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Abstract 
Original scientific paper 

The current study is concerned with analytical solutions of the nonlinear potential KdV equation to the modelling of tsunami waves. Here, 

we implemented the Jacobi elliptic function method, which is widely used in equations in the fields of science and engineering. As a result, 

many new soliton, hyperbolic, and periodic wave solutions are obtained through Mathematica. These results will be extremely useful and 

applicable in scientific and engineering. In addition, the obtained wave solutions are shown with graphs 
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JACOBİ ELİPTİC FONKSİYON METOT İLE POTANSİYEL KdV DENKLEMİNİN SOLİTON VE 
DİĞER FONKSİYON ÇÖZÜMLERİ 
 
Özet 

Orijinal bilimsel makale  

Mevcut çalışma, tsunami dalgalarının modellenmesiyle oluşan lineer olmayan potansiyel KdV denkleminin analitik çözümleri ile ilgilidir. 

Burada, fen ve mühendislik alanlarındaki denklemlerde yaygın olarak kullanılan Jacobi eliptik fonksiyon metodunu uyguladık. Sonuç 

olarak Mathematica ile birçok yeni soliton, hiperbolik ve periyodik dalga çözümleri elde edilmiştir. Bu sonuçlar, fen ve mühendislikte son 

derece faydalı ve uygulanabilir olacaktır. Ayrıca, elde edilen dalga çözümleri grafiklerle gösterildi 

 

Anahtar Kelimeler: Jacobi eliptic fonksiyon metod, soliton, lineer olmayan kısmi diferensiyel denklemler, potansiyel KdV denklemi. 

 

 

1 Introduction 
 

The concept of Soliton was first discovered by John 

Scott Rusell in 1834 [1]. The solitons are nonlinear waves 

that propagate by preserving their shape and speed and 

continue to maintain these properties after any interaction 

moment. The fact that it preserves its shape and speed has 

led many scientists from all fields to work on solitons. 

Although this theory is related to many areas of 

mathematics, it has many applications in the engineering, 

physical, chemical, and biological sciences. Especially in 

shallow water waves are a growing area of research in 

mechanical engineering. The well-known nonlinear KdV 

equation [2] is used to model solitons. Another model, the 

potential KdV equation, is the nonlinear equation 

encountered in modeling tsunami waves [3]. The main 

topic of many research papers is related to the potential 

KdV equation and its soliton solutions [4-6]. 

Many methods that yield soliton solutions are used to 

solve nonlinear partial equations, such as the extended 

tanh method [7], the first integral method [8], sine-Gordon 

expansion method [9], generalized tanh method [10], 
' /G G method [11], Riccati method [12], Kudryashov 

method [13,14], the F-expansion method [15] etc. 

In this paper, the exact solutions of the potential KdV 

equation are constructed by the Jacobi elliptic function 

method. This method has been used in many equations 

formed by modeling structures in the fields of science and 

engineering [16,17]. 

 

1.1 An Overview of Method  
 

Suppose that we have the following nonlinear 

evolution equation  

 

𝑁(𝑢,  𝑢𝑥,  𝑢𝑡,  𝑢𝑥𝑥, 𝑢𝑥𝑡 , 𝑢𝑡𝑡 , . . . ) = 0                              (1) 
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where N is a polynomial in ( , )u x t . We use the travelling 

wave transformation 

 

𝑢(𝑥,  𝑦) = 𝑈(𝜉),    𝜉 = 𝑥 − 𝑣𝑡.                                      (2) 

 

Then Eq.(1) reduce to an ordinary differential equation 

 

𝑁(𝑈,  𝑈′,  𝑈",  𝑈"′, . . . ) = 0                                            (3) 

 

We can express the solution of Eq.(3) as below 

 

𝑈(𝜉) = ∑ 𝛼𝑖
𝑛
𝑖=0 𝜓𝑖(𝜉)                                                   (4) 

 

where n  is the balance number. We determine the 

positive integer n  in Eq. (4) by balancing the highest 

order derivatives and the nonlinear terms in Eq.(3). ( )   

is a known function as the following Jacobi elliptic 

function 

 

𝜓′(𝜉) = √ℑ𝜓4(𝜉) + ℜ𝜓2(𝜉) + ℵ.                               (5) 

 

Substituting Eq.(4) along with Eq.(5) into Eq.(3), we 

get a polynomial to of ( )  . Equating each coefficient 

of polynomial to zero. We derived a system of algebraic 

equations which can be solved by the aid of Mathematica 

program [17,18]. 

 

2 Wave Solutions of The Potential KdV Equation 
 

2.1 Potansiyel KdV Denkleminin Dalga Çözümleri 
 

𝑢𝑡 + 𝑎𝑢𝑥
2 + 𝑏𝑢𝑥𝑥𝑥 = 0                                                  (6) 

 

where  a and b  are real constants, x  and t  are 

independent variables that represent the spatial and 

temporal variables, respectively [4,5]. ( , )u x t  is the 

dependent variable that represents the wave profile. The 

nonlinear 
2

xu  term is the transmission term and xxxu term 

is dispersion term. Solitons are formed the interaction of 

these two terms.  

If Eq.(2) transformation is used, to Eq.(6) becomes as the 

following ordinary differential equation 

 

−𝜐𝑢′ + 𝑎(𝑢′)2 + 𝑏𝑢"′ = 0.                                           (7) 

 

In Eq.(7), '( ) ( )u q   conversion is used, Eq.(7) 

becomes as 

 

−𝜐𝑞 + 𝑎𝑞2 + 𝑏𝑞" = 0.                                                 (8) 

 

After that, for 2n  , the solution of Eq.(8) is considered 

as follows 

 

𝑞(𝜉) = 𝛼0 + 𝛼1𝜓(𝜉) + 𝛼2𝜓
2(𝜉)                                  (9) 

 

which 0 , 1  and 2  are parameters to be determined. 

By replacing the nontrivial solution Eq.(9) and Eq.(5), we 

find 

 

2

0 0 0

1 1 0 1

2

1 2 2 0 2

1 1 2

2 0

2 0

4 2 0

2 b 2 0.

a b

b a

a b a

a

  

   

    

  

    

   

    

  

 

  

Solving above algebraic equation system, we obtain 

 

0 1

0 0
2

4
0, 0, , 0,

2

4
.

4

b
a b

a

b

b


 

 


 
    

 




                          (10) 

 

Case1:  

 

   2 2, 1 , 1 ,m m and sn           

 

we acquire 

 

𝑞(𝜉) =
1

8𝑎𝑏
((𝜐 + 4(𝑚2 + 1)𝛽)(4𝛽 + (𝜐 − 4(1 +

𝑚2)𝛽)𝑠𝑛2(𝜉))).                                                              (11) 

 

When 1m , then 

 

𝑞(𝜉) =
1

8𝑎𝑏
((𝜐 + 8𝑏)(4𝑏 + (𝜐 − 8𝑏)tanh2(𝜉))).     (12) 

 

So, we obtain the kink soliton solution 

 

𝑢(𝑥,  𝑡) =
1

8𝑎𝑏
((𝜐 + 8𝑏)((𝑥 − 𝜐𝑡)(𝜐 − 4𝑏) − (𝜐 −

8𝑏)tanh(𝑥 − 𝜐𝑡))).                                                        (13) 

 

Case2: 

 

 2 2 2, 2 1, 1 ,m m m and cn           

 

we acquire 

 

𝑞(𝜉) =
1

8(−1 + 𝑚2)ab
(−(𝜐 + (4 − 8𝑚2)𝑏)(−4(−1 + 𝑚2)𝑏 

+(𝜐 − 4𝑏 + 8𝑚2𝑏)cn2)).                                                     (14) 

 

When 0m , then 

 

𝑞(𝜉) =
1

8𝑎𝑏
((𝜐 + 4𝑏)(4𝑏 + (𝜐 − 4𝑏)cos2(𝜉))).       (15) 

 

We can obtain a new periodic solution of Eq.(6), as 

follows 

 

𝑢(𝑥,   𝑡) =
1

32𝑎𝑏
((𝜐 + 4𝛽)(2(𝑥 − 𝜐𝑡)(𝜐 + 4𝑏) 

+(𝜐 − 𝛽)sin(2(𝑥 − 𝜐𝑡)))).                                               (16) 

          

 

Case3:  

 

ℑ = 1,       ℜ = 𝑚2 − 1,      ℵ = 𝑚2    𝑎𝑛𝑑    𝜓(𝜉) = 𝑛𝑠𝜉,  
 

so 
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𝑞(𝜉) =
1

8𝑚2𝑎𝑏
((𝜐 + 4β)(1 + 𝑚2)(4𝑚2β + (𝜐 − 4β(1 +

𝑚2)ns2(𝜉)))).                                                              (17) 

 

When 1m , then 

 

𝑞(𝜉) =
1

8𝑎𝑏
((𝜐 + 8𝑏)(4𝑏 + (𝜐 − 8𝑏)coth2(𝜉)))        (18) 

 

So, singular solution of Eq.(6), as follows 

 

𝑢(𝑥,  𝑡) =
1

8𝑎𝑏
((𝜐 − 4𝑏)(𝑥 − 𝜐𝑡) − 

(𝜐 − 8𝑏)coth(𝑥 − 𝜐𝑡))                                                       (19) 

 

Case4: 

 

ℑ = 1 −𝑚2 , ℜ = 2𝑚2 − 1, ℵ = −𝑚2 𝑎𝑛𝑑 𝜓(𝜉) = 𝑛𝑐𝜉, 
 

from here,  

 

𝑞(𝜉) = −
1

8𝑚2𝑎𝑏
((𝜐 + (4 − 8𝑚2)𝑏)(−4𝑚2𝑏 + 

(𝜐 − 4𝑏 + 8𝑚2𝑏)nc2(ξ))).                                          (20) 

 

When 1m , then 

 

𝑞(𝜉) = −
1

8𝑎𝑏
(𝜐 − 4𝑏)(−4𝑏 + (𝜐 + 4𝑏)cosh2𝜉).       (21) 

 

Hence, the hyperbolic function solution for the governing 

Eq. (6) is: 

 

𝑢(𝑥,  𝑡) = −
1

32𝑎𝑏
(𝜐 − 4𝑏)(2(𝑥 − 𝜐𝑡)(𝜐 − 4𝑏) 

+(𝜐 + 4𝑏)sinh(2(𝑥 − 𝜐𝑡)))..                                     (22) 

 

Case5: 

 

ℑ = 1 , ℜ = 2 −𝑚2,  ℵ = 1 − 𝑚2   𝑎𝑛𝑑   𝜓(𝜉) = 𝑐𝑠𝜉, 
 

for 

 

𝑞(𝜉) = −
1

8𝑎𝑏(𝑚2 − 1)
(𝜐 + 4𝑏(𝑚2 − 2))(−4𝑏(𝑚2 

−1) + (𝜐 − 4𝑏(𝑚2 − 2))𝑐𝑠2(𝜉)                                (23) 

 

0m , then 

 

𝑞(𝜉) =
𝜐−8𝑏

2𝑎
+

1

4𝑏
(
𝜐(𝜐−8𝑏)

2𝑎
+

4(𝜐−8𝑏)𝑏

𝑎
)cot2(ξ).           (24) 

 

Hence, the solution for the governing Eq. (6) is: 

 

𝑢(𝑥,  𝑡) = −
1

8𝑎𝑏
(𝜐 − 8𝑏)((𝑥 − 𝜐𝑡)(𝜐 + 4𝑏) + 

(𝜐 + 8𝑏)cot(𝑥 − 𝜐𝑡)).                                                   (25) 

 

Case6:  

 

ℑ = −𝑚2(1 − 𝑚2) , ℜ = 2𝑚2 − 1, ℵ = 1 𝑎𝑛𝑑 𝜓(𝜉) = 𝑠𝑑𝜉 

 

in this 

 

𝑞(𝜉) = −
1

8𝑎𝑏
((𝜐 + (4 − 8𝑚2)𝑏)4𝑏 + (𝜐 − 4𝑏 +

8𝑚2𝑏)sd
2(ξ)).                                                                 (26)  

 

When 1m , then 

 

𝑞(𝜉) =
1

8𝑎𝑏
(𝜐 − 4𝑏)(4𝑏 + (𝜐 + 4𝑏)sinh2(𝜉)).           (27)  

 

So, the hyperbolic function solution for the governing Eq. 

(6) is: 

 

𝑢(𝑥, 𝑡) =
1

32𝑎𝑏
((𝜐 − 4𝑏)(−2(𝑥 − 𝜐𝑡))(𝜐 − 4𝑏) + 

(𝜐 + 4𝑏)sinh(2(𝑥 − 𝜐𝑡))).                                             (28) 

 

and for 0m , 

 

𝑞(𝜉) =
1

8𝑎𝑏
(𝜐 + 4𝑏)(4𝑏 + (𝜐 − 4𝑏)sin(𝜉))                  (29) 

 

from here, the periodic solution of Eq.(6) is obtained as 

 

𝑢(𝑥, 𝑡) =
1

32𝑎𝑏
(𝜐 + 4𝑏)(2(𝑥 − 𝜐𝑡)(𝜐 + 4𝑏) − 

(𝜐 − 4𝑏)sin(2(𝑥 − 𝜐𝑡))).                                               (30) 

 

Case7:  

 

ℑ =
1−𝑚2

4
 , ℜ =

1+𝑚2

2
, ℵ =

1−𝑚2

4
 𝑎𝑛𝑑 𝜓(𝜉) = 𝑛𝑐𝜉 ± 𝑠𝑐𝜉     

 

for 

 

q(ξ) =
1

2𝑎𝑏(𝑚2 − 1)
((−𝜐 + (2𝑚2 + 2)𝑏)(𝑏 −𝑚2𝑏 

+𝑏(𝑣 + 2(𝑚2 + 1)))(𝑛)                                                  (31) 

 

While 0m , 

 

q(ξ) = −
1

2𝑎𝑏
(𝜐 + 2𝑏)(𝑏 + (𝜐 + 2𝑏)(sec(𝜉) +

tan(𝜉))2).                                                                           (32) 

                                                          

 

After all, the new periodic solution is obtained as 

 

1
( , ) ( 2 )( ( )( )

2

4( 2 )sin
2

).

cos sin
2 2

u x t b x t b
ab

x t
b

x t x t

                (33) 

 

Case8: 

 

 ℑ =
1−𝑚2

4
 ,    ℜ =

1+𝑚2

2
,   ℵ =

1−𝑚2

4
  𝑎𝑛𝑑  𝜓(𝜉) =

𝑐𝑛𝜉

1±𝑠𝑛𝜉
  

so 

q(ξ) =
1

2𝑎𝑏(𝑚2 − 1)
((−𝜐 + (2𝑚2 + 2)𝑏)(𝑏 −𝑚2𝑏 

+𝑏(𝑣 + 2(𝑚2 + 1))) (
𝑐𝑛𝜉

1±𝑠𝑛𝜉
)
2

).                                   (34) 
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While 0m ,  

 

q(ξ) = −
1

2𝑎𝑏
((−𝜐 + 2𝑏)(𝑏 + (𝜐 + 2𝑏))

cos2𝜉

1±sin2𝜉
).      (35) 

 

So, the new periodic solution is obtained as 

 

    

   

1
( , )

2 cos sin
2 2

2 ( cos
2

( ( ) 4 ( ) 8 )sin ).
2

u x t
x t x t

ab

x t
b x t b

x t
x t b x t

 


  


  




     
    

    

 
    

 

 
      

 

                  (36)  

 

Case9: 

 

ℑ =
1

4
 ,     ℜ =

1−2𝑚2

2
,      ℵ =

1

4
  𝑎𝑛𝑑   𝜓(𝜉) =

𝑠𝑛𝜉

1±𝑐𝑛𝜉
,  

 

for 

 

q(ξ) =
1

2𝑎𝑏
((𝜐 + 2𝑏) (𝑏 + (𝜐 − 2𝑏) (

𝑠𝑛𝜉

1±𝑐𝑛𝜉
)
2

)).       (37) 

 

When 1m ,  

 

q(ξ) =
1

2𝑎𝑏
((𝜐 + 2𝑏)(𝑏 + (𝜐 − 2𝑏)) (

tanh𝜉

1±secℎ𝜉
)
2

)        (38) 

 

and the kink soliton is obtained as 

 

𝑢(𝑥, 𝑡) =
1

2𝑎𝑏
(𝜐 + 2𝑏)((𝑥 − 𝜐𝑡)(𝜐 − 𝑏) − 2(𝜐 −

2𝑏)tanh (
𝑥−𝜐𝑡

2
)).                                                             (39) 

 

Case10: 

 

 ℑ =
(1−𝑚2)2

4
 , ℜ =

1+𝑚2

2
,  ℵ =

1

4
  𝑎𝑛𝑑 𝜓(𝜉) =

𝑠𝑛𝜉

𝑐𝑛𝜉±𝑑𝑛𝜉
 

 

and  

 

q(𝜉) =
1

2𝑎𝑏
(𝜐 − 2𝑏(𝑚2 + 1))(𝑏 + (𝜐 + 2(1 +

𝑚2)𝑏) (
𝑠𝑛𝜉

𝑐𝑛𝜉±𝑑𝑛𝜉
)
2

).                                                     (40) 

 

When 1m , 

 

q(ξ) =
1

2𝑎𝑏
(𝜐 − 4𝑏) (𝑏 + (𝜐 + 4𝑏) (

tanh𝜉

2secℎ𝜉
)
2

).            (41) 

 

and the hyperbolic function solution is obtained as 

 

𝑢(𝑥, 𝑡) =
1

32𝑎𝑏
(𝜐 − 4𝑏)(−2(𝑥 − 𝜐𝑡)(𝜐 − 4𝑏) + 

(𝜐 + 4𝑏)sinh(2(𝑥 − 𝜐𝑡))).                                            (42) 

 

 

 

 

Case11:  

 

ℑ  > 0,   ℜ < 0,   ℵ =
𝑚2ℜ2

(1+𝑚2)2ℑ
   , 𝜓(𝜉) =

√
−𝑚2ℜ

(1+𝑚2)ℑ
𝑠𝑛 (√

−ℜ

(1+𝑚2)
𝜉) ,  

so  

 

q(𝜉) = −
1

8𝑚2𝑎𝑏
(1(𝜐 + 4𝑏)(−

4𝑚2𝑏

(1+𝑚2)2

+(𝜐 − 4𝑏)√
𝑚2

(1+𝑚2)
𝑠𝑛 (√

1

(1+𝑚2)
𝜉)).

                           (43) 

 

When 1m ,  

 

21 1
4 ( 4 tanh ).

2 2 2
q ξ b b b

ab
   (44) 

                                                                                                             

and the kink soliton solution is obtained as 

 

𝑢(𝑥, 𝑡) =
1

4𝑎𝑏
(𝜐 + 4𝑏)(−(𝑥 − 𝜐𝑡)(𝜐 − 6𝑏) + 

√2(𝜐 − 4𝑏)tanh (
𝑥−𝜐𝑡

√2
)).                                               (45) 

 

 
Figure 1. 3D represantation of solution Eq. (13) with  

𝑎 = 0.5, 𝑏 = 0.01. 

 

 
Figure 2. 3D represantation of solution Eq. (19) with 

𝑎 = 0.5, 𝑏 = 0.1. 
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Figure 3. 3D represantation of solution Eq. (25) with 

𝑎 = 1, 𝑏 = −0.1. 

 

 
Figure 4.  3D represantation of solution Eq. (36) with 

 𝑎 = 0.1, 𝑏 = −5. 

 

 
Figure 5. 3D represantation of solution Eq (39) with 𝑎 = 1, 𝑏 = 5. 

 

3 Results and Discussions 
 

In this section, we have exemplified graphical 

representation of nonlinear the potential KdV equation. 

Figs. 1-5 as it illustrate 3D plot of some of our obtained 

solutions. Fig. 1 represent the profile of kink soliton 

solution of Eq.(13) for 0.5, 0.01a b  . Fig. 2 shows 

the shape of singular soliton solution of Eq.(19) for 

0.5, 0.1a b  . Fig. 3 depicts the periodic solution of 

Eq. (25) for 1, 0.1a b  . Similarly, Fig. 4 shows the 

periodic solution of Eq. (36) for 0.1, 5a b   . And 

finally, Fig. 5 demonstrated the kink soliton solution of 

Eq. (39) for 1, 5a b  . 

 

4 Conclusion 
 

In this work, we presented solitons, hyperbolic, and 

periodic function wave solutions for the potential KdV, 

which govern the dynamics of water waves along ocean 

shores. The Jacobi elliptic function method was developed 

from new wave solutions to the potential KdV equation 

researched in science and engineering. In addition, we 

illustrated solutions in Figures 1-5. After all, obtaining 

solutions shows that the JEF method is powerful and 

yields important results. Based on the analysis, it is 

concluded that the method used is simple and direct.  

 

Acknowledgement 

 

This study is related to the MSc thesis of the second 

author. 

 

Declaration 

 

Ethics committee approval is not required. 

 

References 
 
[1] Boussinesq, J. (1871). Théorie de I’intumescence liquide 

appelée onde solitaire ou de translation se propageant dans 

un canal rectangulaire. Comptes Rendus, 72, 755-759. 

[2] Korteweg, D. J., & De Vries, G. (1895). XLI. On the change 

of form of long waves advancing in a rectangular canal, and 

on a new type of long stationary waves. The London, 

Edinburgh, and Dublin Philosophical Magazine and 

Journal of Science, 39(240), 422-443. 

[3] Lakshmanan, M. (2011). Solitons, Tsunamis and 

Oceanographical Applications of. Encylopedia of 

Complexity and Systems Science,8506-8521. 

[4] Wang, G. W., Xu, T. Z., Ebadi, G., Johnson, S., Strong, A. 

J., & Biswas, A. (2014). Singular solitons, shock waves, and 

other solutions to potential KdV equation. Nonlinear 

Dynamics, 76(2), 1059-1068. 

[5] Inc, M., Ic, Ü., Inan, İ. E., & Goméz‐Aguilar, J. F. (2022). 

Generalized‐expansion method for some soliton wave 

solutions of Burgers‐like and potential KdV equations. 

Numerical Methods for Partial Differential Equations, 

38(3), 422-433.  

[6] Hirota, R., Hu, X. B., & Tang, X. Y. (2003). A vector 

potential KdV equation and vector Ito equation: soliton 

solutions, bilinear Bäcklund transformations and Lax pairs. 

Journal of Mathematical Analysis and Applications, 288(1), 

326-348. 

[7] Pandir, Y., & Yildirim, A. (2018). Analytical approach for 

the fractional differential equations by using the extended 

tanh method. Waves in Random and Complex Media, 28(3), 

399-410. 

[8] Ghosh, A., & Maitra, S. (2021). The first integral method 

and some nonlinear models. Computational and Applied 

Mathematics, 40(3), 1-16. 

[9] Baskonus, H. M., Bulut, H., & Sulaiman, T. A. (2019). New 

complex hyperbolic structures to the lonngren-wave 

equation by using sine-gordon expansion method. Applied 

Mathematics and Nonlinear Sciences, 4(1), 129-138. 

[10] Sedeeg, A. K. H., Nuruddeen, R. I., & Gomez-Aguilar, J. F. 

(2019). Generalized optical soliton solutions to the (3+ 1)-

dimensional resonant nonlinear Schrödinger equation with 

Kerr and parabolic law nonlinearities. Optical and Quantum 

Electronics, 51(6), 1-15. 

 



E. Cavlak Aslan and L. Gürgöze 

International Journal of Innovative Engineering Applications 6, 2(2022), 183-188                                                                                                                                                    188 

[11] Ulutas, E. (2021). Travelling wave and optical soliton 

solutions of the Wick-type stochastic NLSE with 

conformable derivatives. Chaos, Solitons & Fractals, 148, 

111052. 
[12] Liu, Q., Zhu, J. M., & Hong, B. H. (2008). A modified 

variable-coefficient projective Riccati equation method and 

its application to (2+ 1)-dimensional simplified generalized 

Broer–Kaup system. Chaos, Solitons & Fractals, 37(5), 

1383-1390. 

[13] Kudryashov N.A. (2020). Method for _nding highly 

dispersive optical solitons of nonlinear differential 

equation, Optik, 206, 163550. 

[14] Kudryashov N. A. (2020). Highly dispersive solitarywave 

solutions of perturbed nonlinear Schrödinger equations. 

Appl. Math. Comput., 371,124972. 

[15] Silambarasan, R., Baskonus, H. M., Anand, R. V., 

Dinakaran, M., Balusamy, B., & Gao, W. (2021). 

Longitudinal strain waves propagating in an infinitely long 

cylindrical rod composed of generally incompressible 

materials and its Jacobi elliptic function solutions. 

Mathematics and Computers in Simulation, 182, 566-602. 

[16] Tarla, S., Ali, K. K., Yilmazer, R., & Osman, M. S. (2022). 

New optical solitons based on the perturbed Chen-Lee-Liu 

model through Jacobi elliptic function method. Optical and 

Quantum Electronics, 54(2), 1-12. 

[17] Ebaid, A., & Aly, E. H. (2012). Exact solutions for the 

transformed reduced Ostrovsky equation via the F-

expansion method in terms of Weierstrass-elliptic and 

Jacobian-elliptic functions. Wave Motion, 49(2), 296-308.   

[18] Elboree, M. K. (2011). The Jacobi elliptic function method 

and its application for two component BKP hierarchy 

equations. Computers & Mathematics with Applications, 

62(12), 4402-4414. 

 

 

 

 

 

 

 

 


