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Abstract

In this paper, we investigate the existence of nontrivial solutions in the Bessel Potential space for nonlinear
fractional Schrödinger-Poisson system involving distributional Riesz fractional derivative. By using the
mountain pass theorem in combination with the perturbation method, we prove the existence of solutions.
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1. Introduction

In the last decades, fractional problems have garnered the attention of numerous authors, because of their
importance in quantum mechanics, nonlinear optics, semiconductor theory, and plasma physics. For more
details on the physics aspects, we refer the interested readers to [5, 6, 9] and their references. In recent years,
several results and works have been published for fractional Schrödinger-Poisson systems on the multiplicity
of solutions, the existence of ground state solutions, and the existence of nontrivial solutions under various
assumptions and conditions, see for instance [3, 7, 12, 13, 17, 19].
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In 1998, Benci and Fortunato [4] �rstly proposed the following Schrödinger-Poisson system{
−∆u+ V (x)u+ ϕu = g(x, u) in R3,

−∆ϕ = u2 in R3.
(1)

for a bounded domain to describe the interaction of a charged particle for Schrödinger equations with an
unknown electrostatic �eld. Systems similar to (1) has been widely studied via variational methods, see e.g,
[1, 2, 18].
For the nonlocal case, by using the symmetric mountain pass theorem, authors [8] obtained the existence of
in�nitely many solutions for the following fractional system with sign-changing potential and λ > 0{

(−∆)αu+ V (x)u+ λϕu = g(x, u), in R3,

(−∆)βϕ = u2 in R3,
(2)

We notice that when λ = 1, the multiplicity of solutions was obtained in [14] via the Fountain theorem
without the Palais Smale condition. Moreover, Li in [15] proved the existence of non-trivial solutions when
V (x) ≡ 1 and λ = 1 for the following fractional Schrödinger-Poisson system{

(−∆)αu+ u+ ϕu = g(x, u), in R3,

(−∆)βϕ = u2 in R3,
(3)

where 2β + 4α > 3 and (−∆)s is the fractional Laplacian operator for s = α, β ∈ (0; 1].
Very recently, an increasing number of researchers focus their attention on the problems related to the
distributional Riesz fractional derivative in their works, see e.g [16, 21, 22], this fractional operator satis�es
three basic physical invariance requirements as proved in �ilhavý paper [23]. In [21], the authors �rstly
studied a new class of fractional PDEs related to the distributional fractional gradient, they showed that it
has interesting features of interest for the study of fractional problems in PDEs.
In light of the previous cited works, more precisely by [15] and [21], the main purpose of the present paper
is to prove the existence of nontrivial solutions for a new class of fractional Schrödinger-Poisson system{

−Dα.(Dαu) + u+ ϕu = g(x, u) in R3,

−Dβ.(Dβϕ) = u2 in R3.
(4)

where α, β ∈ (0; 1]; 2β+4α ⩾ 3, and −Dα.(Dαu) is the distributional Riesz fractional derivative, and we give
its consistency with the usual fractional Laplacian in this work. The starting point of research pursued in
[21] for the development of a general theory for fractional PDEs involving this operator, is the distributional
Riesz fractional gradient Dα of order α ∈ (0, 1) which is called the α-gradient for short. For u ∈ Lp

(
RN

)
,

1 < p < ∞ such that I1−α ∗ u is well de�ned, they set

(Dαu)j =
∂αu

∂xαj
=

∂

∂xj
I1−α ∗ u , 0 < α < 1, j = 1, ..., N,

where
∂

∂xj
is de�ned in the sense, for every w ∈ C∞

c (RN ),

⟨∂
αu

∂xαj
, w⟩ = (−1)⟨(I1−α ∗ u), ∂w

∂xj
⟩ = −

∫
RN

(I1−α ∗ u) ∂w
∂xj

dx,

where Iα is the Riesz potential of order α, 0 < α < 1 ([24]):

(Iα ∗ u) (x) = γ (N,α)

∫
RN

u (y)

|x− y|N−α
dy where γ(N,α) := π−N

2 2−αΓ(
N−α
2 )

Γ(α2 )
.
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Thus, the α-gradient (Dα) and the α-divergence (Dα.) can be written in �nit integral form for su�ciently
smoothness functions u and vector ϕ [16, 21, 22, 23], respectively by

Dαu(x) = γ(N,α)

∫
RN

u(x)− u(y)

|x− y|N+α

x− y

|x− y|
dy,

and

Dα.ϕ(x) = γ(N,α)

∫
RN

ϕ(x)− ϕ(y)

|x− y|N+α
.
x− y

|x− y|
dy.

Dα has nice properties for u ∈ C∞
0 (RN ) as shown in [21, 23], it corresponds to the fractional Laplacian as

follows:

(−∆)αu = −
N∑
j=1

∂α

∂xαj

∂α

∂xαj
u

= −Dα.(Dαu), (5)

where the fractional Laplacian may be given [10], for α ∈ (0, 1) by

(−∆)αu(x) =
1

2
γ2(N,α)

∫
RN

u(x+ y) + u(x− y)− 2u(x)

|y|N+2α
dy.

Furthermore, for u,w ∈ C∞
0 (RN ) equation (5) is to be understood in this sense∫

RN

Dαu.Dαwdx =

∫
RN

(−∆)αu.wdx =

∫
RN

(−∆)
α
2 u.(−∆)

α
2 wdx,

which is particularily helpful for the variational formulation of PDEs involving non-local operators. We refer
to [16, 21, 22, 23] for more detailed informations about this fractional operator.
In order to state our main result, we introduce the assumptions on the nonlinearity g and the potential V :
(g1) : g ∈ C(R3 ×R;R) for every x ∈ R3 and u ∈ R, there exists constant K1 > 0 , and p ∈ ]2; 2∗α[ such that

|g(x, u)| ≤ K1(|u|+ |u|p−1),

where 2∗α = 6
3−2α the fractional critical Sobolev exponent .

(g2) : g(x, u) = 0, |u| → 0 uniformly on R3,
(g3) : there exists κ > 4 such that

0 < κG(x, u) ≤ ug(x, u),

holds for every x ∈ R3 and u ∈ R\ {0}, where G(x, u) =

u∫
0

g(x, s)ds.

(V ): V ∈ C
(
R3,R

)
, infx∈R3 V (x) ≥ V0 > 0, where V0 is a constant, for everyM > 0meas

{
x ∈ R3 V (x) ≤ M

}
<

∞, where meas represents the Lesbesgue measure. The main result is the following theorem:

Theorem 1.1. Suppose that (g1)-(g3) and (V ) are satis�ed. Then, problem (4) possesses at least a nontrivial
solution.

Remark 1.2. In this paper, we do not need the condition g ∈ C1(R,R) since the perturbed method is used.
The main idea of this method is to obtain the existence of critical values of the perturbed functional Jλ for
su�ciently small λ > 0, and taking λ → ∞ to get solutions of original problems.

This paper is organized as follows. In section 2, we present some facts about the fractional Sobolev spaces
and technical results. In section 3, we use the perturbation method and the mountain pass theorem to prove
our main result. In section 4, we give a discussion about our research results.
We next �x the following notations. Let Lp

(
R3

)
(p ∈ [1,∞)) be the usual Lesbesgue space with the norm

∥u∥p = (

∫
R3

|u|pdx)
1
p

.
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2. Preliminaries

In this section, we will give some basic de�nitions on the fractional Sobolev spaces which will be useful
along the paper. For any p ∈ [1,+∞) and α ∈ (0, 1), the fractional Sobolev space Wα,p(R3) is de�ned as

Wα,p(R3) =

{
u ∈ Lp(R3) :

∫
R3

∫
R3

|u(x)− u(y)|p

|x− y|3+pα
dxdy < +∞

}
,

endowed with the norm

∥u∥Wα,p(R3) =

(∫
R3

∫
R3

|u(x)− u(y)|p

|x− y|3+pα
dxdy +

∫
R3

|u|pdx
) 1

p

.

For p = 2, the space Wα,2(R3) is simply denoted by Hα(R3). Moreover, The fractional Sobolev space
Dα,2(R3) for α ∈ (0, 1), is de�ned by

Dα,2(R3) =

{
u ∈ L2∗α(R3) :

|u(x)− u(y)|
|x− y|

3
2
+α

∈ L2(R3 × R3)

}
,

which is the completion of C∞
0 (R3) with respect to the Gagliardo norm

∥u∥Dα,2(R3) = (

∫
R3

|Dαu|2dx)
1
2

=

(∫
R3

∫
R3

|u(x)− u(y)|2

|x− y|3+2α
dxdy

) 1
2

,

endowed with the inner product

⟨u,w⟩Dα,2 =

∫
R3

Dαu.Dαwdx.

Next, for α ∈ (0, 1). Since the problem (4) involves the distributional Riesz fractional gradient, we will
introduce the natural setting for solving (4), which is called the vector space of fractional di�erentiable
functions Xα,2(R3), and de�ned for u ∈ C∞

0 (R3) as the closure of C∞
0 (R3) with the following norm

∥u∥2Xα,2(R3) = ∥u∥2L2(R3) + ∥Dαu∥2L2(R3). (6)

By Theorem 1.7 in [21], Xα,2(R3) it is exactly the Bessel potential space Lα,2(R3) de�ned for α ∈ R+ by
([21, 24])

Lα,2(R3) = {u : u = Gα ∗ f for some f ∈ L2(R3)},

where the Bessel potentials Gα are de�ned by ([21, 24])

Gα(x) :=
1

(4π)
α
2 Γ(α2 )

∫ +∞

0
e

−π|x|2
t e

−t
4π t

α−3
2

−1dt.

The norm of the Bessel potential space is ∥u∥Lα,2(R3) = ∥f∥L2(R3) if u = Gα ∗ f .
Now, we summarize the main properties of this Bessel space (see [11, 21]).

Theorem 2.1. 1. If α ∈ (0, 1), then Hα(R3) = Wα,2(R3) = Lα,2(R3) = Xα,2(R3).

2. If α ≥ 0 and 2 ≤ q ≤ 2∗α, then Lα,2(R3) is continuously embedded in Lq(R3), and the embedding is
locally compact if 2 ≤ q < 2∗α.

Remark 2.2. From Theorem 2.1, the Bessel potential space Lα,2(R3) is topologically undistinguishable from
the well known fractional Sobolev space Hα(R3), and the norms in the two spaces being equivalent given by
(6).
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The solvability of the linear fractional PDEs with variable coe�cients is established by the following
theorem.

Theorem 2.3. ([21]) Let Ω ⊂ R3 is an arbitrary bounded open set. Suppose that v ∈ Lα,2(R3) and h ∈ L2(Ω),
such that I1−α ∗ v is well de�ned and A : R3 −→ R3×3 with coe�cients bounded and measurable such that

a|y|2 ≤ A(x)y.y and A(x)y.y ≤ b|y|2

For all x ∈ R3, some a, b > 0 and all y ∈ R3. Then, there exists a unique u ∈ Lα,2(R3) such that∫
RN

A(x)Dαu.Dαwdx =

∫
Ω
hwdx,

for every w ∈ Lα,2(R3) and u = v in R3\Ω. In this work A is the identity.

Lemma 2.4. (See [10]) For every α ∈
(
0, 32

)
, Dα,2(R3) is continuously embedded in L2∗α(R3), i.e there exists

Kα > 0 such that : ∫
R3

|u|2
∗
αdx

 2
2∗α

≤ Kα

∫
R3

|Dαu|2dx, u ∈Dα,2
(
R3

)
.

The linear operator Lu : Dβ,2(R3) → R is de�ned by:

Lu(w) =

∫
R3

u2wdx.

By Hölder inequality, Theorem 2.1 and Lemma 2.4, we derive

|Lu(w)| ≤ ∥u∥2
L

12
3+2β

∥w∥
L
2∗
β
≤ K ∥u∥2Lα,2 ∥w∥Dβ,2 . (7)

According to the Lax-Milgram theorem, for every u ∈ Lα,2(R3), there exists a unique ϕβ
u ∈ Dβ,2

(
R3

)
such

that ∫
R3

Dβϕβ
u.D

βwdx =

∫
R3

u2wdx ∀w ∈ Dβ,2
(
R3

)
, (8)

i.e. ϕβ
u is a weak solution of −Dβ.

(
Dβϕβ

u

)
= u2. Moreover,∥∥∥ϕβ

u

∥∥∥
Dβ,2

= ∥Lu∥ ≤ K ∥u∥2Lα,2 . (9)

Since 2β + 4α ≥ 3 and β ∈ (0, 1], then 12
3+2β ∈ (2, 2∗α). By Lemma 2.4, (7) and (8), we have∥∥∥ϕβ

u

∥∥∥2
Dβ,2

=

∫
R3

∣∣∣Dβϕβ
u

∣∣∣2dx =

∫
R3

u2ϕβ
udx,

and ∥∥∥ϕβ
u

∥∥∥2
Dβ,2

≤ ∥u∥2 12
3+2β

∥∥∥ϕβ
u

∥∥∥
L
2∗
β
≤ K ∥u∥2 12

3+2β

∥∥∥ϕβ
u

∥∥∥
Dβ,2

. (10)

Then ∥∥∥ϕβ
u

∥∥∥
Dβ,2

≤ K ∥u∥2 12
3+2β

. (11)

We have, for x ∈ R3

ϕβ
u(x) = cβ

∫
R3

u2(y)

|x− y|3−2β
dy, (12)
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which is called β-Riesz potential (see [24]), where

cβ = π− 3
2

Γ
(
3−2β

2

)
22βΓ (β)

.

We get the fractional Schrödinger equation by replacing ϕβ
u in (4)

−Dα.(Dαu) + u+ ϕβ
uu = g(x, u), x ∈ R3. (13)

The energy functional J : Lα,2(R3) → R that correspond to (4) is de�ned as

J (u) =
1

2

∫
R3

(
|Dαu|2 + u2

)
dx+

1

4

∫
R3

ϕβ
uu

2dx−
∫
R3

G (x, u) dx.

Therefore, J is well de�ned in Lα,2
(
R3

)
and J ∈ C1(Lα,2

(
R3

)
,R). Moreover, its derivative is

< J ′ (u) , w >=

∫
R3

(Dαu.Dαw + uw + ϕβ
uuw − g (x, u)w)dx, w ∈ Lα,2

(
R3

)
. (14)

Theorem 2.5. 1. (u, ϕ) ∈ Lα,2
(
R3

)
×Dβ,2

(
R3

)
is a weak solution of (4) if u is a weak solution of (13)

.

2. u is a weak solution of (13) for any w ∈ Lα,2
(
R3

)
, if∫

R3

(
Dαu.Dαw + uw + ϕβ

uuw − g (x, u)w
)
dx = 0.

Now, we de�ne the work space for (4) by

H =

u ∈ Lα,2
(
R3

)
:

∫
R3

(|Dαu|2 + V (x)u2)dx < +∞

 ,

which is a Hilbert space equipped with the norm ∥u∥H = ⟨u, u⟩
1
2
H , and the inner product ⟨u,w⟩H =

∫
R3

(Dαu.Dαw+

V (x)uw)dx.

Lemma 2.6. (Theorem 6.5 in [10]) Space H is compactly embedded in Lq
(
R3

)
for q ∈ [2, 2∗α), and contin-

uously embedded in Lq
(
R3

)
for q ∈ [2, 2∗α].

Hence, there exists K0 > 0 such that

∥u∥Lq ≤ K0∥u∥H , ∀q ∈ [2, 2∗α].

For a constant λ ∈ (0, 1] , we introduce:

⟨u,w⟩Hλ
=

∫
R3

(Dαu.Dαw + λV (x)uw) dx,

and the norm ∥u||Hλ
= ⟨u, u⟩

1
2
Hλ

. Denote Hλ =
(
H, ∥.∥Hλ

)
.

Consider the perturbed functional Jλ : H → R de�ned as follows

Jλ(u) = J(u) +
λ

2

∫
R3

V (x)u2dx, λ ∈ (0, 1]. (15)
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Lemma 2.7. Let (g1) and (g2) hold. If V (x) ≥ 0, then there exists σ, ϱ > 0 such that for �xed λ ∈ (0, 1],

inf
u∈H,∥u∥H=ϱ

Jλ (u) > σ,

where σ and ϱ are independent of λ.

Proof. From (g1), (g2), for any ε > 0, there exists Kε > 0 such that

|g (x, u)| ≤ ε |u|+Kε|u|p−1, u ∈ R.

Then
|G (x, u)| ≤ ε

2
|u|2 + Kε

p
|u|p.

For ϱ > 0, set
Sϱ = {u ∈ H : ∥u∥H ≤ ϱ} .

Since p ∈ (2, 2∗α), for u ∈ ∂Sϱ and from Lemma 2.6

Jλ (u) =
1

2
∥u∥2H +

λ

2

∫
R3

V (x)u2dx+
1

4

∫
R3

ϕβ
u (x)u

2dx−
∫
R3

G (x, u) dx

≥ (1− ε) ϱ2

2
− KεK0

p
ϱp.

For ϱ small enough and ε ∈ (0, 1), the conclusion follows.

Lemma 2.8. If (g3) holds, there exists e ∈ H with ∥e∥H > ϱ such that Jλ (e) < 0 for �xed λ ∈ (0, 1] , where
ϱ is the same as in Lemma 2.7.

Proof. According to (g3), there exists a constant K > 0 such that

G(x, u) ≥ K|u|κ for |u| large. (16)

From (9) and (10) ∫
R3

ϕβ
uu

2dx =
∥∥∥ϕβ

u

∥∥∥2
Dβ,2

≤ K ∥u∥4Lα,2 . (17)

For γ > 0 and w ∈ C∞
0 (R3), from (15),(16) and (17), we get

Jλ (γw) =
γ2

2
∥w∥2Hλ

+
γ2

2
∥w∥2L2 +

γ2

4

∫
R3

ϕβ
uw

2dx−
∫
R3

G(x,γw)dx

≤ γ2

2
∥w∥2H +

γ2

2
∥w∥2L2 +

Kγ2

4
∥w∥4Lα,2 −Kγκ ∥w∥κLκ → −∞

as γ → +∞. De�ne a path f : [0, 1] → H by f (τ) = τγw. For su�ciently large γ, we get

∥f (1)∥H = (

∫
R3

(|Dαf (1)|2 + V (x) f2(1))dx)

1
2

> ϱ and Jλ (f (1)) < 0.

Choosing e = f (1) = γw, we get the conclusion.
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3. Proof of main results

Lemma 3.1. Suppose that (g1),(g3) and (V ) hold. Then, Jλ satis�es the Palais-Smale (PS) condition on H
for �xed λ ∈ (0, 1].

Proof. Let {un} be a (PS) sequence in H. We will prove that {un} has a convergent subsequence in H, then

K + ∥un∥H ≥ Jλ (un)−
1

κ

〈
J ′

λ (un) , (un)
〉

=

(
1

2
− 1

κ

)
∥un∥2Hλ

+

(
1

2
− 1

κ

)
∥un∥2L2 +

(
1

4
− 1

κ

)∫
R3

ϕβ
un
u2ndx

+

∫
R3

(
ung (x, un)

κ
−G (x, un)

)
dx

≥
(
1

2
− 1

κ

)
λ ∥un∥2H , (18)

which means that {un} is bounded in H. Up to a subsequence, we suppose that un ⇀ u in H. From Lemma
2.6, we conclude that un → u in Lp

(
R3

)
where 2 ≤ p < 2∗α . Combining (14) and (15), we get

∥un − u∥2Hλ
= ⟨J ′

λ (un)− J ′
λ (u) , un − u⟩ − ∥un − u∥2L2

−
∫
R3

(
ϕβ
un
un − ϕβ

uu
)
(un − u) dx+

∫
R3

(g (x, un)− g (x, u)) (un − u)dx.
(19)

Obviously, we have 〈
J ′

λ (un)− J ′
λ (u) , un − u

〉
→ 0 and ∥un − u∥2L2 → 0 as n → ∞. (20)

From the generalization of Hölder inequality, Lemma 2.4 and (11), we obtain∣∣∣∣∣∣
∫
R3

ϕβ
un
un (un − u) dx

∣∣∣∣∣∣ ≤
∥∥∥ϕβ

un

∥∥∥
L
2∗
β
∥un∥

L
12

3+2β
∥un − u∥

L
12

3+2β

≤ K
∥∥∥ϕβ

un

∥∥∥
Dβ,2

∥un∥
L

12
3+2β

∥un − u∥
L

12
3+2β

≤ K ∥un∥ 3

L
12

3+2β
∥un − u∥

L
12

3+2β

≤ K ∥un∥3H ∥un − u∥
L

12
3+2β

Similarly, we obtain∣∣∣∣∣∣
∫
R3

ϕβ
uu (un − u) dx

∣∣∣∣∣∣ ≤ K ∥u∥3H ∥un − u∥
L

12
3+2β

.

We have ∣∣∣∣∣∣
∫
R3

(
ϕβ
un
un − ϕβ

uu
)
(un − u) dx

∣∣∣∣∣∣
≤

∣∣∣∣∣∣
∫
R3

ϕβ
un
un (un − u) dx

∣∣∣∣∣∣+
∣∣∣∣∣∣
∫
R3

ϕβ
uu (un − u) dx

∣∣∣∣∣∣ → 0 as n → ∞.

(21)
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From (g1), Hölder inequality and Minkowski inequality∣∣∣∣∣∣
∫
R3

(g (x, un)− g (x, u)) (un − u) dx

∣∣∣∣∣∣
≤ K1

∫
R3

(|un|+ |u|) |un − u| dx+K1

∫
R3

(
|un|p−1 + |u|p−1

)
|un − u| dx

≤ K1 (∥un∥L2 + ∥u∥L2) ∥un − u∥L2 +K1

(
∥un∥p−1

Lp + ∥u∥p−1
Lp

)
∥un − u∥Lp

≤ K (∥un∥H + ∥u∥H) ∥un − u∥L2 +K
(
∥un∥p−1

H + ∥u∥p−1
H

)
∥un − u∥Lp → 0

(22)

as n → ∞. From (19)-(22), it follows that {un} converges strongly in H for �xed λ ∈ (0, 1].

Theorem 3.2. Suppose that (g3) holds. Let λn → 0 and let {un} ⊂ H be a sequence of critical points of
Jλn satisfying Jλn (un) ≤ K for some K independent of n and J ′

λn (un) = 0. Then, up to a subsequence as
n → ∞, un ⇀ u in Lα,2

(
R3

)
, u is a critical point of J .

Proof. From J ′
λn (un) = 0 and Jλn (un) ≤ K, we have

K ≥ Jλ (un)−
1

κ

〈
J ′

λ (un) , (un)
〉

=

(
1

2
− 1

κ

)
∥un∥2Hλ

+

(
1

2
− 1

κ

)
∥un∥2L2

+

(
1

4
− 1

κ

)∫
R3

ϕβ
un
u2ndx+

∫
R3

(
ung (x, un)

κ
−G (x, un)

)
dx

≥
(
1

2
− 1

κ

)
∥un∥2Lα,2 +

(
1

2
− 1

κ

)∫
R3

λnV (x)u2ndx. (23)

Then, up to a subsequence, we obtain un ⇀ u in Lα,2
(
R3

)
.

By Lemma 2.3 in [20], ϕβ
un → ϕβ

u in Dβ,2
(
R3

)
, using w ∈ C∞

0

(
R3

)
, we derive∫

R3

ϕβ
un
uwdx →

∫
R3

ϕβ
uuwdx, as n → ∞.

By the generalization of Hölder inequality, we obtain∣∣∣∣∣∣
∫
R3

ϕβ
un

(un − u)wdx

∣∣∣∣∣∣ ≤
∥∥∥ϕβ

un

∥∥∥
L
2∗
β
∥un − u∥

L
12

3+2β (Ω)
∥w∥

L
12

3+2β (Ω)
→ 0

as n → ∞, and Ω is the support of w. Then for all w ∈ C∞
0

(
R3

)
, we have∣∣∣∣∣∣

∫
R3

ϕβ
un
unw −

∫
R3

ϕβ
uuwdx

∣∣∣∣∣∣ ≤
∣∣∣∣∣∣
∫
R3

(
ϕβ
un

− ϕβ
u

)
uwdx

∣∣∣∣∣∣+
∣∣∣∣∣∣
∫
R3

ϕβ
un
un (un − u)wdx

∣∣∣∣∣∣
→ 0 as n → ∞. Combining (14) and (15), we derive〈

J ′
λ (un) , w

〉
=

∫
R3

(
Dαun.D

αw + unw + ϕβ
un
unw − g (x, un)w

)
dx

+ λn

∫
R3

V (x)unwdx,
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where w ∈ C∞
0

(
R3

)
. From (23) and Hölder inequality, we obtain

λn

∫
R3

V (x)unwdx = λn

∫
R3

(√
V (x)un

)(√
V (x)w

)
dx

≤ λ
1
2
n

∫
R3

(
λnV (x)u2ndx

) 1
2

∫
Ω

(
V (x)w2dx

) 1
2 → 0

as n → ∞. Thus, J ′ (u)w = 0 for all w ∈ C∞
0

(
R3

)
. Since C∞

0

(
R3

)
is dense in Lα,2

(
R3

)
(see Theorem 2.2

in [21]). Then, J ′ (u)w = 0 for all w ∈ Lα,2
(
R3

)
, u is a critical point of J .

Before we prove Theorem 1.1, we need the following vanishing Lemma.

Lemma 3.3. (Lemma 3.4 in [25]) If {un} be a bounded in Hα
(
R3

)
and for q ∈ [2, 2∗α), we have for some

R > 0

sup
y∈R3

∫
BR(y)

|un|q → 0 as n → ∞,

then, un → 0 in Lr(R3) for every r ∈ (2, 2∗α).

Proof of Theorem 1.1 Choosing e0 ∈ C∞
0 (R3) and τ > 0.

By Lemma 2.8, we have that for κ > 4

Jλ(τe0) ≤
τ2

2
∥e0∥2H +

τ2

2
∥e0∥2L2 +

Kτ4

2
∥e0∥4Lα,2 − Cτκ ∥e0∥κκ ≤ −∞ (24)

as n → +∞. De�ne
cλ = inf

γ∈Γ
sup

τ∈[0,1]
Jλ(γ(τ)),

where Γ = {γ |γ ∈ C([0, 1], H), γ(0) = 0, Jλ(γ(1)) < 0}. By (24), there exists a constant c > 0, independent
of λ, such that

cλ ≤ sup
τ≥0

Jλ(τe0) ≤ c.

By Lemma 2.7, the mountain pass theorem holds and cλ is a critical value of Jλ, cλ > σ > 0, where σ is
the same as in Lemma 2.7. As a result, we can choose λn → 0, and a sequence of critical points {un} ⊂ H
satisfying J ′

λ(un) = 0 and Jλ(un) ≤ c. By Theorem 3.2 up to a subsequence un ⇀ u in Lα,2
(
R3

)
, and u is

a critical point of J . It remains to demonstrate that u ̸= 0, we argue by contradiction. Assume that u = 0,
From Lemma 3.3, either (i) or (ii) below holds:

(i) lim
n→+∞

∫
R3

|un|qdx = 0, for q ∈ (2, 2∗α).

(ii) There exists a sequence {yn} ⊂ R3 and constants R,µ > 0 such that

lim
n→∞

∫
BR(yn)

|un|2dx > µ > 0.

If (i) occurs, by (g1) and (g2), we have lim
n→∞

∫
R3

g(x, un)undx =0.

From (12), ϕβ
u(x) ≥ 0. Since

0 = J ′
λ(un)un

=

∫
R3

(|Dαun|2 + u2n)dx+

∫
R3

ϕβ
un
(x)u2ndx−

∫
R3

g(x, un)undx+ λn

∫
R3

V (x)u2ndx,
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We have
∥un∥2Lα,2 ≤ ∥un∥2Lα,2 +

∫
R3

ϕβ
un
(x)u2ndx =

∫
R3

g(x, un)undx+ λn

∫
R3

V (x)u2ndx.

It follows that un → 0 in Lα,2(R3). Then Jλ(un) → 0, this contradicts with Jλ(un) → cλ ≥ σ > 0. Thus, (ii)
is valid. This completes the proof.

4. Conclusion

This paper is devoted to the study of the existence of non-trivial solutions for a new class of fractional
Schrödinger-Poisson system. By applying the perturbation method with the mountain pass theorem with
(PS) condition we obtained the existence of a critical point for functional J , which in turn proves the
existence of a non-trivial solution. As far as we are aware, our attempt is new because we utilize a new
fractional Laplacian in this type of system. We wish that the present paper will open wide avenues for
further research in the �eld of the distributional Riesz fractional derivative.
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