € L%2(R3) and h € L*(1),
such that I1_, x v is well defined and A : R? — R3*3 with coefficients bounded and measurable such that

aly]? < A(z)y.y and A(z)y.y < bly|?

For all x € R3, some a,b > 0 and all y € R3. Then, there exists a unique v € L**(R3) such that

/ A(z)D%u.D%wdx = / hwdz,
RN Q
for every w € LY2(R3) and u = v in R3\Q. In this work A is the identity.

Lemma 2.4. (See [10]) For every o € (0, %), D*%(R3) is continuously embedded in L (R?), i.e there exists

K, > 0 such that :
(m/u “dz < Ka/|D°‘u|2dx, u €D™? (]Rg).
R3

The linear operator £, : D??(R3) — R is defined by:

Lo(w) = / wdz.

R?)

By Holder inequality, Theorem 2.1l and Lemma we derive

[Lu(w)] < HUIIL lwll 25 < K [lulZo2 [[w]lps.- (7)

3128 LB —

According to the Lax-Milgram theorem, for every u € L%?(R3), there exists a unique qsﬁ € DA? (]R3) such
that

/Dﬂqﬁﬁ DPwdzx = /u wdz Yw € DP? (Rg) (8)

R3

ie. (bﬁ is a weak solution of —D?#. (Dﬁqﬁg) = u2. Moreover,

‘ “|ps.2

Since 2 + 4a > 3 and S € (0, 1], then % €(2,2%). By Lemma and (8), we have

DB.2 _/ —/U2¢75d$,

= [ILull < K Julfoz - (9)

R3 R3
and
|8 DM_HUII%‘ PP L 4 (10)
Then
Jo2] e < Klluls (1)

We have, for z € R3

2
o) =ea [ mf;‘?_%dy, (12)
R3
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which is called 5-Riesz potential (see [24]), where

()

PTG

05:7['

Njw

We get the fractional Schrédinger equation by replacing gzﬁg in 1}
—D.(D%) + u+ ¢Pu = g(z,u), =eR> (13)
The energy functional J : L*?(R3?) — R that correspond to is defined as

J (u) = ;/ (|Do‘u|2 —|-u2)dx + % /qbﬁqu:c — /G(:L’,u) dz.
R3

R3 R3

Therefore, J is well defined in L*? (R?) and J € C*(L*? (R?) ,R). Moreover, its derivative is

< J (u),w>= /(Do‘u.Daw + uw + ¢Puw — g (x, w)w)dz, we L (R?). (14)

RS

Theorem 2.5. 1. (u,¢) € L™? (]R3) x DP:2 (Rg) s a weak solution of if u is a weak solution of
2. u is a weak solution of for any w € L*? (R3), if

/ (Do‘u.Daw + uw + ¢Puw — g (x,u) w) dx = 0.
R3

Now, we define the work space for by

H=(ue L (R?): /(]Dc“u|2 + V(z)u?)dr < +oo p ,
R3

1
which is a Hilbert space equipped with the norm ||u|| ; = (u, )}, and the inner product (u, w) ; = / (D%u.D%w+

V (z) vw)dx. ©

Lemma 2.6. (Theorem 6.5 in [I0]) Space H is compactly embedded in L (R®) for q € [2,2%), and contin-
uously embedded in L7 (R3) for q € [2,25)].

Hence, there exists Ky > 0 such that
[ull o < Kollully, Vg € [2,23].

For a constant X € (0,1], we introduce:

(u,w) gy, = / (D%u.D% + AV (z)uw) dz,

]R3

1
and the norm |[ul[y, = (u,u)f . Denote Hy = (H, ||HHA>
Consider the perturbed functional Jy: H — R defined as follows

I(u) = J(u) + % / V(z)uldz, A€ (0,1] (15)
R3
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Lemma 2.7. Let (g1) and (g2) hold. If V (x) > 0, then there exists 0,0 > 0 such that for fized A € (0,1],

inf  Jy(u) > o,
UEHzllu”H:Q

where o and o are independent of \.

Proof. From (g1), (g2), for any € > 0, there exists K. > 0 such that
lg (z,u)| < e lul + Keluf"™" u € R,

Then %
G 0)] < Glul* + = FJul”

For o > 0, set
So={ueH:|lully <o}

Since p € (2,2}), for u € 05, and from Lemma

1 A 1
Iy (u) = 2 ul|3 + 2/V(:lc) u?dx + 4/¢5 (z) u’dz — /G(x,u) dx
R3 R3 R3
> (1 _2€> 92 _ KKy Qp
p

For p small enough and ¢ € (0,1), the conclusion follows.

O

Lemma 2.8. If (g3) holds, there exists e € H with |le||; > o such that Jy (e) < 0 for fired X € (0,1], where

0 is the same as in Lemma[2.7]

Proof. According to (g3), there exists a constant K > 0 such that

G(z,u) > K|ul® for|u| large.

/gbgugdm = ‘

R?)

For v > 0 and w € C§°(R?), from (15),(16) and (17), we get

From @ and
¢l

2
DB

7 2 2 2 7 2
Bew) = Bl + 5 el + % [ dlutde - [ Glaow)ds
R3 R3
2 2 2
gl 2 7 2 | Ky 4
< 2l + 2 ol + S foles — Ky ol — oo

as 7 — +oo. Define a path f:[0,1] — H by f (1) = 7yw. For sufficiently large =y, we get

=

LF (Dl = (/(IDC”f(l)I2 1V (@) f2(1))de)” > 0 and Iy (f (1)) <0.

R3

Choosing e = f (1) = yw, we get the conclusion.

<K fuflbas.
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3. Proof of main results

Lemma 3.1. Suppose that (g1),(g3) and (V) hold. Then, Jy satisfies the Palais-Smale (PS) condition on H
for fized X € (0,1].

Proof. Let {uy} be a (PS) sequence in H. We will prove that {u,} has a convergent subsequence in H, then

K+ lunlly > Jx(un) —7<J’ n) s (Un))

11 1 ) 11
= (57 %) Muall+ (5= 3 ) hunlle (=5 ) [ obudao
R3

+ /(“”g(”") —G(Lun))dx

K
R3
11 )
(5 1) Al (18)

which means that {u,} is bounded in H. Up to a subsequence, we suppose that u, — u in H. From Lemma
, we conclude that u, — u in LP (R3) where 2 < p < 2% . Combining and , we get

v

lan = ull%, = (' () = 5 ()t = ) = [l — w2

19
— [ (f0n = ) = )+ [ (9 ) = g (1)) (1 — ) 1)
R3 R3
Obviously, we have
(J'\ (un) = '\ (w) ,up —u) — 0 and |ju, — ul|72 — 0 as n — oo. (20)
From the generalization of Hélder inequality, Lemma and , we obtain
[t = wyda] <[] oyl gl =l
3
< K[08|allunl g lun =l s
3
< Klunll® g ln vl s,
3
< Klunlly llun —ull 157
Similarly, we obtain
/¢a o= ) da) < Kl o =l
We have
/ (qb qﬁﬂu) (up, — u)dx
(21)

/qﬁﬁun n—ud:n+/¢’3 n—u)dr| =0 asn— oo.
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From (g1), Holder inequality and Minkowski inequality

/ (9 (&, ) — g (2, 0)) (tn — ) dz

3

SKl/(]unl+|uDun—u\dx—&—Kl/(]un]p_1+|u]p_1) |un, — u| dx

(22)
R3 R3
-1 —1
< K (lunl g2+l 2) im = ll 2 + B (Jlunll” -+l ) lm = vl
—1 —1
< K (funll g + 1wl ) im = ll 2 + K (Jlun 5+l ) i =l = 0
as n — oo. From (19)-(22), it follows that {u,} converges strongly in H for fixed A € (0, 1]. O

Theorem 3.2. Suppose that (g3) holds. Let A, — 0 and let {u,} C H be a sequence of critical points of
Iy, satisfying Jy, (un) < K for some K independent of n and J'y, (un) = 0. Then, up to a subsequence as
n — 00, Up — u in L2 (R3), u 48 a critical point of J.

Proof. ¥From J'y (u,) =0 and Jy, (u,) < K, we have

K > Jy(up) — % (J'\ (un) , (un))
_ @ . i) unlll, + (; - 1) el 22
() et [

1 1 1 1
<2 — H) HunH%az + (2 — H) //\nV(x)ufldx. (23)
R3

Then, up to a subsequence, we obtain u,, — u in L%? (R3) .
By Lemma 2.3 in [20], qﬁﬁn — gbg in DP2 (R3), using w € Cg° (R3), we derive

/gbgnuwdx —)/gi)guwdx, as n — oo.
3 3

By the generalization of Holder inequality, we obtain

/¢ n — u) wdz

as n — oo, and 2 is the support of w. Then for all w € C§° (RB), we have

/ 8 upw — / Puwdz| < / (5, - 4) uwda| + / R —
5 s 5

3

12 HwH 12 —0
L3+28(Q) L3+28 ()

571 2 | wn,

— 0 as n — oo. Combining and , we derive
<J/)\ (un) ,w> = / (Daun.Daw + u,w + gbgnunw — g (z,up) w) dx
R3

+ )\n/V(ac) upwdz,
R3
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where w € C§° (R?). From and Holder inequality, we obtain

)\n/V(x) upwdr = )\n/ (WUTL) (Ww) dz

R3 R3
1 1 1
< A / AV (2) uZdz)? / (V (z)w?dz)? =0
R3 Q
as n — oo. Thus, J' (u)w = 0 for all w € C§° (R?). Since C§° (R?) is dense in L*? (R?) (see Theorem 2.2
in [21]). Then, J' (u)w = 0 for all w € L*? (R?), w is a critical point of .J. O

Before we prove Theorem [L.1] we need the following vanishing Lemma.

Lemma 3.3. (Lemma 3.4 in [25]) If {un} be a bounded in H* (R®) and for q € [2,2}), we have for some
R>0
sup / |up|? — 0 as n — oo,

yER3
Br(y)

then, u, — 0 in L"(R3) for every r € (2,27).

Proof of Theorem Choosing eg € C§°(R3) and 7 > 0.
By Lemma [2.8] we have that for k > 4
72 2 Krt

.
I(reo) < T lleollfy + 5 lleole + = lleollfn = O ol < —o0 (24

as n — +00. Define
cx = inf sup Jy(y(1)),
Y€l rel0,1]
where I' = {y |y € C([0,1], H), v(0) = 0, Jx(7(1)) < 0}. By (24), there exists a constant ¢ > 0, independent
of A, such that
cx <sup Jy(Teo) < c.
720
By Lemma the mountain pass theorem holds and c) is a critical value of Jy, ¢y > o > 0, where o is
the same as in Lemma As a result, we can choose A\, — 0, and a sequence of critical points {u,} C H
satisfying J'\(un) = 0 and Jy(up,) < ¢. By Theorem up to a subsequence u, — u in L*? (R?), and w is
a critical point of J. It remains to demonstrate that v # 0, we argue by contradiction. Assume that u = 0,
From Lemma [3.3] either (i) or (ii) below holds:

. . q _ L *
(i) ngg—loo/‘un‘ dx =0, forqe(2,2}).
R3

(ii) There exists a sequence {y,} C R?® and constants R, > 0 such that

lim / tn|2dz > > 0.

n—oo
Br(yn)

If (i) occurs, by (¢g1) and (g2), we have lim [ g(z,up,)updx =0.

n—o0
R3

From (T2), ¢ (x) > 0. Since
0 = J\(un)un
= /(]Do‘un]2—&—ufl)dx—l—/qﬁﬁn(x)ufldx—/g(a:,un)undx—i-)\n/V(m)u%dm,
R3

R3 R3 R3
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We have
JunlBs < unlFo + [ 62, 0o = [ gl un)unds + 2, [ Vie)idd
R3 R3 R3
It follows that u, — 0 in L%2(R3). Then Jy(u,) — 0, this contradicts with Jy(u,) — ¢y > o > 0. Thus, (ii)
is valid. This completes the proof.

4. Conclusion

This paper is devoted to the study of the existence of non-trivial solutions for a new class of fractional
Schrédinger-Poisson system. By applying the perturbation method with the mountain pass theorem with
(PS) condition we obtained the existence of a critical point for functional J, which in turn proves the
existence of a non-trivial solution. As far as we are aware, our attempt is new because we utilize a new
fractional Laplacian in this type of system. We wish that the present paper will open wide avenues for
further research in the field of the distributional Riesz fractional derivative.
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