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Abstract

In this study, we consider the system of second-order nonlinear boundary value problems (BVPs). We focus
on the numerical solutions of di�erent types of nonlinear BVPs by Galerkin �nite element method (GFEM).
First of all, we originate the generalized formulation of GFEM for those type of problems. Then we determine
the approximate solutions of a couple of second-order nonlinear BVPs by GFEM. The numerical results are
unfolded in tabuler form and portrayed graphically along with the exact solutions. Those results demonstrate
the applicability, compatibility and accuracy of this scheme.
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1. Introduction

Numerical methods amplify accurate and rapid approximations to problems whose exact solutions are very
di�cult to obtain because of their perplexity. In real life, we have to face many linear and nonlinear higher-
order scienti�c and engineering problems containing di�erent types of boundary conditions. A considerable
number of problems are from the nonlinear system of di�erential equations. Researchers attempt to solve
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those problems either analytically or numerically with the help of di�erent kinds of powerful and e�ective
methods in order to require higher accuracy. Among them the Finite Di�erence Method (FDM), Galerkin
Method [1], Collocation Method, Least Square Method, Sub-domain Method [2], Adomian Decomposition
Method [5], Shooting Method are used frequently in numerical analysis [6]. The FDM has been used widely
with some of its limitations like using this method we can get the solutions at particular grid points but
it is unable to in�ict the solutions at every single point between two grid points. The next one is the
computational cost to achieve higher accuracy. To overcome this tenacious situation, during some years
Galerkin Finite Element Method (GFEM) plays the most important role in solving problems of engineering
and mathematical physics with complicated geometries, loadings, and material properties [1]. The extensively
used Galerkin weighted residual method shows the approximate results to any point between any two grid
points even in the complex domain of the problem. Moreover, when it is not possible to come up with a
nearly form solution of many engineering a�airs for complicated geometry and boundary conditions, GFEM,
Finite Strip Method, Finite Volume Method, Boundary Element Method, etc were introduced to provide
nearby solutions to those unsolved complicated problems by using computer. Among them, GFEM often
forms the core of many commercially available engineering analysis software and becomes one of the most
popular methods in the case of unusual geometry. Also, it is capable of solving the problems of heat transfer,
�uid mechanics, electrostatics, and mechanical systems in a very straightforward manner.

Galerkin �nite element method is widely used in solving linear and nonlinear ordinary, partial [3, 4]
and fractional order di�erential equations [8]. Ali and Islam [19] applied GFEM to solve the second-order
nonlinear boundary value problems which is limited to single equation. On the other hand, Rupa and
Islam [32] solved system of ordinary di�erential equation by Galerkin method but it is limited on linear
problems only. While to solve nonlinear system of second-order boundary value problem, Dehghan and
Saadatmandi [33] used sinc-collocation method, and Dehghan and Lakestani [34] used cubic B-spline scalling
function Akter et al. used the spectral collocation method with Fourier transform to solve partial di�erential
equations [9]. Bhatti and Bracken [11] used the Galerkin method to solve the di�erential equation with
Bernstein polynomial basis that was limited with in �rst order and only Diritchlet boundary condition.
After that Islam and Shirin [18] used the same method for solving both linear and nonlinear BVPs with the
help of Bernoulli polynomials for di�erent boundary conditions that was limited to single equation.

The existence of the solution of second-order nonlinear system of di�erential equations was introduced by
many authors [13, 26]. Also the existence of positive solutions for a second-order ordinary di�erential system
was discussed in [7]. Linearisation techniques for solving singular initial value problems were described by
Ramos [10]. Lu [12] suggested the variational iteration method for solving a nonlinear system of second-order
BVPs.

Investigating the analytical solutions of a two-dimensional nonlinear system of Burger's equations, Shah
and Ullah [13] solved two problems for presenting the e�ciency of the proposed hybrid techniques formed by
coupling Laplace transform with the Adomian polynomials method. Hence introduced a new method named
as Laplace transform Adomian decomposition method (LTADM). In [14], the authors studied the global
stability of some k-order di�erence equations. They applied two di�erent techniques. The �xed point tools
analyze the asymptotic stability of some k-order di�erence equations for k = 1 and k = 2. So this proposed
technique can be used for the global stability of more general initial value problems. In order to demonstrate
a vast number of biological, chemical, and physical phenomena, fourth-order boundary value problems are
practical. The primary purpose of the study as shown in [15], was to analyze the more accurate existence
results of positive solution for a nonlinear fourth-order ordinary di�erential equation (NLFOODE) using
four-point boundary value conditions (BVCs). The author applied the upper and lower solution method
and Schauder's �xed point theorem to obtain the current results. At �rst, Green's function was introduced
and used to get the numerical solution of the corresponding boundary value problem. Also, for supporting
the analytical proof, one example was included in [15]. It has been seen that the uniqueness of solutions
for a boundary value problem at resonance, the method of upper and lower solutions were applied in [16].
For the existence of solutions, the shift method was employed. The authors developed a monotone iteration
scheme and sequences of approximate solutions which converged monotonically to the unique solution of the
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boundary value problem at resonance. Moreover, their analysis was proved by including two examples.
Very few works have been done so far which are limited within a single equation and/or some less

e�cient method. Therefore, the main purpose of this paper is to solve the system of second-order nonlinear
boundary value problems. For better understanding, we derive the general formulation of Galerkin �nite
element method for solving nonlinear systems of ordinary di�erential equations. At the initial stage, we solve
a linear system of ODEs. Finally, we formulate the Galerkin �nite element method to solve the nonlinear
system of second-order boundary value problem. Several problems are solved and the results are compared
with the exact solutions to verify the e�ectiveness of the derived formula.

Since the early 1970s, the most popular weighted residuals method has been the Galerkin �nite-element
method having piecewise polynomials of low degree. The popularity of this method arises in engineering
and mathematical modeling for obtaining the most approximate numerical solution of di�erential equations.
This vigorous method's vast applications areas of interest are as follows [35, 37, 36, 38, 40, 42, 43]:
a. Structural Analysis, b. Heat Transfer, c. Fluid Flow, d. Mass Transport, and, e. Electromagnetic
Potential.

The GFEM reduces product development costs of structural analysis and optimization. This one is capa-
ble of performing in any given phenomenon that arises in aerospace, mechanical, industrial, and production
engineering. Mainly this method concentrates on the following industries like:
a. Energy Industry [40],
b. Heavy Engineering [38],
c. Machine parts and tools [39],
d. Structural and Vibration Analysis of Bracket Design [41], and
e. Bracket structural model [38, 39].

Moreover, this GFEM is more e�cient in solving Laplace and Helmholtz equations, which is responsible
for carrying the heat di�usion in solids. This method is also used to solve groundwater �ow equations and
compute the mass balance. Consequently, we have seen that this method is used as a general technique
to obtain numerical solutions of linear and nonlinear boundary value problems in many di�erent valuable
sectors, representing its importance and acceptance.

In this research article, in section 1, we have represented introduction along with literature review, while
in the following section 2, a rigorous formulation of Galerkin �nite element method has formulated. Conver-
gence and error analysis has explained in section 3 and some numerical applications are shown in section 4.
Finally, the summary and concluding remarks are presented in section 5.

It is now time to derive the Galerkin �nite element method for system of linear and Nonlinear ordinary
di�erential equations.

2. Galerkin Finite Element Method and System of second-order BVPs

In the following section, we are going to formulate the GFEM for the system of linear and nonlinear
boundary value problems.

2.1. System of Linear BVPs

In order to describe the generalized formulation for system of second-order linear ordinary boundary
value problems, initially we need to assume a system of the following form:

u′′(x) + p(x)u(x) + q(x)v(x) = f(x), a ≤ x ≤ b,

v′′(x) + r(x)v(x) + s(x)u(x) = g(x), a ≤ x ≤ b,

u(a) = u(b) = 0,

v(a) = v(b) = 0.

(1)

Two equations containing in the above system both are second-order linear ODEs, where each of the solution
components u(x) and v(x) uniquely satisfy boundary conditions and in the domain a < x < b, u(x) and v(x)
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are pair of functions. The terms p(x), q(x), r(x) and s(x) are coe�cient functions and f(x) and g(x) ensure
the non-homogenity of the system (1). Using the linear �nite element [20] to the system(1), the Galerkin
�nite element method reveals the system of equations and de�ned as

xi+1∫
xi

(−W ′
i (x)ũ

′
i(x) + p(x)(ũi(x))Wi(x) + q(x)ṽi(x)Wi(x))dx = R1

xi+1∫
xi

(−W ′
i (x)ṽ

′
i(x) + r(x)ṽi(x)Wi(x) + s(x)ũi(x)Wi(x))dx = R2

(2)

where the linear approximations for u(x) and v(x) are ũ(x) = a1x+ a2, ṽ(x) = b1x+ b2, a1, a2, b1, b2 are
parameters, Wi(x), (i = 0, 1, . . . , n) is the coordinate function and

R1 =

xi+1∫
xi

f(x)Wi(x)dx− [Wi(x)ũ
′
i(x)]

xi+1
xi , R2 =

xi+1∫
xi

g(x)Wi(x)dx− [Wi(x)ṽ
′
i(x)]

xi+1
xi

are two parameters.
Next part is to form the trial solutions for two equations and they are:

ũ = H1(x)ui +H2(x)ui+1, ṽ = H1(x)vi +H2(x)vi+1 (3)

as long as

H1(x) =
xi+1 − x

xi+1 − xi
, H2(x) =

x− xi
xi+1 − xi

.

Hence the �rst equation of the system (2) becomes

xi+1∫
xi

(Sγ + Tγ +Aγ)dx+ [Bγ ]
xi+1
xi =

xi+1∫
xi

Lγdx, γ = 1, 2

where

Sγ = −
{
H ′

1

H ′
2

}[
H ′

1 H ′
2

]
{

ui
ui+1

}
, if γ = 1{

vi
vi+1

}
, if γ = 2

Tγ =
[
H1 H2

]{H1

H2

}{
ui
ui+1

}
p(x)

{
ui
ui+1

}
, if γ = 1

r(x)

{
vi
vi+1

}
, if γ = 2

Aγ =
[
H1 H2

]{H1

H2

}{
vi
vi+1

}
q(x)

{
vi
vi+1

}
, if γ = 1

s(x)

{
ui
ui+1

}
, if γ = 2

Bγ =

{
H1

H2

}[
H ′

1 H ′
2

]
{

ui
ui+1

}
, if γ = 1{

vi
vi+1

}
, if γ = 2

and

Lγ =

{
H1

H2

}{
f(x), if γ = 1
g(x), if γ = 2
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Sequentially complete the above integrals of the system and rewritten as KU = F . Therefore, K =(
L11 L12

L21 L22

)
and for the �rst equation L11 = coe�cient of u and L12 = coe�cient of v. Again for the

second equation L21 = coe�cient of u and L22 = coe�cient of v. Also U =

(
u
v

)
and F =

(
R1

R2

)
. Finally,

U = K−1F is our desired solution which is comparable to the exact solution that indicates the accuracy of
the result.

2.2. System of Nonlinear BVPs

Let introduce a system of nonlinear ODEs with boundary conditions [1, 2]
u′′(x) + p1(x)(v

′(x))2 + p2(x)u(x)v(x) = f(x),

v′′(x) + q1(x)u
′(x)− q2(x)v(x) = g(x),

u(a) = α, u(b) = β,

v(a) = δ, v(b) = ν,

(4)

with the domain a < x < b.
Use the linear approximations for the pair of functions u (x) and v (x) as

ũ(x) = c1x+ c2, ṽ(x) = d1x+ d2 (5)

where c1, c2, d1, d2 are parameters and use Wi(x) as a coordinate function. Then the integration of the
�rst terms from both �rst and second equation of the system by parts gives that

xi+1∫
xi

(−W ′
i (x)ũ

′
i(x) + p1(x)(ṽ

′
i(x))

2Wi(x) + p2(x)ũi(x)ṽi(x)Wi(x))dx = R1

xi+1∫
xi

(−W ′
i (x)ṽ

′
i(x) + q1(x)ũ

′
i(x)Wi(x)− q2(x)ṽi(x)Wi(x))dx = R2

(6)

where

R1 =

xi+1∫
xi

f(x)Wi(x)dx− [Wi(x)ũ
′
i(x)]

xi+1
xi , R2 =

xi+1∫
xi

g(x)Wi(x)dx− [Wi(x)ṽ
′
i(x)]

xi+1
xi .

With the help of linear approximations, �rst �nd the parameters value and using them to form the trial
solutions for both equations such that

ũ = H1(x)ui +H2(x)ui+1, ṽ = H1(x)vi +H2(x)vi+1 (7)

where

H1(x) =
xi+1 − x

xi+1 − xi
, H2(x) =

x− xi
xi+1 − xi

.

After that the system (6) becomes

xi+1∫
xi

(Sγ + Tγ +Gγ)dx+ [Mγ ]
xi+1
xi =

xi+1∫
xi

Fγdx, γ = 1, 2

where

Sγ = −
{
H ′

1

H ′
2

}[
H ′

1 H ′
2

]
{

ui
ui+1

}
, if γ = 1{

vi
vi+1

}
, if γ = 2
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Tγ =
[
H1 H2

]2{H1

H2

}{
ui
ui+1

}
p1(x)

{
vi
vi+1

}
, if γ = 1

q1(x)

{
ui
ui+1

}
, if γ = 2

Gγ =


p2(x)

[
H1 H2

]{ ui
ui+1

}[
H1 H2

]{ vi
vi+1

}{
H1

H2

}
, if γ = 1

−q2(x)
[
H1 H2

]{H1

H2

}{
vi
vi+1

}
, if γ = 2

Mγ =

{
H1

H2

}[
H ′

1 H ′
2

]
{

ui
ui+1

}
, if γ = 1{

vi
vi+1

}
, if γ = 2

and

Fγ =

{
H1

H2

}{
f(x), if γ = 1
g(x), if γ = 2

Compute those integrations and form KU = F where K =

(
L11 L12

L21 L22

)
and for the �rst equation L11 =

coe�cient of u and L12 = coe�cient of v. Again for the second equation L21 = coe�cient of u and L22 =

coe�cient of v. Also U =

(
u
v

)
and F =

(
F1

F2

)
. At the end of this procedure, �nd the values of U = K−1F .

3. Convergence and Error Analysis

According to [19], to get the approximate solution of a system of second-order boundary value problem,
(1) and (4); it is must to form a �nite dimensional subspace of β(I)and choose the trial solutions ũ and ṽ,
where the trial solutions will satisfy the boundary conditions. Let the family of functions are denoted by
α(I) such that α(I) ⊂ β(I), where β(I) is the energy space. Additionally, n is the dimension of α(I), N is
the number of elements and lN is the length of N th element. Hence, in energy norm, we will try to reduce
the absolute error and percentage error of approximate solutions. Assume that uex and vex are the exact
solutions of the system of second-order boundary value problem and uap and vap are the GFEM solutions.
We need to �nd uap, vapϵα̃ such that B(uap, w) = F (w) for all wϵα0(I), where B is a bilinear form on α̃×α0.

Theorem 3.1. [17] The error of approximate solutions e1 := uex − uap and e2 := vex − vap are orthogonal
to all test functions in α0(I) in the following sense:

B(e1, w) = 0 ∀ w ϵ α0(I)

B(e2, w) = 0 ∀ w ϵ α0(I)

which indicates a basic property of the error of approximate results, familiar to all as Galerkin orthogonality.

Theorem 3.2. [17] The coe�cients of the basis functions will be considered in such a way that the energy
norm of the error || (e)| |β will be minimum in GFEM i.e.

||uex − uap||β = min||uex − u||β ∀u ϵ α̃(I) (8)

and
||vex − vap||β = min||vex − v||β ∀v ϵ α̃(I) (9)
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Moreover, the theorem helps us to belief that if we construct a sequence of �nite element spaces α1 ⊂
α2 ⊂ α3 ⊂ ... ⊂ αn and evaluate the corresponding Galerkin �nite element solutions uap(1), uap(2), ..., uap(3)
then the calculated error in the energy norm will reduce monotonically with respect to increasing n.

Let us now consider a particular non-homogeneous linear and nonlinear system of di�erential equations
presenting the governing system as described in the previous section and illustrate in the following portion.
The illustrated examples verify the result using the derived numerical method.

4. Numerical Examples

This section will consider the solution of some system of linear and nonlinear system of boundary value
problems with di�erent boundary conditions. All results are presented graphically and numerically, along
with the exact solution. The following formulas are used for computing absolute and percentage errors.

Absolute Error = |E(x)−A(x)|

Percentage Error =
|E(x)−A(x)|

E(x)
× 100,

where A(x) and E(x) are the approximate and exact solution respectively.

Example 4.1. Let us consider a second-order linear boundary value problem [12]
p′′(x) + xp(x) + xq(x) = 2,

q′′(x) + 2xq(x) + 2xp(x) = −2,

p(0) = p(1) = 0,

q(0) = q(1) = 0,

(10)

where 0 < x < 1. Also the exact solutions of (10) are p(x) = x2 − x and q(x) = x − x2. Both equations of
this system are second-order linear ODEs.

So consider that each of the solution components p(x) and q(x) uniquely satisfy two boundary conditions
where p(x) and q(x) are pair of functions while x ∈ (0, 1). Using Galerkin �nite element method to the
system(10), we get the following residual system of equations:

xi+1∫
xi

(−W ′
i (x)p̃

′
i(x) + x(p̃i(x))Wi(x) + xq̃i(x)Wi(x))dx = G1

xi+1∫
xi

(−W ′
i (x)q̃

′
i(x) + 2xq̃i(x)Wi(x) + 2xp̃i(x)Wi(x))dx = G2

(11)

where

G1 =

xi+1∫
xi

2Wi(x)dx− [Wi(x)p̃
′
i(x)]

xi+1
xi , G2 =

xi+1∫
xi

−2Wi(x)dx− [Wi(x)q̃
′
i(x)]

xi+1
xi .

and i is the number of parameters, xi = 0 & xi+1 = 1. If the domain is discretized into n equal size of
elements which represents the corresponding �nite element mesh. We want to express the trial functions in
terms of nodal variables [20]. In other words a1 and a2 need to be replaced by pi and pi+1. We evaluate p
at x = xi and x = xi+1. Then p(xi) = pi = a1xi + a2 and p(xi+1) = pi+1 = a1xi+1 + a2. Using subtraction

�nd the value of a1 that is a1 =
pi − pi+1

xi − xi+1
. Similarly, we have a2 =

xipi+1 − pixi+1
xi − xi+1

.

In a similar manner, we want to express the trial functions in terms of nodal variables. In other words,
b1 and b2 need to be replaced by qi and qi+1. We evaluate q at x = xi and x = xi+1. Finally, it is found that

b1 =
qi − qi+1

xi − xi+1
and b2 =

xiqi+1 − qixi+1

xi − xi+1
.
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At this time, it is necessary to substitute the values of a1 and a2 in the trial function which yields

p̃ = H1(x)pi +H2(x)pi+1 (12)

Also using b1 and b2, the required result is

q̃ = H1(x)qi +H2(x)qi+1 (13)

where H1(x) =
xi+1 − x
xi+1 − xi

and H2(x) =
x− xi

xi+1 − xi
. Here, equations (12) and (13) give us the expressions for

p and q in terms of nodal variables and H1, H2 are called linear shape functions. After that, the test (trial)
function for Galerkin's method are W1 = H1(x), W2 = H2(x). Substituting the values of p, q, W in (11),
we found the system of matrix equation which can be solved through the earlier described method.

The results are shown in Table 1 for p(x). The graphical results for both p(x) and q(x) are depicted in
Figure 1. The Figure 1 (left) shows that the approximate solution p(x) corresponds with the exact solution

0 0.2 0.4 0.6 0.8 1

x

-1

-0.6

-0.2

0.2

0.6

1

p
(x

)

Exact solution

Approximate solution

0 0.2 0.4 0.6 0.8 1

x

-1

-0.6

-0.2

0.2

0.6

1

q
(x

)
Exact solution

Approximate solution

Figure 1: Comparing between approximate solutions and exact solutions (left) p(x) = x2 − x, and (right) q(x) = x− x2.

p(x) = x2 − x and the percentage error can be omitted after certain decimal points. It is concluded that the
Galerkin �nite element method is able to deliver results closer to the exact solution.

It is seen that the approximate solution q(x) describes that it almost coincides with the exact solution
q(x) = x− x2 (Figure 1 (right)) since the visible absolute error term is very small, similarly the percentage
error. Therefore, the characteristics of approximate solution q(x) has good agreement with the exact solution.

Table 1: Numerical solutions of p, comparing with exact solutions p(x) = x2 − x.

x Numerical p(x) Exact p(x) = x2 − x Abs. Error Percentage Error

0.0000 0.0000 0.0000 0.0
0.1000 -0.0901 -0.0900 1.0× 10−4 1.1× 10−1

0.2000 -0.1601 -0.1600 1.0× 10−4 6.3× 10−2

0.3000 -0.2102 -0.2100 2.0× 10−4 9.5× 10−2

0.4000 -0.2402 -0.2400 2.0× 10−4 8.3× 10−2

0.5000 -0.2502 -0.2500 2.0× 10−4 8.0× 10−2

0.6000 -0.2402 -0.2400 2.0× 10−4 8.3× 10−2

0.7000 -0.2103 -0.2100 3.0× 10−4 1.4× 10−1

0.8000 -0.1602 -0.1600 2.0× 10−4 1.3× 10−1

0.9000 -0.0902 -0.0900 2.0× 10−4 2.2× 10−1

1.0000 0.0000 0.0000 0.0
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Example 4.2. Let us consider a second-order nonlinear boundary value problem [2, 22]
u′′(x) + (v′(x))2 + u(x)v(x) = 2 + ex(ex + x2),

v′′(x) + u′(x)− v(x) = 2x,

u(0) = 0, u(1) = 1,

v(0) = 1, v(1) = e,

(14)

where, 0 < x < 1 and this proposed system is nonlinear second-order ordinary di�erential equations.

So it's must that each of the solution components u(x) and v(x) uniquely satisfy two boundary conditions
where u(x) and v(x) are pair of functions in 0 < x < 1. Using the Galerkin �nite element method to the
system(4.2), we get the following residual system of equations

xi+1∫
xi

(−W ′
i (x)ũ

′
i(x) + (ṽ′i(x))

2Wi(x) + ũi(x)ṽi(x)Wi(x))dx+ [Wi(x)ũ
′
i(x)]

xi+1
xi = A

xi+1∫
xi

(−W ′
i (x)ṽ

′
i(x) + ũ′i(x)Wi(x)− ṽi(x)Wi(x))dx+ [Wi(x)ṽ

′
i(x)]

xi+1
xi = B

(15)

where A =
xi+1∫
xi

(2 + ex(ex + x2))Wi(x)dx and B =
xi+1∫
xi

2xWi(x)dx.

If the domain [0, 1] is discretized into n equal size of elements which represents the corresponding �nite
element mesh. We want to express the trial functions in terms of nodal variables. In other words c1 and c2
need to be replaced by ui and ui+1. We evaluate u at x = xi and x = xi+1. Then u(xi) = ui = c1xi + c2
and u(xi+1) = ui+1 = c1xi+1 + c2.

After few steps and simpli�cation we get the values of c1 and c2, where c1 =
ui − ui+1

xi − xi+1
and c2 =

xiui+1 − uixi+1

xi − xi+1
.

Similarly the expressions for d1 and d2 can be found and is de�ned as d1 =
vi − vi+1

xi − xi+1
and d2 =

xivi+1 − vixi+1

xi − xi+1
. Substituting the values of c1 and c2 in the trial function, we obtain

ũ = H1(x)ui +H2(x)ui+1 (16)

Also using d1 and d2, the required result is

ṽ = H1(x)vi +H2(x)vi+1 (17)

where H1(x) =
xi+1 − x
xi+1 − xi

and H2(x) =
x− xi

xi+1 − xi
.

The equations (16) and (17) give us the expressions for u and v in terms of nodal variables and H1, H2 are
called linear shape functions. Finally it will �nd the system of equations in a matrix equation and need to
solve through Galerkin �nite element method.
The results are shown in Tables 2 and 3 for u(x) and v(x), respectively. Their graphical comparisons with
the exact solution are displayed in Figure 2.

Figure 2 (left) represents that the approximate solution u(x) corresponds with the exact solution u(x) =
x2 and error term is so small which can be neglected as well as the percentage error. Thus it makes sense
that the Galerkin �nite element method is able to deliver results as similar as exact solution u(x) = x2.

It is noted that the approximate solution v(x) is very close to the exact solution v(x) = ex and the
required percentage error is negligible, see Figure 2 (right). Hence it must says that the characteristics of
approximate solution v(x) as harmonious as exact solution ex. The diagram visually condenses the claims
just made: solution curves converge toward the exact solution. Use the sliders above to verify these claims,
based on the plots of the various solution curves as shown in di�erent �gures. The absolute error graph is
shown to visualize the trend of chaning error of u(x) and v(x) with respect to x.

The error maps for u and v are displayed in Figure 4.
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Table 2: Comparison between numerical and exact solutions of u(x).

x Numerical u(x) Exact Abs. Error Percentage Error

0.0000 0.0000 0.0000 0.0
0.1000 0.0103 0.0100 3× 10−4 3.0× 100

0.2000 0.0406 0.0400 6.0× 10−4 1.5× 100

0.3000 0.0909 0.0900 9.0× 10−4 1.0× 100

0.4000 0.1611 0.1600 1.1× 10−3 6.9× 10−1

0.5000 0.2512 0.2500 1.2× 10−3 4.8× 10−1

0.6000 0.3612 0.3600 1.2× 10−3 3.3× 10−1

0.7000 0.4911 0.4900 1.1× 10−3 2.2× 10−1

0.8000 0.6409 0.6400 9.0× 10−4 1.4× 10−1

0.9000 0.8106 0.8100 6.0× 10−4 7.4× 10−2

1.0000 1.0000 1.0000 0.0 0.0

Table 3: Comparison between numerical and exact solutions of v(x).

x Numerical v(x) Exact Abs. Error Percentage Error

0.0000 1.0000 1.0000 0.0000 0.0× 10−5

0.1000 1.1052 1.1052 0.0000 0.0× 10−5

0.2000 1.2214 1.2214 0.0000 0.0× 10−5

0.3000 1.3498 1.3499 0.0001 7.4× 10−3

0.4000 1.4917 1.4918 0.0001 6.7× 10−3

0.5000 1.6486 1.6487 0.0001 6.0× 10−3

0.6000 1.8220 1.8221 0.0002 5.5× 10−3

0.7000 2.0136 2.0138 0.0002 9.9× 10−3

0.8000 2.2254 2.2255 0.0002 4.5× 10−3

0.9000 2.4595 2.4596 0.0001 4.1× 10−3

1.0000 2.7183 2.7183 0.0000 0.0× 10−5

5. Conclusion

This paper has represented the generalized formulation of Galerkin �nite element method for system of
nonlinear second-order boundary value problems. The numerical examples related to these formulations are
presented. In this study, the main concentration has given not only on the numerical solutions but also on
the formulations of Galerkin �nite element method to solve higher order systems. All the obtained results
are dedicated graphically as well as in tabular form.The computed solutions are compared with the exact
solution. Lastly, we include the absolute error in table to give concern in �nding the accuracy and e�ciency
of the Galerkin �nite element method.
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