Iğdır Üniversitesi Fen Bilimleri Enstitüsü Dergisi, 12(4): 2175 - 2187, 2022 Journal of the Institute of Science and Technology, 12(4): 2175 - 2187, 2022

ISSN: 2146-0574, eISSN: 2536-4618 DOI: 10.21597/jist.1141320

Fizik / Physics

Araştırma Makalesi / Research Article

Geliş tarihi / *Received*: 06.07.2022

Kabul tarihi / Accepted: 07.08.2022

Atıf İçin: Özdemir H G, Erkoyuncu İ, Yılmaz M, Kaçal M R, Demirkol İ, Akman F, 2022. Bazı Tungsten İçerikli Minerallerin Gama Zırhlama Özelliklerinin Geniş Enerji Aralığında İncelenmesi. Iğdır Üniversitesi Fen Bilimleri Enstitüsü Dergisi, 12(4): 2175 - 2187.

To Cite: Özdemir H G, Erkoyuncu İ, Yılmaz M, Kaçal M R, Demirkol İ, Akman F, 2022. Investigation of Gamma Shielding Properties of Some Tungsten-Containing Minerals in a Wide Energy Range. Journal of the Institute of Science and Technology, 12(4): 2175 - 2187.

Bazı Tungsten İçerikli Minerallerin Gama Zırhlama Özelliklerinin Geniş Enerji Aralığında İncelenmesi

Hatice GÜREL ÖZDEMİR^{1,2*,} İlhami ERKOYUNCU³, Meryem YILMAZ³, Mustafa Recep KAÇAL², İskender DEMİRKOL³, Ferdi AKMAN^{4,5}

ÖZET: Tungsten, yoğunluğu kurşuna göre yüksek, dayanıklı, sertlik ve mukavemet bakımından iyi bir metaldir. Bu çalışmada 0.060 MeV ila 2.614 MeV enerji aralığında bazı tungsten içerikli minerallerin (tungstibit, tungstenit, hubrenit, russelit, antonit) kütle azaltma katsayısı, lineer azaltma katsayısı, yarı kalınlık değeri, onda bir kalınlık değeri, ortalama serbest yol, etkin atom numarası ve etkin elektron yoğunluğu gibi gama radyasyonu zırhlama parametreleri WinXCOM programı, GEANT4 ve FLUKA simülasyon kodları yardımıyla incelenmiş ve elde edilen sonuçlar birbirleri ile karşılaştırılmıştır. Tungstenin K tabakası soğurma kıyısı enerjisi (0.0695 MeV) çevresinde tungstenit mineralinin daha iyi bir gama zırh malzemesi olabileceği gözlemlenirken, diğer enerji bölgelerinde russelit mineralinin daha iyi bir gama zırh malzemesi olabileceği gözlemlenmiştir.

Anahtar Kelimeler: Tungsten minerali, gama zırhlama, WinXCOM, GEANT4, FLUKA

Investigation of Gamma Shielding Properties of Some Tungsten-Containing Minerals in a Wide Energy Range

ABSTRACT: Tungsten is a metal with high density, durable, good in terms of hardness and strength compared to lead. In this study, gamma shielding parameters such as mass attenuation coefficient, linear attenuation coefficient, half value layer, tenth value layer, mean free path, effective atomic number and effective atomic density for some tungsten-containing minerals (tungstibite, tungstenite, hubrenite, russellite, anthoinite) in the energy range of 0.060 MeV to 2.614 MeV were investigated with the help of WinXCOM program, GEANT4 and FLUKA simulation codes and the obtained results were compared with each other. It has been observed that tungstenite may be a better gamma shielding material around the K shell absorption edge energy (0.0695 MeV) of tungsten, while russellite may be a better gamma shielding material in other energy regions.

Keywords: Tungsten mineral, gamma shielding, WinXCOM, GEANT4, FLUKA

¹ Hatice GÜREL ÖZDEMİR (Orcid ID: 0000-002-6590-2334), İstinye Üniversitesi, Sağlık Hizmetleri Meslek Yüksekokulu, Tıbbi Hizmetler ve Teknikler Bölümü, İstanbul, Türkiye

² Mustafa Recep KAÇAL (Orcid ID:0000-0002-3183-5516), Hatice GÜREL ÖZDEMİR (Orcid ID: 0000-002-6590-2334), Giresun Üniversitesi, Fen-Edebiyat Fakültesi, Fizik Bölümü, Giresun, Türkiye

³ İlhami ERKOYUNCU (<u>Orcid ID:0000-0003-1639-5062</u>), Meryem YILMAZ (<u>Orcid ID: 0000-0001-7513-</u> 4001), İskender DEMİRKOL (<u>Orcid ID:0000-0002-8065-6717</u>), Bingöl Üniversitesi, Fen-Edebiyat Fakültesi, Fizik Bölümü, Bingöl, Türkiye

⁴ Ferdi AKMAN (<u>Orcid ID: 0000-0002-8838-1762</u>), Bingöl Üniversitesi, Sosyal Bilimler Meslek Yüksekokulu, Mülkiyet Koruma ve Güvenlik Bölümü, Bingöl, Türkiye

⁵ Ferdi AKMAN (Orcid ID: 0000-0002-8838-1762), Bingöl Üniversitesi, Merkezi Laboratuvar Uygulama ve Araştırma Merkezi, Bingöl, Türkiye

*Sorumlu Yazar/Corresponding Author: Hatice GÜREL ÖZDEMİR, e-mail: hatice.ozdemir@istinye.edu.tr

GİRİŞ

Günümüzde sanayilesme ve teknolojideki hızlı gelişmeler ile birlikte radyasyonun kullanımı da artmaktadır. İyonlaştırıcı radyasyon etkileştiği atom veya molekülden elektron koparabilecek kadar yüksek enerjiye sahip bir radyasyon çeşididir. İyonlaştırıcı radyasyonlar yaygın olarak nükleer araştırma kuruluşları, nükleer reaktörler, tanısal görüntüleme, radyasyon tedavisi ve yüksek enerji fiziği gibi alanlarda kullanılmaktadır. İyonlaştırıcı radyasyona uzun süre maruz kalmak canlılarda kanser, hücre mutasyonu, organ yetmezliği gibi olumsuz sonuçlara sebep olabilir. Bu sebeple iyonlaştırıcı radyasyonların zararlı etkilerinden korunmak büyük önem taşımaktadır. Zararlı etkilerden kaçınmak ve radyasyonu azaltmak için zırh malzemesi olarak genellikle kurşun gibi ağır metaller ve onların bileşikleri kullanılmaktadır. Kurşunun yüksek yoğunluğa, yüksek atom numarasına, yüksek lineer azaltma katsayısına ve kütle azaltma katsayısına sahip olması iyonlaştırıcı radyasyonları zırhlamada kullanılması açısından büyük avantaj sunmaktadır. Fakat ağır olması, zehirli kimyasal etkilere sahip olması gibi olumsuz özelliklerinden dolayı da zırhlamada kullanımını azaltmak gerekmektedir. Bu sebeple kursun ve türevlerine alternatif olacak yeni zırh malzeme arayışına girilmiştir. Bu zırh malzemeleri arasında beton (Akkurt ve ark., 2010; Demir ve ark., 2011; Tansim ve ark., 2021; CheaBan ve ark., 2021) alaşım (Akman ve ark., 2019a; Akman ve ark., 2019b; Alshahrani ve ark., 2021; Mhareb ve ark., 2021; Wang ve ark., 2020) polimer kompozit malzemeler (Harish ve ark., 2009; More ve ark., 2021; Li ve ark., 2018; Kaçal ve ark., 2020; Kılıçoğlu ve ark., 2022) ve cam (Hanfi ve ark., 2021; Dong ve ark., 2019; Turhan ve ark., 2019) gibi birçok materyal türü tercih edilmektedir. En uygun zırh malzemesi seçimi yaparken malzemenin maliyetine, ağırlığına, kimyasal ve fiziksel dayanıklılığına bakmak gerekmektedir.

İyonlaştırıcı özelliğe sahip olan radyasyonun zararlı etkilerini en aza indirmek için yapılan zırhlama çalışmaları günümüzde hızla devam etmektedir. Kurşuna alternatif olacak malzeme çeşitleri arasında mineraller de bulunmaktadır. Turhan ve ark., (2019), yaptıkları çalışmada MnCO₃, ZnCO₃, SrCO₃ ve CdCO₃ minerallerinin 1 keV ile 100 GeV enerji aralığında kütle azaltma katsayısı, moleküler tesir kesiti, atomik tesir kesiti, elektronik tesir kesiti, etkin atom numarası ve etkin elektron yoğunluğu gibi zırhlama parametrelerini WinXCOM bilgisayar programını kullanarak teorik olarak hesaplamışlardır. Zırhlama parametrelerinin farklı enerji bölgelerinde farklı özellikler sergilediklerini gözlemlemişlerdir. İnceledikleri mineraller içerisinde CdCO3 mineralinin diğer minerallere kıyasla daha iyi zırhlama özelliğine sahip olduğunu bulmuşlardır. Sayyed ve ark., (2018), yaptıkları çalışmada kalsiyum tungstat, amonyum tungsten oksit, bizmut tungsten oksit, lityum tungstat, kadmiyum tungsten, stronsiyum tungsten oksit ve sodyum dodekatungstofosfat hidratın zırhlama parametrelerini 81-1333 keV enerji aralığında ²²Na, ⁵⁴Mn, ⁵⁷Co, ⁶⁰Co, ¹³³Ba ve ¹³⁷Cs radyoaktif kaynaklarını kullanarak HPGe detektörü ile incelemişlerdir. Elde edilen deneysel değerleri WinXCOM bilgisayar programı kullanarak elde edilen teorik değerler ile karşılaştırmışlardır. Teorik ve deneysel değerler arasında çok küçük farklılıklar olduğunu bulmuşlardır. Kütle azaltma katsayısı, lineer azaltma katsayısı, yarı kalınlık değeri, onda bir kalınlık değeri, ortalama serbest yol, radyasyon geçirme oranı, etkin atom numarası gibi zırhlama parametrelerini incelemislerdir. Bizmut tungsten oksitin incelenen tungstatlar içerisinde en iyi zırhlama özelliğine sahip olduğunu bulmuşlardır. Mahmoud ve ark., (2020), yaptıkları çalışmada kalkosit ve hematit tabanlı polivinil klorürün (PCV) zırhlama parametrelerini 0.015 MeV ile 15 MeV enerji aralığında WinXCOM programını kullanarak hesaplamışlar ve ayrıca MCPN-5 simülasyon kodu ile de hesaplayıp elde ettikleri sonuçları teorik sonuçlar ile karşılaştırmışlardır. Kütle azaltma katsayısı, yarı kalınlık değeri, onda bir kalınlık değeri, etkin atom numarası, etkin elektron yoğunluğu gibi zırhlama parametrelerini incelemişlerdir. Kalkosit/PCV'nin, hematit/PVC'ninkinden daha yüksek kütle azaltma katsayısı değerine sahip olduğunu bulmuşlardır. Mansour ve ark., (2020), kil mineral olan

Hatice GÜREL ÖZDEMİR ve ark.	12(4): 2175 - 2187, 2022
Bazı Tungsten İcerikli Minerallerin Gama Zırhlama	Özelliklerinin Genis Enerii Aralığında İncelenmesi

halloysit nanotüp minerallerinin zırhlama parametrelerini 0.015 MeV ve 15 MeV arasında MCPN-5 simülasyon kodu ile hesaplamışlardır. Ayrıca lineer azaltma katsayılarını teorik olarak Phys-X/PDS ara yüzünü kullanarak hesaplamışlardır. Kütle azaltma katsayışı, lineer azaltma katsayışı, yarı kalınlık değeri, etkin atom numarası gibi zırhlama parametrelerini incelemişlerdir. HNT2 ile kodlanmış mineralin incelenen diğer minerallere göre daha iyi zırhlama özelliğine sahip olduğunu bulmuşlardır. Basyigit ve ark., (2011), yaptıkları çalışmada mineral kökenli ağır beton olan limonit ve sideritin radyasyon zırhlama özelliklerini incelemişlerdir. Ağır betonun lineer azaltma katsayısını ¹³⁷Cs noktasal kaynağından elde edilen 662 keV'lik enerjide NaI (Tl) detektörü ile incelemişlerdir. Limonitin daha iyi zırhlama özelliğine sahip olduğunu bulmuşlardır. Baltas ve ark., (2019), yaptıkları çalışmada aynı oranlarda farklı cevher içeren minerallerin gama ışını zırhlama parametrelerini ²⁴¹Am, ¹³⁷Cs ve ⁶⁰Co radyoaktif kaynaklarından elde edilen 59.54 keV, 661 keV ve 1332 keV enerjilerinde HPGe detektörü ile incelemişlerdir. Araştırılan katkı malzemeleri arasında manyetit ve krom içeren mineralin daha iyi zırhlama özelliğine sahip olduğunu bulmuşlardır. Körpınar ve ark., (2020), yaptıkları çalışmada belirli oranlarda tungsten (VI) oksit içeren polihidroksietil metakrilat tabanlı kompozitlerin (PHEMA-WO₃2H₂O) radyasyon zırhlama özelliklerini incelemişlerdir. Tüm kompozitlerin gama ışını radyasyon zırhlama özelliklerini NaI (TI) sintilasyon detektörünü kullanarak ölçmüşlerdir. Ölçüm için ¹³⁷Cs (662 keV) ve ⁶⁰Co (1172 keV ve 1332 keV) noktasal kaynaklarını kullanmışlardır. Zırhlama parametresi olarak lineer azaltma katsayısı, yarı kalınlık değeri, onda-bir kalınlık değeri ve ortalama serbest yolu belirlemislerdir. XCOM programi ile elde edilen teorik zirhlama parametrelerini deneysel sonuçlarla karşılaştırmışlardır. İncelenen kompozitler arasında en iyi zırhlama materyalinin PHEMA+%50WO₃ olduğunu bulmuşlardır. Ahmed ve ark., (2019), yaptıkları çalışmada farklı oranlarda silikon-tungsten içeren kompozit malzemeler hazırlamış ve bu kompozitlerin gama-ışını zırhlama özelliklerini incelemişlerdir. Hazırlanan kompozit malzemelerin radyasyon zırhlamada kullanmak için uygun olduğunu bulmuşlardır. Atia ve ark., (2022), yaptıkları çalışmada Silttaşı (S24-S18-S22), Doloston (S16) minerallerinin gama ışını zırhlama parametrelerini 0.015 ile 15 MeV arasında Monte Carlo simülasyon kodu ve Phys-X/PDS ara yüzünü kullanarak hesaplamışlardır. En iyi zırhlama özelliğinin Silttaşı (S22) kodlu numune olduğunu bulmuşlardır.

Mineraller, doğal olarak oluşan, belli bir kimyasal formülü olan kristal özelliğe sahip ve inorganik yapıdaki malzemelerdir. Tungsten, toksik olmayan yoğunluğu kurşuna göre yüksek bir malzemedir. Bu nedenle sunulan çalışmada tungsten içerikli hubnerit (MnWO₄), russelit (Bi₂WO₆), tungstibit (Sb₂WO₆), tungstenit (WS₂) ve antonit (AIWO₃(OH)₃) minerallerinin gama radyasyonu zırhlama özellikleri 0.060 MeV ile 2.614 MeV enerji aralığında on sekiz farklı enerjide WinXCOM (Gerward ve ark., 2004) programı, GEANT4 (Agostinelli ve ark., 2003) ve FLUKA (Böhlen ve ark., 2014) simülasyon kodları ile incelenmiştir.

MATERYAL ve METOT

Radyasyon Zırhlama Parametrelerinin Belirlenmesi

FLUKA kodu hadronların, ağır iyonların ve elektromanyetik parçacıkların etkileşimini ve taşınmasını simüle eden dozimetri, hızlandırıcı tasarımı, radyasyona karşı koruma, dedektör çalışmaları tıbbi fizik ve uzay çalışmaları gibi alanlarda kullanılan geniş spektruma sahip enerji aralığında çalışabilen genel amaçlı bir Monte Carlo kod sistemidir. GEANT4 simülasyon programı da maddeparçacık etkileşimini geniş bir enerji aralığında tanımlayabilen Monte Carlo tabanlı kod sistemidir. WinXCOM programı ise elementlerin fotoelektrik, Compton saçılma ve çift oluşum gibi tesir kesitlerinin ve kütle azaltma katsayısı gibi bazı radyasyon zırhlama parametrelerinin 1 keV ila 100 GeV enerji aralığında veya bu enerji aralığında istenilen enerjilerde hesaplanabildiği bir programdır. Sunulan

Hatice GÜREL ÖZDEMİR ve ark.	12(4): 2175 - 2187, 2022
Bazı Tungsten İçerikli Minerallerin Gama Zırhlama	Özelliklerinin Geniş Enerji Aralığında İncelenmesi

çalışmada, 0.060 MeV ila 2.614 MeV foton enerjisi aralığında 18 farklı enerjide WinXCOM programı, GEANT4 ve FLUKA simülasyon kodları yardımı ile bazı tungsten içerikli minerallerin kütle azaltma katsayıları hesaplanmıştır ve bu kütle azaltma katsayıları yardımıyla lineer azaltma katsayısı, yarı ve onda-bir kalınlık değerleri, ortalama serbest yol, etkin atom numarası ve elektron yoğunluğu gibi parametreler hesaplanmıştır. WinXCOM programı ve simülasyon kodları çalışmaları yapılırken Çizelge 1'de sunulan tungsten içerikli minerallerin yüzde ağırlık bileşimleri ve yoğunlukları kullanılmıştır.

Mineral adı	Kimyasal Bileşimi (%Ağırlık)									
	Kimyasal	Sb	W	0	S	Mn	Bi	Al	Η	ρ (gcm ⁻³)
	Formül									
Tungstibit	Sb_2WO_6	46.53	35.13	18.34	-	-	-	-	-	6.69
Tungstenit	WS_2	-	74.14	-	25.86	-	-	-	-	7.4
Hubnerit	MnWO ₄	-	60.72	21.14	-	18.14	-	-	-	7.15
Russelit	Bi ₂ WO ₆	-	26.35	13.76	-	-	59.9	-	-	7.35
Antonit	AlWO ₃ (OH) ₃	-	59.33	30.98	-	-	-	8.71	0.98	4.8

Çizelge1. Tungsten içerikli minerallerin yüzde ağırlık bileşimleri ve yoğunlukları

Gama radyasyonu zırhlama parametrelerinden ilki olan kütle azaltma katsayısı (μ/ρ , cm² g⁻¹) karışım kuralı dikkate alınarak ve Eşitlik 1.'de sunulan denklem ile hesaplanmıştır (Sayyed ve ark., 2019). Karışım kuralı birden fazla element içeren malzemeler için kullanılır. Bu kurala göre her bir elementin ağırlıklı kesrine göre kütle azaltma katsayıları hesaplanır ve bunların toplamı malzemenin toplam kütle azaltma katsayısını oluşturur. Kütle azaltma katsayısı maddenin fiziksel halinden bağımsız bir parametredir.

$$\frac{\mu}{\rho} = \sum_{i} W_i \left(\frac{\mu}{\rho}\right)_i \tag{1}$$

Eşitlik 1.'de $(\mu/\rho)_i$ i. elementin kütle azaltma sayısını belirtirken, W_i bu elementin ağırlıklı kesrini belirtmektedir. Lineer azaltma katsayısı, malzemenin yoğunluğa bağlı olan bir parametresidir ve kütle azaltma katsayısı ile malzeme yoğunluğunun çarpımından elde edilebilir (Akman ve ark., 2019a). Yarı kalınlık değeri (YKD, cm), gelen fotonun soğurucu ortamdan geçtikten sonra radyasyon şiddetini yarıya indiren soğurucu kalınlığının belirlendiği parametredir ve Eşitlik 2.'de görüldüğü gibi lineer azaltma katsayısı yardımıyla hesaplanabilir.

$$YKD = \frac{\ln(2)}{\mu} \tag{2}$$

Onda bir kalınlık değeri (OKD, cm), radyasyon şiddetini ilk değerinin onda birine indiren bir soğurucunun kalınlığını belirleyen parametredir ve Eşitlik 3. yardımıyla belirlenebilir.

$$OKD = \frac{\ln(10)}{\mu} \tag{3}$$

Ortalama serbest yol değeri (OSY, cm), başlangıç radyasyon şiddetinin %36.8'inin geçirilebileceği numune kalınlığını belirleyen parametredir ve Eşitlik 4. ile bu parametre hesaplanabilir. 1

$$OSY = \frac{1}{\mu}$$
(4)

Etkin atom numarası ($Z_{etk.}$), malzemeyi oluşturan atomlarının gelen γ -ışını fotonları ile etkileşme ihtimalinin, malzemeyi oluşturan elektronların gelen γ -ışını fotonları ile etkileşme ihtimaline oranı olarak ifade edilebilir. Bu parametre Eşitlik 5. yardımı ile hesaplanabilir.

$$Z_{etk.} = \frac{\sum_{i} f_{i} A_{i} \left(\frac{\mu}{\rho}\right)_{i}}{\sum_{j} f_{j} \frac{A_{j}}{Z_{j}} \left(\frac{\mu}{\rho}\right)_{j}}$$
(5)

Burada f_i , i. elementin malzeme içindeki bolluğunu, A_i , malzeme içindeki i. elementin atom ağırlığını ve Z_j ise malzeme içindeki j. elementin atom numarasını ifade etmektedir (Akman ve ark., 2022; Sirin, 2020; Manohara ve ark., 2008). Etkin elektron yoğunluğu (N_{etk}, elektron g⁻¹), birim kütle başına düşen elektron sayısını belirleyen parametredir.

$$N_{etk.} = \frac{Z_{eff}}{A_{top}} \left(N_A \cdot n_{top} \right) \tag{6}$$

Burada A_{top}, N_A, n_{top} ifadeleri sırasıyla mineralin malzeme içindeki toplam atom ağırlığını, Avogadro sayısını ve toplam atom sayısını ifade etmektedir (Akman ve ark., 2015; Turhan ve ark., 2020).

BULGULAR VE TARTIŞMA

Bu çalışmada tungsten içerikli hubnerit (MnWO₄), russelit (Bi₂WO₆), tungstibit (Sb₂WO₆), tungstenit (WS₂), antonit (AlWO₃(OH)₃) minerallerinin gama radyasyonu zırhlama özellikleri 0.060 MeV ile 2.614 MeV enerji aralığında on sekiz farklı enerjide WinXCOM programı, GEANT 4 ve FLUKA simülasyon kodları ile incelenmiştir ve elde edilen sonuçlar birbirleri ile karşılaştırılmıştır. Gama radyasyonu zırhlama özelliklerini incelemek için kütle azaltma katsayısı, lineer azaltma katsayısı, yarı kalınlık değeri, onda bir kalınlık değeri, ortalama serbest yol, etkin atom numarası ve etkin elektron yoğunluğu parametreleri belirtilen program ve simülasyon kodları ile hesaplanmıştır.

Kütle azaltma katsayısı, maddenin fiziksel özelliklerinden bağımsız bir parametre olduğu için lineer azaltma katsayısına göre daha kullanışlı bir parametredir. Bu parametre belirlendikten sonra diğer azaltma parametreleri kolaylıkla hesaplanabilir. Tungsten içerikli minerallerin kütle azaltma katsayısı değerlerinin enerjiye göre değişimi Şekil 1'de verilmiştir. Ayrıca WinXCOM programı, GEANT 4 ve FLUKA simülasyon kodları ile elde edilen μ/ρ değerleri Çizelge 2'de verilmiştir. Şekil 1 incelendiğinde artan enerji ile incelenen minerallerin μ/ρ değerlerinin azaldığı görülmektedir. Bunun sebebi farklı foton enerji bölgelerinde baskın olan foton etkileşim tesir kesitleri ile açıklanabilir. Düşük enerji bölgelerinde fotoelektrik tesir kesiti daha baskındır. Fotoelektrik tesir kesiti, yaklaşık olarak Z⁴⁻⁵ (Z, atom numarası ve düşük enerjilerde 4, yüksek enerjilerde 5 ile orantılı) ve E^{-3.5} (E, gama fotonu enerjisi) ile orantılıdır. Bu sebeple düşük enerji bölgelerinde μ/ρ değerlerinde keskin bir düşüş görülmektedir. Orta enerji bölgelerinde Compton saçılma tesir kesiti daha baskındır. Compton saçılması tesir kesiti yaklaşık olarak Z ve E⁻¹ ile orantılıdır. Bu sebeple bu enerji aralığında μ/ρ değerleri küçük oranlarda değişmektedir. Yüksek enerji bölgesinde ise çift oluşum tesir kesiti daha baskındır. Çift oluşum tesir kesiti ise yaklaşık olarak Z^2 ve E ile orantılıdır. Bu sebeple yüksek enerji bölgelerinde μ/ρ değerlerindeki değişim orta enerji bölgesine göre daha fazladır. Şekil 1 ve Çizelge 2'den incelenen tungsten içerikli minerallerin düşük gama enerjilerinde daha iyi radyasyon zırhlama performansına sahip olduğu görülmektedir. 0.088 MeV 'de tungstenit en büyük μ/ρ değerine sahiptir. Bunu sırasıyla hubnerit, antonit, tungstibit ve russelit takip etmektedir. 0.088 MeV'de tungstenit 'in μ/ρ değeri russelit 'ten %62 daha fazladır.

Şekil 1'de görüldüğü üzere kütle azaltma katsayısı değerleri her tungsten içerikli mineral için artan enerji ile azalmaktadır. Şekil 1'de düşük enerjilerde ani sıçramalar görülmektedir. Bu sıçramaların sebebi tungsten elementlerinin K tabakası soğurma enerjisinin bu enerji bölgesinde olmasıdır. Çizelge 2'den de görüldüğü üzere WinXCOM programı, GEANT 4 ve FLUKA simülasyon kodu ile elde edilen kütle azaltma katsayısının teorik değerleri arasındaki fark ihmal edilebilecek kadar küçüktür.

Hatice GÜREL ÖZDEMİR ve ark.12(4): 2175 - 2187, 2022Bazı Tungsten İçerikli Minerallerin Gama Zırhlama Özelliklerinin Geniş Enerji Aralığında İncelenmesi

Enerji	Tungstibit				Tungstenit			Hubnerit			
(MeV)	WinX.	GEANT4	FLUKA	WinX.	GEANT4	FLUKA	WinX.	GEANT4	FLUKA		
0.060	4.5380	3.8765	4.7515	2.8573	2.5009	2.3121	2.4869	2.1866	2.8567		
0.081	4.1173	3.7148	3.9699	5.6740	4.9899	4.7781	4.7221	4.5675	4.8602		
0.088	3.3285	3.6376	3.7581	4.6030	4.5414	4.5602	3.8338	3.6935	4.0346		
0.122	1.4555	1.1805	1.4589	2.0252	1.9928	2.0147	1.6968	1.6145	1.7123		
0.136	1.1116	0.8942	1.1729	1.5427	1.4691	1.3248	1.2970	1.2235	1.2597		
0.239	0.3169	0.2533	0.3158	0.4181	0.3956	0.4409	0.3637	0.3442	0.3709		
0.356	0.1631	0.1276	0.1623	0.2003	0.1869	0.2035	0.1813	0.1699	0.1825		
0.511	0.1060	0.0835	0.1055	0.1217	0.1156	0.1299	0.1142	0.1091	0.1136		
0.569	0.0956	0.0755	0.0952	0.1078	0.1029	0.1117	0.1022	0.0980	0.1048		
0.583	0.0935	0.0739	0.0924	0.1051	0.1004	0.1091	0.0998	0.0959	0.1002		
0.662	0.0838	0.0665	0.0835	0.0925	0.0890	0.0977	0.0887	0.0858	0.0919		
0.835	0.0702	0.0560	0.0700	0.0755	0.0734	0.0828	0.0734	0.0717	0.0765		
1.063	0.0594	0.0475	0.0583	0.0626	0.0615	0.0784	0.0615	0.0606	0.0629		
1.173	0.0558	0.0447	0.0557	0.0584	0.0575	0.0672	0.0576	0.0568	0.0574		
1.275	0.0531	0.0426	0.0501	0.0554	0.0547	0.0609	0.0547	0.0541	0.0551		
1.333	0.0518	0.0415	0.0472	0.0539	0.0532	0.0548	0.0533	0.0527	0.0534		
1.770	0.0450	0.0362	0.0449	0.0467	0.0463	0.0511	0.0462	0.0459	0.0466		
2.614	0.0393	0.0315	0.0387	0.0410	0.0407	0.0465	0.0401	0.0398	0.0405		

Cizelge 2.	Tungsten	içerikli	minerallerin	kütle azaltma	katsayısı	değerleri
, ,	0	,			2	0

Çizelge 2. Tungsten içerikli minerallerin kütle azaltma katsayısı değerleri (Devamı)

		Russelit			Antonit	
Enerji (MeV) –	WinX.	GEANT4	FLUKA	WinX.	GEANT4	FLUKA
0.060	4.1387	3.8608	4.1929	2.2893	2.0131	2.2480
0.081	3.4802	3.2125	3.2042	4.5605	4.4153	4.4567
0.088	2.8290	2.6116	2.9961	3.7056	3.5795	4.0108
0.122	2.8095	2.6902	2.1144	1.6463	1.5649	1.6427
0.136	2.1435	2.0986	2.1929	1.2604	1.1916	1.2571
0.239	0.5625	0.5333	0.5593	0.3579	0.3397	0.3565
0.356	0.2531	0.2344	0.2513	0.1807	0.1702	0.1798
0.511	0.1431	0.1345	0.1421	0.1151	0.1103	0.1146
0.569	0.1242	0.1174	0.1233	0.1033	0.0995	0.1030
0.583	0.1205	0.114	0.1196	0.1009	0.0972	0.1009
0.662	0.1038	0.0989	0.1030	0.0899	0.0873	0.0896
0.835	0.0817	0.0788	0.0812	0.0747	0.0732	0.0744
1.063	0.0659	0.0642	0.0656	0.0629	0.0620	0.0632
1.173	0.0609	0.0596	0.0607	0.0589	0.0582	0.0588
1.275	0.0574	0.0563	0.0571	0.0560	0.0555	0.0561
1.333	0.0557	0.0547	0.0553	0.0545	0.0539	0.0544
1.770	0.0480	0.0473	0.0478	0.0471	0.0468	0.0473
2.614	0.0424	0.0418	0.0423	0.0406	0.0403	0.0406

İncelenen minerallerin kütle azaltma katsayıları dikkate alındığında düşük enerji bölgesinde tungstenit daha iyi bir gama radyasyonu zırh malzemesi iken yüksek enerjilerde russelit daha iyi bir gama zırh malzemesidir.

Şekil 1. Tungsten içerikli minerallerin kütle azaltma katsayısı değerlerinin enerjiye göre değişimi

Lineer azaltma katsayısı (μ), kütle azaltma katsayısından belirlenebilen bir parametredir. Tungsten içerikli minerallerin lineer azaltma katsayısı değerlerinin enerjiye göre değişimi Şekil 2'de verilmiştir. Şekil 2'den de görüldüğü gibi tungsten içeren minerallerin lineer azaltma katsayısı değerleri enerji arttıkça azalmaktadır. 0.081 MeV'de tungstenit en yüksek lineer azaltma katsayısına sahipken antonit ise en düşük lineer azaltma katsayısına sahiptir. 0.081 MeV'de tungstenit'in μ değeri antonit'ten %92 daha büyüktür. İncelenen minerallerin lineer azaltma katsayıları dikkate alındığında düşük enerji bölgesinde tungstenit daha iyi bir gama zırh malzemesi iken diğer enerji bölgelerinde russelit daha iyi bir gama zırhlama malzemesidir.

Şekil 2. Tungsten içerikli minerallerin lineer azaltma katsayısı değerlerinin enerjiye göre değişimi

Lineer azaltma katsayısına bağlı olarak belirlenen sonraki parametreler, yarı kalınlık değeri (YKD), onda-bir kalınlık değeri (OKD) ve ortalama serbest yol (OSY) parametreleridir. Bu parametreler ile lineer azaltma katsayısı arasında ters bir orantı vardır. Bu sebeple bu parametreler ne kadar küçük olursa malzeme o kadar iyi gama zırhlama özelliğine sahip olacaktır. Şekil 3, Şekil 4 ve Şekil 5'te sırasıyla 0.060 MeV ile 2.614 MeV enerji aralığında incelenen tüm tungsten içerikli minerallerin yarı kalınlık değeri, onda-bir kalınlık değeri, ortalama serbest yol değerleri sunulmuştur. Foton enerjisi arttıkça YKD, OKD ve OSY değerlerinin de arttığı sırasıyla Şekil 3, Şekil 4 ve Şekil 5'de görülmektedir. Ayrıca, en yüksek YKD, OKD ve OSY değerlerinin en düşük yoğunluğa sahip olan antonit mineralinde olduğu en düşük YKD, OKD ve OSY değerlerinin yüksek yoğunluğa sahip olan russelit mineralinde olduğu görülmektedir. Yani, malzemenin yoğunluğu gama radyasyonu zırhlamada önemli bir değişkendir. Russelit minerali için YKD, OKD ve OSY değerlerinin azalmasının temel nedeni russelit mineralinde %59.9 oranında yoğunluğu yüksek olan bizmut elementinin bulunmasıdır. Yapılan diğer araştırmalardan da bilindiği üzere incelenen numune ne kadar düşük YKD, OKD ve OSY değerlerine sahip ise gamma radyasyonunu zırhlama özelliği de o kadar iyidir (Sayyed ve ark., 2018; Mahmoud ve ark., 2020; Mansour ve ark., 2020). Bu parametreler lineer azaltma katsayısı ile ters orantılı olduğu için lineer azaltma katsayısında olduğu gibi düşük enerji bölgesinde tungstenit daha iyi bir gama zırh malzemesi iken diğer enerji bölgelerinde russelit daha iyi bir gama zırhlama malzemesidir.

Gama radyasyonunun zırhlama özelliğini incelemek için kullanılan bir diğer önemli parametre etkin atom numarasıdır. İncelenen mineraller için WinXCOM programı, GEANT4 ve FLUKA simülasyon kodları yardımıyla belirlenen etkin atom numarası değerleri Çizelge 3'de verilmiştir.

Tungsten içerikli minerallerin etkin atom numarası değerlerinin enerjiye göre değişimi ise Şekil 6'da verilmiştir. Seçilen tungsten içerikli minerallerin 0.511 MeV'a kadar Z_{etk} değerlerinin üstel olarak azaldığı bundan sonraki enerji değerlerinde ise neredeyse sabit olma eğiliminde olduğu Şekil 6'da açıkça görülmektedir. Düşük enerji bölgelerinde fotoelektrik tesir kesiti daha baskın olduğu için incelenen her mineral için en yüksek Z_{etk} değerleri bu bölgede gözlemlenmiştir. Ayrıca russelitin en yüksek Z_{etk} değeri ise en düşük Z_{etk} değerinden yaklaşık 2 kat daha büyüktür. Antonitin en yüksek Z_{etk} değeri ise en düşük Z_{etk} değerinden yaklaşık 3.8 kat daha büyüktür.

Şekil 3. Tungsten içerikli minerallerin yarı kalınlık değerlerinin enerjiye göre değişimi

Şekil 4. Tungsten içerikli minerallerin onda-bir kalınlık değerinin enerjiye göre değişimi

Şekil 5. Tungsten içerikli minerallerin ortalama serbest yol değerinin enerjiye göre değişimi.

Hatice GÜREL ÖZDEMİR ve ark.	12(4): 2175 - 2187, 2022
Bazı Tungsten İçerikli Minerallerin Gama Zırhlama Özellikl	erinin Geniş Enerji Aralığında İncelenmesi

Enerji	ji Tungstibit				Tungsterit			Hubnerit	
(MeV)	Teorik	GEANT4	FLUKA	Teorik	GEANT4	FLUKA	Teorik	GEANT4	FLUKA
0.060	53.5636	45.7554	56.0833	65.3161	57.1693	52.8534	57.5754	50.6234	66.1373
0.081	60.7582	54.8180	58.5824	71.0145	62.4525	59.8017	67.2389	65.0376	69.2054
0.088	60.2145	65.8062	67.9861	70.6831	69.7376	70.0262	66.4375	64.0067	69.9178
0.122	56.7883	46.0593	56.9231	68.5525	67.4573	68.1986	61.6642	58.6734	62.2276
0.136	55.0973	44.3210	58.1370	67.4561	64.2362	57.9267	59.4050	56.0381	57.6961
0.239	43.1565	34.4933	43.0084	58.2894	55.1509	61.4662	44.1352	41.7703	45.0105
0.356	35.2120	27.5476	35.0491	50.1620	46.8064	50.9636	34.3612	32.2021	34.5902
0.511	30.6036	24.0912	30.4583	44.3083	42.0899	47.2965	28.7628	27.4698	28.6029
0.569	29.6739	23.4282	29.5636	42.9919	41.0237	44.5320	27.6365	26.5092	28.3457
0.583	29.4866	23.2919	29.1416	42.7207	40.8163	44.3532	27.4097	26.3335	27.5286
0.662	28.6265	22.7142	28.5295	41.4505	39.8678	43.7699	26.3696	25.5075	27.3241
0.835	27.4860	21.9255	27.4098	39.6947	38.5968	43.5575	24.9874	24.4141	26.0558
1.063	26.6981	21.3578	26.1974	38.4298	37.7188	48.1230	24.0304	23.6532	24.5590
1.173	26.4828	21.1990	26.4442	38.0691	37.4412	43.7802	23.7659	23.4210	23.6726
1.275	26.3658	21.1449	24.8851	37.8588	37.3615	41.6267	23.6167	23.3488	23.7804
1.333	26.3272	21.1005	24.0102	37.7798	37.2616	38.3757	23.5632	23.2995	23.6045
1.770	26.4182	21.2364	26.3652	37.7633	37.4331	41.2913	23.5870	23.4286	23.8066
2.614	27.5173	22.0626	27.0796	38.8683	38.5324	44.0560	24.5986	24.4250	24.8296

Çizelge 3.	Tungsten	içerikli	minerallerin	etkin at	tom numarası	değerleri
------------	----------	----------	--------------	----------	--------------	-----------

(Cizelge 3.	Tungsten	icerikli	minerallerin	n etkin atom	numarası	değerleri ((Devami))
	5 - M								/

		Russelit			Antonit	
Enerji (MeV) –	Teorik	GEANT4	FLUKA	Teorik	GEANT4	FLUKA
0.060	76.2740	71.1523	77.2727	54.2533	47.7068	53.2725
0.081	73.3513	67.7085	67.5336	63.8120	61.7801	62.3594
0.088	72.5974	67.0193	76.8864	62.1539	60.0389	67.2731
0.122	75.6450	72.4325	56.9293	53.4354	50.7939	53.3187
0.136	74.4538	72.8952	76.1716	49.8135	47.0954	49.6835
0.239	64.0311	60.7056	63.6627	30.6302	29.0711	30.5106
0.356	53.8870	49.9132	53.5016	21.6528	20.3912	21.5453
0.511	45.8703	43.1091	45.5391	17.3029	16.5748	17.2248
0.569	43.9757	41.5530	43.6386	16.4854	15.8815	16.4385
0.583	43.5804	41.2188	43.2603	16.3229	15.7317	16.3238
0.662	41.7033	39.7572	41.4023	15.5867	15.1260	15.5288
0.835	39.0183	37.6253	38.7717	14.6335	14.3424	14.5747
1.063	37.0475	36.1068	36.8647	13.9852	13.7906	14.0620
1.173	36.4691	35.6456	36.3181	13.8098	13.6382	13.7791
1.275	36.1186	35.4466	35.9495	13.7122	13.5980	13.7475
1.333	35.9864	35.3359	35.7104	13.6770	13.5253	13.6472
1.770	35.9171	35.4306	35.7900	13.7086	13.6116	13.7541
2.614	37.5992	37.0997	37.4977	14.4326	14.3234	14.4098

Antonitin en yüksek $Z_{etk.}$ değeri ise en düşük $Z_{etk.}$ değerinden yaklaşık 3.8 kat daha büyüktür. Şekil 6'dan da görüldüğü gibi en düşük $Z_{etk.}$ değeri antonit mineralinde görülmektedir. Bunun sebebi ise antonit mineralinin yapısında hidrojen elementi gibi düşük atom numaralı elementler içermesidir. Russelit minerali ise en yüksek $Z_{etk.}$ değerlerine sahiptir, yani, bu mineral diğer seçilen minerallerden daha iyi bir gama radyasyonu zırh malzemesidir.

Şekil 6. Tungsten içerikli minerallerin etkin atom numarası değerinin enerjiye göre değişimi

Gama radyasyonunun zırhlama özelliğini incelemek için kullanılan son önemli parametre ise etkin elektron yoğunluğudur (N_{etk.}). N_{etk.}'nin incelenen mineraller için 0.060 MeV- 2.614 MeV enerji aralığındaki değişimi Şekil 7'de verilmiştir. Etkin elektron yoğunluğu etkin atom numarası ile doğru orantılı olan bir parametre olduğu için Şekil 6 ve 7'de benzer eğilimler gözlemlenmiştir. Düşük enerji bölgesi haricinde russelitin iyi bir gama radyasyonu zırhlama malzemesi olduğu bu parametreden de görülmektedir.

Sekil 7. Tungsten içerikli minerallerin etkin elektron yoğunluğu değerinin enerjiye göre değişimi

SONUÇ

Sunulan çalışmada 0.060 MeV ila 2.614 MeV enerji aralığında bazı tungsten içerikli minerallerinin gama radyasyonu zırhlama özellikleri araştırılmıştır. Bu incelemeyi yapabilmek için kütle ve lineer azaltma katsayıları, yarı ve onda-bir kalınlık değerleri, ortalama serbest yol, etkin atom numarası ve elektron yoğunluğu gibi gama radyasyonu zırhlama parametreleri WinXCOM programı, GEANT4 ve FLUKA simülasyon kodları yardımı ile belirlenmiştir. Sunulan şekillerden de görüldüğü gibi üç farklı yol ile belirlenen parametreler arasında genellikle uyum olduğu gözlemlenmiştir. Düşük foton enerjisi bölgesinde tungstenit mineralinin daha iyi bir gama zırh malzemesi olduğu gözlemlenirken, diğer bütün enerji bölgelerinde russselit mineralinin diğerlerine göre daha iyi bir gama radyasyonu zırhlama malzemesi olduğu gözlemlenmiştir. Çalışmada sunulan bu bilgiler hastanelerin radyasyonla ilgili bölümlerinin, nükleer santrallerin ilgili bölümlerinin ve araştırma laboratuvarları gibi radyasyonun kullanıldığı alanların zırhlanmasında kullanılabilecek malzemelere yol gösterici niteliğindedir.

Çıkar Çatışması

Makale yazarları aralarında herhangi bir çıkar çatışması bulunmadıklarını beyan ederler.

Yazar Katkısı

Yazarlar makaleye eşit oranda katkı sağladıklarını beyan eder.

KAYNAKLAR

- Agostinelli S, Allison J, Araujo H, Arce P, Asai M, Axen D, Banerjee S, Barrand G, Behner F, Bellagamba L, Boudreau J, Broglia L, Brunengo A, Burkhardt H, Chauvie S, Chuma J, Zschiesche D, ...& Geant4 Colllaboration, 2003. GEANT4-a simulation toolkit. Nuclear instruments and methods in physics resarch section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 506 (3): 250-303.
- Ahmed B, Shah GB, Malik AH, Aurangzeb MR, 2019. Gamma-ray shielding characteristics of flexible silicone tungsten composites. Applied Radiational and Isotopes, 155: 108901.
- Aita RS, Abdel Ghany AA, Ibrahim EM, El- Feky MG, El Aassy IE, Mahmoud KA, 2022. Gamma-rays attenuation by mineralized silstone and dolostone rocks: Monte Carlo simulation, theoretical and experimental evaluations. Radiation Physics and Chemistry, 198: 110281.
- Akkurt I, Akyildirim H, Mavi B, Kilincarslan S, Basyigit C, 2010. Gamma-ray shielding concrete including barite at different energies. Progress in Nuclear Energy, 52 (7): 620-623.
- Akman F, Durak R, Turhan MF, Kaçal MR, 2015. Studies on effective atomic numbers, electron densities from mass attenuation coefficients near the K edge in some samarium compounds. Applied Radiation and Isotopes, 101: 10.
- Akman F, Sayyed MI, Kaçal MR, Tekin HO, 2019a. Investigation of photon shielding performances of some selected alloys by experimental data, theoretical and MCNPX code in the energyrange of 81 keV-1333 keV. Journal of Alloys and Compounds, 772: 516-524.
- Akman F, Sayyed MI, Karataş HA, 2019b. Study of gamma radiation attenuation properties of some selected ternary alloys. Journal of Alloys and Compounds, 782: 315-322.
- Akman F, Ogul H, Ozkan I, Kaçal MR, Agar O, Polat H, Dilsiz K, 2022. Study on gamma radiation attenuation and non-ionizing shielding effectiveness of niobium-reinforced novel polymer composite. Nuclear Engineering and Technology, 54 (1): 283-292.
- Alshahrani B, Olarinoye IO, Mutuwong C, Sriwunkum C, Yakout HA, Tekin HO, Al-Buriahi MS, 2021. Amorphous alloys with high Fe content for radiation shielding applications. Radiation Physics and Chemistry, 183: 109386.
- Baltas H, Sirin M, Celik A, Ustabas I, El-Khayatt AM, 2019. Radiation shielding properties of mortars with minerals ans ores addivites. Cement and Concrete Composites, 97: 268-278.
- Basyigit C, Uysal V, Kilinçarslan S, Mavi B, Günoğlu K, Akkurt I, Çağlar, SH, 2011. Investigating Radiation Shielding Properties of Different Mineral Origin Heavyweight Concretes. American Institute of Physics, 1400: 232-235.
- Böhlen TT, Cerutti F, Chin MPW, Fassò A, Ferrari, A, Ortega, PG, Mairani A, Sala PR, Smirnov G, Vlachoudis, V, 2014. The FLUKA code: developments and challenges for high energy and medical applications. Nuclear data sheets, 120: 211-214.
- CheeBan C, Khalaf MA, Ramli M, Ahmed NM, Ahmad MS, Ahmed Ali AM, Dawood ET, Ameri F, 2021. Modern heavyweight concrete shielding: Principles, industrial applications and future challenges; review. Journal of Building Engineering, 39: 102290.
- Demir F, Budak G, Sahin R, Karabulut A, Oltulu M, Un A, 2011. Determination of radiation attenuation coefficients of heavyweight-and normal weight concretes containing colemanite and barite for 0.663 MeV γ-rays. Annals of Nuclear Energy, 38 (6): 1274-1278.
- Dong MG, Agar O, Tekin HO, Kilicoglu O, Kaky KM, Sayyed MI, 2019. A comparative study on gamma photon shielding features of various germanate glass Systems. Composites Part B: Engineering, 165: 636-647.

- Gerward L, Guilbert N, Jensen KB, Levring H, 2004. WinXCom- a program for calculating X-ray attenuation coefficients. Radiation Physics and Chemistry, 71 (3): 653-654.
- Hanfi MY, Sayyed MI, Lacomme EL, Akkurt I, Mahmoud KA, 2021. The influence of MgO on the radiation protection and mechanical properties of tellurite glasses. Nuclear Engineering and Technology, 53 (6): 2000-2010.
- Harish V, Nagaiah N, Niranjana Prabhu T, Varughese KT, 2009. Preparation and characterization of lead monoxide filled unsaturated polyester based polymer composite for gamma radiation shielding applications. Journal of Applied Polymer Science, 112 (3): 1503-1508.
- Kaçal MR, Polat H, Oltulu M, Akman F, Ağar O, Tekin HO, 2020. Gamma shielding and compressive strength analyses of polyester composites reinforced with zinc: an experiment, theoretical and simulation based study. Applied Physics A, 126: 205.
- Kılıçoğlu O, More CV, Akman F, Dilsiz K, Oğul H, Kaçal MR, Polat H, Agar O, 2022. Micro Pb filled polymer composites: Theoretical, experimental and simulation results for γ-ray shielding performance. Radiation Physics and Chemistry, 194: 110039.
- Körpinar B, Canbaz Öztürk B, Çam NF, Akat H, 2020. Radiation shielding properties of Poly (hydroxylethyl methacrylate) / Tungsten (VI) oxide composite. Materials Chemistry and Physics, 239: 121986.
- Li Q, Wei Q, Zheng W, Zheng Y, Okosi N, Wang Z, Su M, 2018. Enhanced radiation Shielding with conformal light-weight nanoparticle-polymer composite. ACS Applied Materials& Interfaces, 10: 35510-35515.
- Mahmoud KA, Lacomme E, Sayyed MI, Özpolat ÖF, Tashlykov OL, 2020. Investigation of the gamma ray shielding properties for polyvinyl chloride reinforced with chalcocite and hematite minerals. Heliyon, 6 (3): e03560.
- Manohara SR, Hanagodimath SM, Thind KS, Gerward L, 2008. On the effective atomic number and electron density: A comprehensive set of formulas for all types of materials and energies above 1 keV. Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms, 266 (18): 3906-3912.
- Mansour A, Sayyed MI, Mahmoud KA, Şakar E, Kovaleva EG, 2020. Modified halloysite minerels for radiation shielding purposes. Journal of Radiation Research and Applied Sciences, 13 (1): 94-101.
- Mhareb MHA, Zeama M, Elsafi M, Alajerami YS, Sayyed MI, Saleh G, Hamad RM, Hamad MKH, 2021. Radiation shielding features for various tellurium-based alloys: a comparative study. Journal of Materials Science: Materials in Electronics, 32: 26798-26811.
- More CV, Alsayed Z, Badawi MS, Thabet AA, Pawar PP, 2021. Polymeric composite materials for radiation shielding: a review. Environmental Chemistry Letters, 19 (3): 2057-2090.
- Sayyed MI, Lakshminarayana G, Kaçal MR, Akman F, 2018. Radiation protective characteristics of some selected tungstates. Radiachimica Acta, 107 (4): 349-357.
- Sayyed MI, Akman F, Turcan V, Araz A, 2019. Evaluation of radiation absorption capacity of some soil samples. Radiochimica Acta, 107 (1): 83-93.
- Sirin M, 2020. The effect of titanium (Ti) additive on radiation shielding efficiency of A125Zn alloy. Progress in nuclear energy, 128: 103470.
- Tasnim A, Sahadath MH, Islam Khan MN, 2021. Development of high-density radiation shielding materials containing BaSO₄ and investigation of the gamma-ray attenuation properties. Radiation Physic and Chemistry, 189: 109772.
- Turhan MF, Akman F, Kaçal MR, Durak R, 2019. Calculation of Absorption Parameters for Some Selected Minerals in the Energy Range of 1 keV to 100 GeV. International Journal of Scientific Engineering Research, 10 (9): 56-61.
- Turhan MF, Akman F, Polat H, Kaçal MR, Demirkol İ, 2020. Gamma-ray attenuation behaviors of hematite doped polymer composites. Progress in Nuclear Energy, 129: 103504.
- Wang X, Dong S, Ashour A, Zhang W, Han B, 2020. Effect and mechanisms of nanomaterials on interface between aggregates and cement mortars. Construction and Building Material, 240: 117942.