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Abstract
In this paper, we consider a class of stochastic differential variational inequalities (for
short, SDVIs) consisting of an ordinary differential equation and a stochastic variational
inequality. The existence of solutions to SDVIs is established under the assumption that
the leading operator in the stochastic variational inequality is P -function and P0-function,
respectively. Then, by using the sample average approximation and time stepping meth-
ods, two approximated problems corresponding to SDVIs are introduced and convergence
results are obtained.
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1. Introduction
The differential variational inequality (for short, DVI), initially introduced by Aubin

and Cellina [1] in 1984 and systematically examined by Pang and Stewart [32] in 2008,
is the source of problem in this paper. Precisely speaking, DVI is a system that con-
sists of a differential (evolution) equation and a variational inequality. In the past years,
considerable literature has been devoted to the mathematical theory and applications of
variational inequalities; see [19–23, 26, 30, 33–35]. DVI has been pointed out in [7, 17, 24]
to be a powerful mathematical tool to represent models involving both dynamics and con-
straints in the form of inequalities. It arises in many applied problems in our real life such
as mechanical impact problems, electrical circuits with ideal diodes, the Coulomb friction
problems for contacting bodies, economical dynamics, dynamic traffic networks, and so
on. Since then, increasing number of scholars have been attracted to both theoretical and
numerical aspects of the differential variational inequalities as well as its applications in
economical dynamics system and contact mechanics problems; see [6,16,25,27,42–44] and
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the references therein. It is worth mentioning that the differential linear complementarity
system (for short, DLCS) is a specific instance of differential variational inequality.

However, the above mentioned researches are deterministic models. In reality, there are
many uncertain factors to influence a system which is described by a stochastic model;
see [4, 5, 13, 28, 38] and the references therein. Hence, the study on stochastic differential
variational inequalities (for short, SDVIs) consisting of differential equations and stochastic
variational inequalities, is significant and meaningful. In this paper, we study the existence
of solutions for a class of stochastic differential variational inequalities. The convergence
results to SDVIs are also obtained via the sample average approximation and time stepping
methods.

Let ξ : Ω → Rm be a stochastic variable defined in the probability space (Ω,F,P) with
support set Ξ := ξ(Ω) ⊆ Rm and Q = [0, T ]×Rn. Let X = C([0, T ];Rn) denote the space of
the n-dimensional vector-valued continuous functions on [0, T ] and Y = {y : [0, T ] × Ξ →
Rm | y(·, ξ) ∈ L1([0, T ];Rm), y(t, ·) is P-measurable} denote the space of m-dimensional
vector-valued functions defined on [0, T ] × Ξ in which y(t, ·) is measurable such that the
expected value is well defined and finite valued for all t ∈ [0, T ] and y(·, ξ) is integrable
on [0, T ] for each ξ ∈ Ξ. And let f : Q → Rn, B : Q × Ξ → Rn×m, G : Q × Ξ → Rm and
F : Ξ × Rm → Rm be given functions. The stochastic differential variational inequality
considered in this paper is as follows: find (x, y) ∈ X × Y such that

ẋ(t) = f(t, x(t)) + E(B(t, x(t), ξ)y(t, ξ)),
y(t, ξ) ∈ SOL(K, G(t, x(t), ξ) + F (ξ, ·)),
x(0) = x0, t ∈ [0, T ],

(1.1)

where K ⊆ Rm is closed and convex. SOL(K, G(t, x(t), ξ) + F (ξ, ·)) ⊆ Rm is the solution
set of the following SVI: find y ∈ Y such that y(t, ξ) ∈ K and

(ν − y(t, ξ))T (G(t, x(t), ξ) + F (ξ, y(t, ξ))) ≥ 0, ∀ν ∈ K, a.e. ξ ∈ Ξ. (1.2)

For convenience, we write ξ = ξ(ω), ω ∈ Ω in (1.1) and (1.2). Usually, the meaning of
such notation will be clear from the context and will not cause any confusion. To highlight
the generalization of (1.1), we mention below cases.

(i) In [6], the following differential variational inequality
ẋ(t) = f(t, x(t), y(t)),
y(t) ∈ SOL(K, G(t, x(t), ·)),
x(0) = x0, t ∈ [0, T ],

(1.3)

is considered. Existence of solutions and the convergence analysis of regularized time-
stepping methods are obtained there. It is clear that the stochastic variable hasn’t been
considered in the system (1.3). However, in reality there are numerous uncertain factors
to influence systems which should be described by stochastic models; see [4, 5, 28, 37, 40].
To our knowledge, the literature on SDVIs is scare.

(ii) In case that f(t, x(t)) = Ax(t) + f(t), E(B(t, x(t), ξ)y(t, ξ)) = E(B(ξ)y(t, ξ)),
G(t, x(t), ξ) = N(ξ)x(t) + q(t, ξ) and F (ξ, y(t, ξ)) = M(ξ)y(t, ξ), K = Rm

+ , problem (1.1)
reduces to the following differential stochastic linear complementarity problem

ẋ(t) = Ax(t) + E(B(ξ)y(t, ξ)) + f(t),
0 ≤ y(t, ξ) ⊥ N(ξ)x(t) + q(t, ξ) + M(ξ)y(t, ξ) ≥ 0, a.e. ξ ∈ Ξ,

x(0) = x0, t ∈ [0, T ],
(1.4)

which has been examined by Luo, Wang and Zhao [28] where A ∈ Rn×n and B(·) : Ξ →
Rn×m, N(·) : Ξ → Rm×n, M(·) : Ξ → Rm×m, f : [0, T ] → Rn and q : [0, T ] × Ξ → Rm

are given functions. Therefore, the stochastic linear complementarity problem (1.4) is
extended to the stochastic nonlinear variational inequality (1.1) in this paper. The latter



Existence and convergence for stochastic differential variational inequalities 1463

has more generality and wider applications. In the following we present an optimization
problem whose KKT condition is described by (1.1) rather than (1.4).

Example 1.1. Let x : [0, T ] → Rn be a absolutely continuous function and g : R1+n+m ∋
(t, x(t), ξ) → g(t, x(t), ξ) ∈ Rm be continuously differentiable on x(t), t and measurable on
ξ such that each component function gi : R1+n+m → R, i = 1, · · · , m, is convex on (x(t),
t). Consider stochastic programming problems with inequalities constraints (P):

min
xj(t)∈R

−xj(t), j = 1, · · · , n,

s.t. gi(t, x(t), ξ) ≤ 0, i = 1, · · · , m, a.e. ξ ∈ Ξ,

where xj : [0, T ] → R, j = 1, 2, · · · , n, is component function of x(t).
To solve this problem, we define a Lagrange function:

L(t, x, u) = −x(t) + E(g(t, x(t), ξ)T y)In×n,

where y ∈ Rm is a Lagrange multiplier of g(t, x(t), ξ) and In×n is a n-dimensional identity
matrix. Then, the Karush-Kuhn-Tucker (KKT) stochastic condition for problem (P) is{

ẋ(t) = E(Jg(t, x(t), ξ)T y), a.a. t ∈ [0, T ]
y ∈ SOL(Rm

+ , −g(t, x(t), ξ)),
which can be identified as a special case of SDVI (1.1) with f(t, x(t)) = 0, G(t, x(t), ξ) +
F (ξ, y(t, ξ)) = −g(t, x(t), ξ) and B(t, x(t), ξ) = Jg(t, x(t), ξ), where Jg(t, x(t), ξ) denotes
the Jacobian matrix of g at x(t).

In fact, KKT condition, as one of the most important theoretical achievements in non-
linear programming, is a significant method to solve optimization problems. Details can
be found in [11,12] and the references therein.

Next, we give a more general example which is a stochastic differential variational
inequality rather than just a stochastic differential nonlinear complementarity problem.

Example 1.2. Let F be a given (single-valued) mapping from Rn into itself. Consider
the following problem (P ):

ẋ(t) = −F (x(t)) + E(w(t, ξ)),
0 = x(t) − E(u(t, ξ)),

u(t, ξ) ∈ K̃, (ν − u(t, ξ))T w(t, ξ) ≥ 0, ∀ν ∈ K̃,

where K̃ ⊆ Rm is closed and convex cone.
In the past couple decades, differential algebraic equations have become a very impor-

tant generalization of ordinary differential equations and have been studied extensively.
More details can be found in [2, 3, 32,36].

By introducing an auxiliary variable, the problem (P ) is a standard stochastic differ-
ential algebraic equations as a special case of the SDVI (1.1) with y = (w, u), f(t, x(t)) +
E(B(t, x(t), ξ)y(t, ξ)) = −F (x(t))+E(w(t, ξ)), G(t, x(t), ξ)+F (ξ, y(t, ξ)) = (x−u, w) and
K = Rn × K̃.

Recently, numerous stochastic variational inequalities and stochastic nonlinear problems
have been studied; see [8, 13, 18, 39, 40] and the references therein. Motivated by these
researches, in this paper, we study a class of stochastic differential variational inequalities
given by (1.1).

The remaining of this paper is organized as follows. Section 2 collects some notations
and preliminaries materials. In section 3, an existence theorem of solutions to SDVI
(1.1) is established in case that F is a P -function via the theory of variational inequality
and projection method. The uniqueness of the solution is discussed. Then, when F is
a P0-function, existence of weak solutions to SDVI (1.1) is proved by using the theory
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of differential inclusions and Filippov’s implicit function theorem. Sample average and
time stepping approximated problems to SDVI are introduced and convergence results are
obtained in section 4.

2. Preliminaries
Let L = L2([0, T ];Rn) denote the square integrable function space on [0, T ] and U be

the space taken either as U = X × L or U = X × X. We use ∥ · ∥2 to denote the l2-norm
for vectors. In this section, we recall some definitions and lemmas.

Definition 2.1. [9] A mapping Ψ̂ : U ⊆ Rm → Rm is said to be weakly univalent on its
domain if it is continuous and there exists a sequence of univalent (i.e., continuous and
injective) function {Ψ̂k} from U into Rm such that {Ψ̂k} uniformly converges to Ψ̂ on
bounded subsets of U.

Lemma 2.2. [9] Let f : Rm → Rm be a weakly univalent function. Suppose f−1(0) ̸= ∅
and f−1(0) is compact. If for every ε > 0 there exists δ > 0 such that for weakly univalent
function h : Rm → Rm satisfying

sup
{

∥h(y) − f(y)∥2 : y ∈ cl(f−1(0) + B(0, ε))
}

≤ δ,

then, we have
∅ ̸= h−1(0) ⊆ f−1(0) + B(0, ε).

Lemma 2.3. [32] Let F : Q → Rn be an upper semi-continuous (usc) set-valued map with
nonempty closed and convex value. Suppose that there exists a scalar ρF > 0 satisfying

sup {∥u∥2 : u ∈ F(t, x)} ≤ ρF(1 + ∥x∥2), ∀ (t, x) ∈ Q.

Then the Cauchy problem of the differential inclusion

ẋ ∈ F(t, x), x(0) = x0, x0 ∈ Rn

has a weak solution in the sense of Carathéodory.

Lemma 2.4. [10] Let G : Q × Rm → Rn be a continuous function and Φ : Q → Rm be a
closed set-valued map such that for some constant ηΦ > 0,

sup {∥y∥2 : y ∈ Φ(t, x)} ≤ ηΦ(1 + ∥x∥2), ∀ (t, x) ∈ Q.

Let ν̂ : [0, T ] → Rn be a measurable function and x : [0, T ] → Rn be a continuous function
satisfying ν̂(t) ∈ G(t, x(t), Φ(t, x(t))) for almost all (a.a.) t ∈ [0, T ]. Then, there exists a
measurable function y : [0, T ] → Rm such that y(t) ∈ Φ(t, x(t)) and ν̂(t) = G(t, x(t), y(t))
for a.a. t ∈ [0, T ].

Lemma 2.5. [6] Let T > 0, α ≥ 0, γ ≥ 0, and β > 0, and let Θ : [0, T ] → R+ be
(Lebesgue) integrable. If

Θ(t) ≤ α +
∫ t

0
[βΘ(s) + γ]ds, ∀ t ∈ [0, T ],

then
Θ(t) ≤ α exp(βt) + γ

β
(exp(βt) − 1), ∀ t ∈ [0, T ].

Definition 2.6. [29] The epigraph of a function θ over U is defined as the set

epi θ := {(x, y, α) ∈ U × R | θ(x, y) ≤ α}.

Let
∥u∥X = sup

t∈[0,T ]
∥u(t)∥2,
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for u ∈ X and

∥χ∥L2 =
(∫ T

0
χ(τ)T χ(τ)dτ

) 1
2

,

for χ ∈ L. And we define the norms:
∥(u, χ)∥X×L := ∥u∥X + ∥χ∥L2 , for (u, χ) ∈ X × L,

and
∥(u, χ)∥X×X := ∥u∥X + ∥χ∥X, for (u, χ) ∈ X × X.

A sequence of functions {θk}∞
k=1 is said to be epigraphically convergent to a functional θ,

denoted by θk →epi θ, if the following two statements hold:

lim inf
k→∞

θk(xk, yk) ≥ θ(x, y) for all {xk, yk}∞
k=1 ⊂ U with (xk, yk) → (x, y),

lim sup
k→∞

θk(xk, yk) ≤ θ(x, y) for some {xk, yk}∞
k=1 ⊂ U with (xk, yk) → (x, y).

Here the convergence of (xk, yk) → (x, y) is characterized by the norm ∥ · ∥U.

Definition 2.7. [14] A function θ over U × Ξ is a random lower semi-continuous (lsc)
function if θ is jointly measurable in (x, y, ξ) and θ(·, ·, ξ) is lsc for every ξ ∈ Ξ..

Definition 2.8. [40] A function θ(x, y, ξ) is said to be a Carathéodory function if θ(x, y, ·)
is measurable for every (x, y) ∈ U and θ(·, ·, ξ) is continuous for a.e. ξ ∈ Ξ. Obviously, θ
is a random lsc if it is a Carathéodory function.

Remark 2.9. [28] A sequence of random lsc function {θk}∞
k=1 over U× Ξ epiconverges to

θ on U a.s. (almost sure), written θk →epi θ a.s., if for a.e. ξ ∈ Ξ, {θ(·, ·, ξ)}∞
k=1 over U

epiconverges to θ over U.

According to Pang-Stewart [32], we give the definition of a weak solution to (1.1).

Definition 2.10. For a fixed ξ ∈ Ξ, a pair of trajectories (x(t), y(t, ξ)) is called a solution
to (1.1) in the weak sense of Carathéodory if x(t) is absolutely continuous on [0,T] and
y ∈ Y such that

x(t) = x(0) +
∫ t

0
f(t, x(τ)) + E(B(τ, x(τ), ξ)y(τ, ξ))dτ, ∀ t ∈ [0, T ],

and y(t, ξ) ∈ SOL(K, G(t, x(t), ξ) + F (ξ, ·)) for a.a. t ∈ [0, T ].

3. Existence of solutions
K is defined as the cartesian product of a finite number of lower-dimensional sets:

K =
N∏

ϑ=1
Kϑ, (3.1)

where Kϑ is a convex subset of Rmϑ and
N∑

ϑ=1
mϑ = m. We postulate the following condi-

tions:
(A0) F (ξ, ·) is a continuous and uniform P0-function [6] on K, i.e.

max
1≤ϑ≤N

(yϑ − y′
ϑ)T (Fϑ(ξ, y) − Fϑ(ξ, y′)) ≥ 0, a.e. ξ ∈ Ξ,

for any y ≡ (yϑ)N
ϑ=1 and y′ ≡ (y′

ϑ)N
ϑ=1 in K.

(A1) F (ξ, ·) is a continuous and uniform P -function [9] on K, i.e.

max
1≤ϑ≤N

(yϑ − y′
ϑ)T (Fϑ(ξ, y) − Fϑ(ξ, y′)) ≥ ηF (ξ)∥y − y′∥2

2, a.e. ξ ∈ Ξ,
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for any y ≡ (yϑ)N
ϑ=1 and y′ ≡ (y′

ϑ)N
ϑ=1 in K, where η : Ξ → (0, ∞) is a P-measurable

function and E(∥ηF (ξ)∥2) < ∞.
(A2) G(·, ·, ξ) is Lipschitz continuous, i.e., exists a constant LG > 0 such that

∥G(t, x, ξ) − G(t′, x′, ξ)∥2 ≤a.s. LG[|t − t
′ | + ∥x − x′∥2],

for all (t, x) and (t′, x′) in Q.
(A3) f(·, ·) is Lipschitz continuous with constant Lf on Q. And B(·, ·, ξ) also is Lipschitz
continuous with constant LB, i.e.

∥B(t, x, ξ) − B(t′, x′, ξ)∥2 ≤a.s. LB[|t − t′| + ∥x − x′∥2],
where E(∥B(t, x, ξ)∥2) < ∞, i.e., there exists a constant Bs > 0 such that ∥B(t, x, ξ)∥2 ≤a.s.

Bs.

Remark 3.1. ∥B(t, x, ξ)∥2 ≤a.s. Bs implies that P(∥B(t, x, ξ)∥2 ≤ Bs) = 1.

Remark 3.2. Notice that (A2) and (A3) imply that G and f have linear growth on Q in
x, i.e., for some positive constants ρf and ρG and all (t, x) ∈ Q, we have

∥G(t, x, ξ)∥2 ≤a.s. ρG(1 + ∥x∥2), ∥f(t, x)∥2 ≤ ρf (1 + ∥x∥2) . (3.2)

Lemma 3.3. Suppose (A1), (A2) and (A3) hold. Then ȳ(t, x, ξ) is a solution of (1.2) if
and only if

ȳ(t, x, ξ) = PK [ȳ(t, x, ξ) − γ(ξ)(G(t, x, ξ) + F (ξ, ȳ(t, x, ξ)))],
where γ : Ξ → (0, ∞) is a P-measurable function and E(∥γ(ξ)∥2) < ∞ and PK is projection
operator on K; i.e. for l(t, ξ) ∈ Rm, we have

PK(l(t, ξ)) := {u ∈ K : ∥l(t, ξ) − u∥2 = d(l(t, ξ), K)}, a.e. ξ ∈ Ξ.

Moreover, if √
1 + h2

γh2
σ − 2∥γ(ξ)∥2hF < 1

and
∥F (ξ, y1(t, x, ξ)) − F (ξ, y2(t, x, ξ))∥2 ≤ σ(ξ)∥y1(t, x, ξ) − y2(t, x, ξ)∥2,

for all y1(t, x, ξ), y2(t, x, ξ) ∈ K, where E(σ(ξ)) < ∞. In view of E(∥γ(ξ)∥2) < ∞,
E(σ(ξ)) < ∞ and E(ηF (ξ)) < ∞, we can conclude that there exist hγ , hσ and hF such
that ∥γ(ξ)∥2 ≤a.s. hγ , σ(ξ) ≤a.s. hσ and ηF (ξ) ≤a.s. hF . Then (1.2) has a unique solution
ȳ(t, x, ξ) ∈ Y which is Lipschitz continuous w.r.t. (t, x) for a.e. ξ ∈ Ξ.

Proof. The first part of this lemma follows from [28, Lemma 1] and [31]. We turn to the
proof of the second part. To this end, let Ψd be defined as

Ψd(t, x, y, ξ) := PK [y(t, x, ξ) − γ(ξ)(G(t, x, ξ) + F (ξ, y(t, x, ξ)))].
We aim to prove that Ψd is a stochastic contractive mapping. For every y1(t, x, ξ),
y2(t, x, ξ) ∈ K, one has

∥Ψd(t, x, y1, ξ) − Ψd(t, x, y2, ξ)∥2

= ∥PK [y1(t, x, ξ) − γ(ξ)(G(t, x, ξ) + F (ξ, y1(t, x, ξ)))]
− PK [y2(t, x, ξ) − γ(ξ)(G(t, x, ξ) + F (ξ, y2(t, x, ξ)))]∥2

≤ ∥y1(t, x, ξ) − y2(t, x, ξ) − γ(ξ)[F (ξ, y1(t, x, ξ)) − F (ξ, y2(t, x, ξ))]∥2.

From (A1), it follows
∥y1(t, x, ξ) − y2(t, x, ξ) − γ(ξ)[F (ξ, y1(t, x, ξ)) − F (ξ, y2(t, x, ξ))]∥2

2

= ∥y1(t, x, ξ) − y2(t, x, ξ)∥2
2 + ∥γ(ξ)∥2

2∥F (ξ, y1(t, x, ξ)) − F (ξ, y2(t, x, ξ))∥2
2

− 2∥γ(ξ)∥2∥⟨y1(t, x, ξ) − y2(t, x, ξ), F (ξ, y1(t, x, ξ)) − F (ξ, y2(t, x, ξ))⟩∥2

≤a.s. (1 + h2
γh2

σ − 2∥γ(ξ)∥2hF )∥y1(t, x, ξ) − y2(t, x, ξ)∥2
2.
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Consequently,

∥Ψd(t, x, y1, ξ) − Ψd(t, x, y2, ξ)∥2

≤a.s.

√
1 + h2

γh2
σ − 2∥γ(ξ)∥2hF ∥y1(t, x, ξ) − y2(t, x, ξ)∥2.

This shows that Ψd is contractive as
√

1 + h2
γh2

σ − 2∥γ(ξ)∥2hF < 1. Therefore, the solution
of (1.2) is unique. Moreover, from [8] and [32, Theorem 5.1], we can draw the conclusion
that

∥ȳ(t1, x1, ξ) − ȳ(t2, x2, ξ)∥2 ≤ κF (ξ)[LG(∥x1 − x2∥2 + |t1 − t2|)], ∀ x1, x2 ∈ X̄,

where X̄ is certain domain such that a solution of (1.2) exists, E(κF (ξ)) < ∞ and LG is
Lipschitz constant of G(·, ·, ξ). □

According to Lemma 3.3, the value ȳ(t, x, ξ) is uniquely defined for all t ∈ [0, T ], x ∈ X̄
and a.e. ξ ∈ Ξ. Then the right hand expression of the ordinary differential equation in
(1.1) can be written as:

F(t, x) := f(t, x) + E(B(t, x, ξ)ȳ(t, x, ξ)). (3.3)

Hence, in terms of the implicitly defined function ȳ(t, x, ξ), to study (1.1), it suffice
solve the ordinary differential equation:{

ẋ(t) = F(t, x),
x(0) = x0, t ∈ [0, T ].

(3.4)

The Lipschitz continuity of B(t, x, ξ)ȳ(t, x, ξ) w.r.t. t and x implies that E(B(t, x, ξ)
ȳ(t, x, ξ)) is Lipschitz continuous w.r.t. t ∈ [0, T ] and x ∈ X̄. It follows that the function
F(t, x) in (3.3) is also Lipschitz continuous.

Therefore, using the classical existence and uniqueness theorem of ordinary differential
equation (cf. [32, Sect. 5.1]), we arrive at the following conclusion.

Theorem 3.4. Suppose the conditions in Lemma 3.3 hold. Then the ordinary differential
equation (3.4) exists a unique solution x̄ ∈ X. Hence, the SDVI (1.1) exists a unique
solution (x̄, ȳ) ∈ X × Y.

Note that if F (ξ, ·) is a continuous and uniform P0-function on K, the solution to (1.1)
is unnecessarily unique. See the following example.

Example 3.5. Let ξ ∼ N(µ, σ2). Consider an stochastic differential variational inequality:
ẋ(t) = Ax(t) + E(B(ξ)y(t, ξ)) + f(t),
y(t, ξ) ∈ SOL(Rm

+ , N(ξ)x(t) + q(t, ξ) + M(ξ)y(t, ξ)),
x(0) = x0, t ∈ [0, T ],

(3.5)

where A = 1, B(ξ) = (1, 1), N(ξ) = (ξ, 0)T , x(0) = 0, f(t) ≡ 0, q(t, x) ≡ (−l, 0)T , 0 <
l < 1 is a constant, and

M(ξ) =
(

1 0
1 0

)
is a P0-matrix. It follows from [9, Sect. 3.5] that F (ξ, y) = M(ξ)y(t, ξ) is a P0-function.
It is readily to see that the SDVI (3.5) has infinitely many solutions (x(t), y(t, ξ)) :

x(t) =
{

lt ln µ if 0 ≤ t ≤ 1,

(l + z)e−1et − z if t > 1,
y(t, ξ) =

{
( l−lt

ξ , 0)T if 0 ≤ t ≤ 1,

(0, z)T if t > 1,

where z ≥ 0 is an arbitrary constant.
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In the following we show the existence of weak solution of SDVI (1.1) in case that F (ξ, ·)
is a P0-function. Denote N(x, r) the close ball centered by x with the radius of r in the l2
norm. Let

Φ(t, x, ξ) = SOL(K, G(t, x, ξ) + F (ξ, y))
and

Ψ(t, x, y, ξ) = y − PK [y − γ(ξ)(G(t, x, ξ) + F (ξ, y))].
In addition, we also define

H(t, x) := {f(t, x) + E(B(t, x, ξ)y) | y ∈ Φ(t, x, ξ)} (3.6)
and

Ωε := {y|dist(y, Φ(0, x0, ξ)) ≤ ε}, (3.7)
for a positive number ε > 0, where dist(y, Φ(0, x0, ξ)) = min

v̂∈Φ(0,x0,ξ)
∥y − v̂∥2.

Lemma 3.6. Suppose Φ(0, x0, ξ) is nonempty and bounded for a.e. ξ ∈ Ξ, and (A0), (A2)
and (A3) hold. Then there exist T0 > 0 and δ0 > 0 such that Φ(t, x, ξ) and H(t, x) are
nonempty and bounded for every (t, x) ∈ [0, T0] × N(x0, δ0) and a.e. ξ ∈ Ξ.

Proof. We define the mapping Ψ̂(y) := Ψ(t, x, y, ξ). It is obvious that Ψ̂(y) is weakly
univalent (see Definition 2.1) for any fixed t, x and ξ. Then, according to Lemma 2.2, we
know that for every ε > 0 if there exists δ > 0 such that

sup
y∈Ωε

∥Ψ(t, x, y, ξ) − Ψ(0, x0, y, ξ)∥2 ≤a.s. δ, (3.8)

then Φ(t, x, ξ) is nonempty and bounded with
∅ ̸= Φ(t, x, ξ) ⊆ Ωε.

To show (3.8), we choose T0 and δ0 such that
hγLG(T0 + δ0) < δ.

Then we have
∥Ψ(t, x, y, ξ) − Ψ(0, x0, y, ξ)∥2

= ∥PK [y − γ(ξ)(G(t, x, ξ) + F (ξ, y))] − PK [y − γ(ξ)(G(0, x0, ξ) + F (ξ, y))]∥2

≤ ∥γ(ξ)∥2∥G(t, x, ξ) − G(0, x0, ξ)∥2

≤a.s. hγLG(t + ∥x − x0∥2)
≤ hγLG(T0 + δ0) < δ.

This gives (3.8) and therefore, Φ(t, x, ξ) is nonempty and bounded for every (t, x) ∈
[0, T0] × N(x0, δ0) and a.e. ξ ∈ Ξ. And then, following [32, Sect. 6.1], we can conclude
that H(t, x) is also nonempty and bounded for every (t, x) ∈ [0, T0] × N(x0, δ0). □
Theorem 3.7. Suppose that the hypotheses of Lemma 3.6 hold. Then Φ(·, ·, ξ) is upper
semi-continuous in [0, T0]×N(x0, δ0) for a.e. ξ ∈ Ξ and H(·, ·) is also upper semi-continuous
in [0, T0] × N(x0, δ0). Moreover, (1.1) has a weak solution on [0, T0].

Proof. Since Φ(t, x, ξ) is nonempty and bounded for every (t, x) ∈ [0, T0] × N(x0, δ0) and
a.e. ξ ∈ Ξ, we deduce that there exists ρ > 0 such that

sup{∥y∥2 : y ∈ Φ(t, x, ξ)} ≤ ρ(1 + ∥x∥2), (3.9)
for every (t, x) ∈ [0, T0] × N(x0, δ0) with fixed ξ ∈ Ξ. Moreover, G(t, x, ξ) + F (ξ, y) is
monotone and continuous w.r.t. y by assumptions (A0). Hence, following [32, Sect. 6.1],
we can deduce that Φ(t, x, ξ) is convex and closed for any fixed (t, x) and ξ ∈ Ξ. This,
combination with (3.9), means that Φ(·, ·, ξ) is upper semi-continuous for fixed ξ ∈ Ξ.

On the other hand, by assumption (A3), there exists a scalar λH satisfying
sup{∥ν̃∥2 : ν̃ ∈ H(t, x)} ≤a.s. λH(1 + ∥x∥2), ∀ (t, x) ∈ [0, T0] × N(x0, δ0).



Existence and convergence for stochastic differential variational inequalities 1469

In the following we aim to prove the upper semi-continuity of H(t, x) on (t, x) ∈ [0, T0]×
N(x0, δ0). It suffices to show that the set-valued mapping H is closed on (t, x) ∈ [0, T0] ×
N(x0, δ0). To this end, let the sequence {(tk, xk)} ⊆ [0, T0] × N(x0, δ0) be a sequence
converging to some vector (t∞, x∞) ∈ [0, T0]×N(x0, δ0) and {f(tk, xk)+E(B(tk, xk, ξ)yk)}
converges to some vector z∞ ∈ Rn as k → ∞, where yk ∈ Φ(tk, xk, ξ) for every k ≥ 1
and a.e. ξ ∈ Ξ. It follows that the sequence {yk} is bounded, and thus has a convergent
subsequence with a limit y∞, which implies that z∞ = f(t∞, x∞) + E(B(t∞, x∞, ξ)y∞) ∈
H(t∞, x∞). This implies that H(t, x) is closed and also upper semi-continuous. Hence,
following [32, Proposition 6.1], it can be derived that{

ẋ ∈ H(t, x),
x(0) = x0,

has a weak solution x̃. Therefore, we deduce

∥x̃(t)∥2 ≤a.s. ∥x0∥2 +
∫ t

0
ρH(1 + ∥x(τ)∥2)dτ.

Then, by Gronwall’s lemma, we obtain

∥x̃(t)∥2 ≤a.s. (∥x0∥2 + ρHT0)exp(ρHT0).

In view of (3.9) and Lemma 2.4, there exists a measurable ỹ(t, ξ) w.r.t. t such that
ỹ(t, ξ) ∈ Φ(t, x̃, ξ) and ˙̃x = f(t, x̃) + E(B(t, x̃, ξ) ỹ(t, ξ)) for a.a. t ∈ [0, T0]. This shows
that (x̃(t), ỹ(t, ξ)) is a weak solution of (1.1). □

4. Discrete approximation
In this section we study the discrete approximations and convergence analysis to SDVI

(1.1) in case that the leading operator F is a P -function. If F is a P0-function, the
convergence analysis of (1.1) can be discussed by a standard regularization method [6,28]
to ensure the uniqueness of solution and the convergence results of the former case.

4.1. Convergence analysis of sample average approximation
Let ξ1, ξ2, · · · , ξv be the independent identically distributed (i.i.d.) samples. Then on

the basis of these i.i.d. samples, we can get the following sample average approximate
(SAA) [40, Sect. 5] problem of (1.1):

ẋ(t) = f(t, x(t)) + 1
v

v∑
l=1

B(t, x(t), ξl)y(t, ξl),

(w − y(t, ξl))T (G(t, x(t), ξl) + F (ξl, y(t, ξl))) ≥ 0, l = 1, · · · , v, ∀w ∈ K,

x(0) = x0, t ∈ [0, T ].

(4.1)

If F is a P0-function, (1.2) might have multiple solutions. In this case, (1.1) can be
transformed into the following differential inclusion system:{

ẋ(t) ∈ H(t, x),
x(0) = x0, t ∈ [0, T ],

(4.2)

where H(t, x) is defined in (3.6). In what follows, we always assume that F is a P -function.
Then, (1.2) has a unique solution y̆(t, x(t), ξ) and system (4.2) can be written as:{

ẋ(t) = f(t, x(t)) + Γ(t, x(t)),
x(0) = x0, t ∈ [0, T ],

(4.3)

where
Γ(t, x(t)) := E(B(t, x(t), ξ)y̆(t, x(t), ξ)).
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If x̆(·) is a solution of (4.3), then (x̆(·), y̆(·, x̃(·), ξ)) is a solution of (1.1). Conversely, if
(x̆(·), y̆(·, ·)) is a solution of (1.1), then x̆(·) is a solution of (4.3). Similarly, the SAA
problem (4.1) can be written as:{

ẋ(t) = f(t, x(t)) + Γv(t, x(t)),
x(0) = x0, t ∈ [0, T ],

(4.4)

where

Γv(t, x(t)) := 1
v

v∑
l=1

B(t, x(t), ξl)y̆(t, x(t), ξl).

System (4.4) can be viewed as the SAA problem of (4.3). If (x̆v(t), y̆(t, x̆v(t), ξl)) is a unique
solution of (4.1) with l = 1, · · · , v, then x̆v(t) is unique solution of (4.4). Analogously, if
x̆v(t) is a unique solution of (4.4), then (x̆v(t), y̆(t, x̆v(t), ξl)) is a unique solution of (4.1)
with l = 1, · · · , v.

Define

I(x, ϕ)(t) =
(

R(t, x(t))
ϕ(t)

)
and Iv(xv, ϕv)(t) =

(
Rv(t, xv(t))

ϕv(t)

)
, (4.5)

where

R(t, x(t)) := x(t) − x0 −
∫ t

0
f(τ, x(τ)) + ϕ(τ)dτ, ϕ(τ) := Γ(t, x(t)),

Rv(t, xv(t)) := xv(t) − x0 −
∫ t

0
f(τ, xv(τ)) + ϕv(τ)dτ and ϕv(τ) := Γv(t, xv(t)).

It is obvious that I(x, ϕ) ∈ X × L for an (x, ϕ) ∈ X × L, and if (x, ϕ) ∈ X × X then
I(x, ϕ) ∈ X × X. So is Iv. Therefore, we know that x(t) is a classic solution of (4.3)
when ∥R∥X = 0 and ϕ ∈ X. If ∥R∥X = 0 and ϕ ∈ L, then x(t) is a weak solution (4.3).
Similarity, ∥Rv∥X = 0 and ϕv ∈ X means xv(t) is a classic solution of (4.4). And xv(t) is
a weak solution of (4.4) if ∥Rv∥X = 0 and ϕv ∈ L.

Lemma 4.1. Let {vk}∞
k=1 → ∞ be given. For any {(xvk , ϕvk)}∞

k=1 ⊂ U, if (xvk , ϕvk) →
(x, ϕ) with probability 1 (w.p.1) by the norm ∥·∥U, we have ∥Ivk(xvk , ϕvk)∥U → ∥I(x, ϕ)∥U
w.p.1 and ∥Ivk∥U→epi ∥I∥U a.s., by taking U = X × L or U = X × X.

Proof. Taking U = X × L, then we have

∥Ivk(xvk , ϕvk) − I(x, ϕ)∥X×L

= sup
t∈[0,T ]

∥Rvk(t, xvk(t)) − R(t, x(t))∥2 + ∥ϕvk − ϕ∥L2

= sup
t∈[0,T ]

∥∥∥∥xvk(t) − x(t) −
∫ t

0
f(τ, xvk(τ)) − f(τ, x(τ)) + ϕvk(τ) − ϕ(τ)dτ

∥∥∥∥
2

+ ∥ϕvk − ϕ∥L2

≤ (1 + TLf )∥xvk − x∥X +
∫ T

0
∥ϕvk(τ) − ϕ(τ)∥2dτ + ∥ϕvk − ϕ∥L2

≤ (1 + TLf )∥xvk − x∥X +
√

T

(∫ T

0
∥ϕvk(τ) − ϕ(τ)∥2

2dτ

) 1
2

+ ∥ϕvk − ϕ∥L2

≤ (1 + TLf )∥xvk − x∥X + (1 +
√

T )∥ϕvk − ϕ∥L2 .

Since (xvk , ϕvk) → (x, ϕ) w.p.1 by the norm ∥·∥X×L, we can conclude that ∥Ivk(xvk , ϕvk)∥X×L

→ ∥I(x, ϕ)∥X×L w.p.1 which implies that ∥Ivk∥X×L →epi ∥I∥X×L a.s. since ∥Ivk∥X×L is a
Carathéodory function and a random lsc function.
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Similarly, taking U = X × X, we have
∥Ivk(xvk , ϕvk) − I(x, ϕ)∥X×X

= sup
t∈[0,T ]

∥Rvk(t, xvk(t)) − R(t, x(t))∥2 + ∥ϕvk − ϕ∥X

= sup
t∈[0,T ]

∥∥∥∥xvk(t) − x(t) −
∫ t

0
f(τ, xvk(τ)) − f(τ, x(τ)) + ϕvk(τ) − ϕ(τ)dτ

∥∥∥∥
2

+ ∥ϕvk − ϕ∥X

≤ (1 + TLf )∥xvk − x∥X +
∫ T

0
∥ϕvk(τ) − ϕ(τ)∥2dτ + ∥ϕvk − ϕ∥X

≤ (1 + TLf )∥xvk − x∥X + (1 + T )∥ϕvk − ϕ∥X.

Therefore, we also derive that ∥Ivk(xvk , ϕvk)∥X×X → ∥I(x, ϕ)∥X×X w.p.1 and then ∥Ivk∥X×X

→epi ∥I∥X×X a.s. by ∥Ivk∥X×X is is a Carathéodory function and a random lsc function. □

Under the assumptions of Lemma 3.3, the (1.2) exists a unique Lipchitz continuous
solution. Hence, (4.4) admits a unique solution for each fixed v.

Proposition 4.2. Suppose the conditions in Lemma 3.3 hold. Denote xv ∈ X a unique
solution of (4.4). Then there exists a constant Mγ̄k

> 0 such that for any v ∈ N+ :=
{v|v ∈ {1, 2, 3, · · · }}

∥xv∥X ≤a.s. (∥x0∥ + 1)exp(ρf + BsMγ̄k
)T − 1,

where γ̄k > 0 such that ∥κF (ξl)∥2 ≤a.s. γ̄k since E(κF (ξl)) < ∞.

Proof. Under the assumptions in Lemma 3.3, we know that y̆(t, x̄(t), ξl) is a unique
solution of (1.2) for any t ∈ [0.T ], x̄ ∈ X and l = 1, · · · , v, and it is Lipschitz continuous
w.r.r. t and x̄(t). Hence, we can deduce that

∥y̆(t, x̄(t), ξl)∥2 ≤a.s. Mγ̄k
(1 + ∥x̄(t)∥2), (4.6)

for any t ∈ [0, T ], x̄ ∈ X and l = 1, · · · , v. We know that ϕv ∈ X for a fixed v by the
continuity of y̆(·, ·, ξl) and then

∥ϕv(t)∥2 ≤
∥∥∥∥∥1

v

v∑
l=1

B(t, x̄(t), ξl)y̆(t, x̄(t), ξl)
∥∥∥∥∥

2

≤ 1
v

v∑
l=1

∥B(t, x̄(t), ξl)∥2 ∥y̆(t, x̄(t), ξl)∥2

≤a.s. BsMγ̄k
(1 + ∥x̄(t)∥2).

(4.7)

Since xv ∈ X , then for any t ∈ [0, T ], we have

∥xv(t)∥2 ≤ ∥x0∥2 +
∥∥∥∥∫ t

0
f(τ, xv(τ)) + ϕv(τ)dτ

∥∥∥∥
2

≤a.s. ∥x0∥2 +
∫ t

0
∥f(τ, xv(τ))∥2 + BsMγ̄k

(1 + ∥xv(τ)∥2)dτ

≤ ∥x0∥2 +
∫ t

0
ρf (1 + ∥xv(τ)∥2) + BsMγ̄k

(1 + ∥xv(τ)∥2)dτ

= ∥x0∥2 +
∫ t

0
(ρf + BsMγ̄k

)∥xv(τ)∥2 + (ρf + BsMγ̄k
)dτ.

Hence, according to Lemma 2.5, we have

∥xv(t)∥2 ≤a.s. ∥x0∥2exp(ρf + BsMγ̄k
)t + exp(ρf + BsMγ̄k

)t − 1,
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which means, for t ∈ [0, T ],

∥xv∥X ≤a.s. ∥x0∥2exp(ρf + BsMγ̄k
)t + exp(ρf + BsMγ̄k

)t − 1
≤ (1 + ∥x0∥2)exp(ρf + BsMγ̄k

)T − 1.

□

Theorem 4.3. Suppose the conditions in Lemma 3.3 hold. Let xv be a solution of (4.4).
Then there are a sequence {vk}∞

k=1 → ∞, x∗ ∈ X and ϕ∗ ∈ L such that xvk → x∗ w.p.1
uniformly on [0, T ] and ϕvk → ϕ∗ w.p.1 weakly in L. Moreover, if ϕvk → ϕ∗ w.p.1 w.r.t.
∥ · ∥L2 , then x∗ is a weak solution of system (4.3). If ϕvk → ϕ∗ w.p.1 uniformly on [0, T ],
then x∗ is a classic solution of system (4.3).

Proof. According to Proposition 4.2, we know that {xv} is uniformly bounded on [0, T ]
and so is {ẋv}, which implies {xv} is equicontinuous on [0, T ]. Then by the Arzelá-Ascoli
theorem [15, 41], there exists a sequence {vk}∞

k=1 → ∞ such that {xvk} is convergent to
an x∗ ∈ X w.p.1 uniformly on [0, T ].

Similarly, from Proposition 4.2 and (4.7), we know that {ϕv} is also uniformly bounded
on [0, T ] w.p.1 for v sufficiently large. By Alaoglu’s theorem [15], there exists a subsequence
of {ϕvk}, which we may assume without loss of generality to be {ϕvk} itself, has a weak
limit, named ϕ∗, as L is a reflexive Banach space.

Since xv(t) is a solution of (4.4), we know that xv(t) is continuous and ϕv(t) is also
continuous under the assumption in Lemma 3.3. Hence, ∥Rv∥X = 0 a.s.. In addition, if
ϕvk → ϕ∗ w.p.1 w.r.t. ∥ · ∥L2 , then we can see that ∥R∥X = 0 a.s. and ϕ∗ ∈ L a.s. by

∥Ivk(xvk , ϕvk)∥X×L → ∥I(x∗, ϕ∗)∥X×L w.p.1 as k → ∞,

in Lemma 4.1. It means that x∗ is a weak solution of system (4.3). Similarly, if ϕvk → ϕ∗

w.p.1 uniformly on [0, T ], we know that ∥R∥X = 0 a.s. and ϕ∗ ∈ X a.s.. Then x∗ is a
classic solution of system (4.3). □

Theorem 4.4. Suppose the conditions in Lemma 3.3 hold. Denote x∗ and xv the unique
solutions of system (4.3) and (4.4), respectively. Then for any ε > 0 and every compact
subset X̆ ⊆ Rn, there exist ρ = ρ(ε, c1) > 0, l = l(ε) > 0 (independent of v), a constant c
and a constant c3 such that

P

 sup
t∈[0,T ]
x(t)∈X̆

∥Γv(t, x(t)) − Γ(t, x(t))∥2 ≥ ε

 ≤ l(ε)e−vρ(ε,c1), (4.8)

and
P{∥xv − x∗∥X ≥ ε} ≤ l(ε/σ)e−vρ(ε/σ,c2

1/σ), (4.9)

where σ = exp(Lf +MBT −1)
Lf +MB

and c1 =
√

2cc3.

Proof. According to Lemma 3.3, (1.2) has a unique solution ȳ(t, x(t), ξ). Naturally,
ȳ(t, x(t), ξ) = y̆(t, x(t), ξ). Moreover, it is Lipschitz continuous w.r.t t and x(t) for a.e.
ξ ∈ Ξ. Hence, by (4.6), we can derive that there exists a constant Q1 > 0 such that, for
any t ∈ [0, T ] and x(t) ∈ X̆,

∥y̆(t, x(t), ξ)∥2 ≤a.s. Q1.

Let

Mξ(τ) := E (exp (τ (B(t, x(t), ξ)y̆(t, x(t), ξ) − E (B(t, x(t), ξ)y̆(t, x(t), ξ))))) ,

be the moment-generating function of stochastic variable B(t, x(t), ξ)y̆(t, x(t), ξ) − E(B(t
, x(t), ξ)y̆(t, x(t), ξ)). Since y̆(t, x(t), ξ) is uniformly bounded w.p.1 and E(B(t, x(t), ξ)) <
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∞, we can derive that

Mξ(τ) ≤ E
(
exp

(
c2

3τ2(B(t, x(t), ξ)y̆(t, x(t), ξ) − E(B(t, x(t), ξ)y̆(t, x(t), ξ)))2
))

≤a.s. E
(
exp

(
c2

3τ2c2
))

= E
(

exp

(
c2

3τ2 2c2

2

))

= E
(

exp

(
τ2

2
c2

1

))
,

(4.10)

where c3 > 1 is easy to be found. By Lemma 3.3, we have
∥ȳ(t, x1, ξ) − ȳ(t, x2, ξ)∥2 ≤ κF (ξ)LG∥x1 − x2∥2

≤a.s. γ̄kLG∥x1 − x2∥2.
(4.11)

Then, by (4.10), (4.11) and [40, Theorem 7.67], we can conclude that (4.8) holds.
On the other hand, since xv(t), x∗(t) ∈ X̆, we have, for any t ∈ [0, T ],

∥xv(t) − x∗(t)∥2 ≤
∫ t

0
∥f(τ, xv(τ)) − f(τ, x∗(τ))∥2

+ ∥Γv(τ, xv(τ)) − Γ(τ, xv(τ))∥2

+ ∥Γ(τ, xv(τ)) − Γ(τ, x∗(τ))∥2dτ

≤
∫ t

0,
∥f(τ, xv(τ)) − f(τ, x∗(τ))∥2

+ ∥E(B(τ, xv(τ), ξ)ȳ(τ, xv(τ), ξ))
− E(B(τ, x∗(τ), ξ)ȳ(τ, x∗(τ), ξ))∥2

+ sup
t∈[0,T ]

xv(t)∈X̆

∥Γv(t, xv(t)) − Γ(t, xv(t))∥2dτ.

≤a.s.

∫ t

0
[Lf + MB]∥xv(τ) − x∗(τ)∥2

+ sup
t∈[0,T ]

xv(t)∈X̆

∥Γv(t, xv(t)) − Γ(t, xv(t))∥2dτ,

where MB is Lipschitz constant of E(B(t, xv(t), ξ)ȳ(t, xv(t), ξ)). Hence, by lemma 2.5, we
derive that

∥xv − x∗∥X ≤a.s. σ sup
t∈[0,T ]

xv(t)∈X̆

∥Γv(t, xv(t)) − Γ(t, xv(t))∥2,

holds for every t ∈ [0, T ] where σ is given in (4.9). Then, we have (4.9) holds. □

4.2. Convergence analysis of time-stepping approximation
Next, the time-stepping method, i.e., a finite-difference formula to approximate the time

derivative ẋ, is used to solve the problem (4.4). It begins with the division of the time
interval [0, T ] into K for a fixed h = T/K = ti+1 − ti where i = 0, · · · ,K − 1 subintervals:

0 = t0 < t1 < · · · < tK = T.

Starting from xv
0 = x0, we compute two finite sets of vectors

{xv
1, xv

2, · · · , xv
K} ⊂ Rn and {yξ1

1 , yξ1
2 , · · · , yξl

K , · · · , yξl
1 , · · · , yξl

K} ⊂ Rm
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in the following manner: for i = 0, 1, · · · ,K − 1,

xv
i+1 = xv

i + h
[
f(ti+1, θxv

i + (1 − θ)xv
i+1) + Γv(ti+1, xv

i+1)
]
, (4.12)

where Γv(ti+1, xv
i+1) = 1

v

v∑
l=1

B(ti, xv
i , ξl)yξl

i+1 = ϕv(ti+1). Naturally, yξl
i+1 satisfies

yξl
i+1 ∈ SOL

(
K, G(ti+1, xv

i+1, ξl) + F (ξl, ·)
)

. (4.13)

Let x̂v
h(t) be the continuous piecewise linear interpolation of the family {xv

i } and ŷξl
h (t) be

the continuous piecewise constant function of the family {yξl
i }, i.e., for i = 0, 1, · · · ,K− 1,{

x̂v
h(t) := xv

i + t−ti
h (xv

i+1 − xv
i ), ∀t ∈ [ti, ti+1],

ŷξl
h (t) := yξl

i+1, ∀t ∈ (ti, ti+1].
(4.14)

Naturally, we define

ϕ̂v
h(t) := 1

v

v∑
l=1

B(ti, xv
i , ξl)ŷξl

h (t) = 1
v

v∑
l=1

B(ti, xv
i , ξl)yξl

i+1 = ϕv(ti+1),

for all t ∈ (ti, ti+1]. Consequently, for every sufficiently small h > 0 and sufficiently large
v > 0, the functions x̂v

h : [0, T ] → Rn, ŷξl
h : [0, T ] → Rm (l = 1, · · · , v) and ϕ̂v

h : [0, T ] → Rn

are well defined.

Proposition 4.5. Suppose the conditions in Lemma 3.3 hold. Then there exist h0 > 0
and γ > 0 such that

∥xv
i ∥2 ≤a.s. α1 :=

(
∥x0∥2 + ρf + γ

ρf

)
exp

(
Tρf + γ

1 − hρf

)
− ρf + γ

ρf
,

holds for any h ∈ (0, h0], v ∈ N+ and i = 1, 2, · · · ,K, where h0 < 1
ρf

.

Proof. Define
γ = BsM(γ̄k)(∥x0∥2 + 1)exp(ρf + BsM(γ̄k))T.

Then we can deduce that
∥ϕv∥X ≤a.s. γ, (4.15)

is always ture by (4.7) and Proposition 4.2. According to (4.12), we have
∥xv

i+1∥2 ≤ ∥xv
i ∥2 + h

∥∥f(ti+1, θxv
i + (1 − θ)xv

i+1) + ϕv(ti+1)
∥∥

2
≤a.s. ∥xv

i ∥2 + hρf (1 + ∥θxv
i + (1 − θ)xv

i+1∥2) + hγ

≤ (1 + hρf θ)∥xv
i ∥2 + (1 − θ)hρf ∥xv

i+1∥2 + h(γ + ρf ).

Then, we can get
∥xv

i+1∥2 ≤a.s. c4∥xv
i ∥2 + c5

and

∥xv
i ∥2 ≤a.s. ci

4∥xv
0∥2 + ci

4 − 1
c4 − 1

c5,

where c4 = 1+ρf θh
1−(1−θ)hρf

and c5 = h(ρf +γ)
1−(1−θ)hρf

. Because ih ≤ Kh = T and c4 ≤ 1
1−hρf

, we
can obtain that

ci
4 = (c4 − 1 + 1)i ≤ exp(i(c4 − 1)) ≤ exp

(
ihρf

1 − hρf

)
≤ exp

(
Tρf

1 − hρf

)
.

Then by the calculation we can derive that

∥xv
i ∥2 ≤a.s. α1

for h ∈ (0, h0]. □
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Theorem 4.6. Suppose the conditions of Lemma 3.3 are fulfilled. Then there are se-
quences {vk} → ∞ and {hk} ↓ 0 such that {x̂vk

hk
} converges to an x∗ w.p.1 uniformly on

[0, T ] and ϕ̂vk
hk

→ ϕ∗ w.p.1 weakly in L. Moreover, if ϕ̂vk
hk

→ ϕ∗ w.p.1 w.r.t. ∥ · ∥L2 , then
x∗ is a weak solution of system (4.3).

Proof. According to Proposition 4.5, we get the family of functions {x̂v
h(t)} is uniformly

bounded on [0, T ] w.p.1 for v > 0 and h > 0 small enough. Moreover, for any v > 0, we
have

∥xv
i+1 − xv

i ∥2 ≤a.s. h
∥∥f(ti+1, θxv

i + (1 − θ)xv
i+1)

∥∥
2 + hγ

≤ hθρf ∥xv
i ∥2 + hρf (1 − θ)∥xv

i+1∥2 + hγ + hρf

= h(ρf α1 + ρf + γ).
(4.16)

Then for any t ∈ [tk, tk+1], τ ∈ [tk+p, kk+p+1] (p ∈ N+) and v ∈ N+, we have
∥x̂v

h(τ) − x̂v
h(t)∥2

=

∥∥∥∥∥∥(x̂v
h(τ) − xv

k+p) +
p−1∑
j=1

(xv
k+j+1 − xv

k+j) + (xv
k+1 − x̂v

h(t))

∥∥∥∥∥∥
2

≤ ∥x̂v
h(τ) − xv

k+p∥2 +
p−1∑
j=1

∥xv
k+j+1 − xv

k+j∥2 + ∥xv
k+1 − x̂v

h(t)∥2

≤a.s [τ − tk+p + (p − 1)h + tk+1 − t][ρf α1 + ρ1 + γ]
≤ |τ − t|[ρf α1 + ρ1 + γ].

(4.17)

It implies that the piecewise interpolations x̂v
h(·) are Lipschitz continuous almost surely

on [0, T ] and the Lipschitz constant is independent of h and v. Hence, we obtain that
{x̂v

h(t)} is equicontinuous. Then according to the Arzelá-Ascoli theorem [15,41], there are
sequence {hk} ↓ 0 and {vk} → ∞ as k → ∞ such that {x̂vk

hk
} converges to an x∗ w.p.1

uniformly on [0, T ]. Obviously, x∗(t) is a continuous function on [0, T ].
From (4.15), {ϕ̂v

h} is also uniformly bounded for h > 0 sufficiently small and v > 0. By
Alaoglu’s theorem [15], there exists a subsequence of {ϕ̂vk

hk
}, which we may assume without

loss of generality to be {ϕ̂vk
hk

} itself, has a weak limit ϕ∗ w.p.1 in L as k → ∞.

Next, we show that x∗ is a weak solution of system (4.3).
For any 0 ≤ t ≤ T with x̂v

h(0) = x0 (with loos of generality, we choose t ∈ [ti, ti+1]),∥∥∥∥x̂v
h(t) − x̂v

h(0) −
∫ t

0
f(τ, x̂v

h(t)) + ϕ∗(τ)dτ

∥∥∥∥
2

≤
∥∥∥∥x̂v

h(t) − x̂v
h(0) −

∫ t

0
f(τ, x̂v

h(t)) + ϕ̂v
h(τ)dτ

∥∥∥∥
2

+
∥∥∥∥∫ t

0
ϕ̂v

h(τ) − ϕ∗(τ)
∥∥∥∥

2

≜ ∥Wv
h(t)∥2 + ∥Jv

h(t)∥2.

Then,

∥Jv
h(t)∥2 ≤

∫ t

0
∥ϕ̂v

h(τ) − ϕ∗(τ)∥2dτ ≤
∫ T

0
∥ϕ̂v

h(τ) − ϕ∗(τ)∥2dτ,

which means that

∥Jv
h∥X ≤

∫ T

0
∥ϕ̂v

h(τ) − ϕ∗(τ)∥2dτ ≤
√

T

(∫ T

0
∥ϕ̂v

h(τ) − ϕ∗(τ)∥2
2dτ

) 1
2

≤
√

T∥ϕ̂v
h − ϕ∗∥L2 .

Hence, if ϕ̂vk
hk

→ ϕ∗ w.p.1, as k → ∞ w.r.t. ∥ · ∥L2 , then

lim
k→∞

∥Jvk
hk

∥X ≤
√

T∥ϕ̂vk
hk

− ϕ∗∥L2 = 0.
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On the other hand,
∥Wv

h(t)∥2

=

∥∥∥∥∥∥x̂v
h(t) − x̂v

h(0) −

i−1∑
j=0

∫ tj+1

tj

+
∫ t

ti

[f(τ, x̂v
h(τ)) + ϕ̂v

h(τ)
]

dτ

∥∥∥∥∥∥
2

≤
∥∥∥x̂v

h(t) − x̂v
h(0) −

i−1∑
j=0

∫ tj+1

tj

[f(tj+1, θxv
j + (1 − θ)xv

j+1) + ϕv(tj+1)]dτ

−
∫ t

ti

[
f(ti+1, θxv

i + (1 − θ)xv
i+1) + ϕv(ti+1)

]
dτ
∥∥∥

2

+
∥∥∥ i−1∑

j=0

∫ tj+1

tj

[
f(tj+1, θxv

j + (1 − θ)xv
j+1) − f(τ, x̂v

h(τ))
]

dτ

+
∫ t

ti

[
f(ti+1, θxv

i + (1 − θ)xv
i+1) − f(τ, x̂v

h(τ))
]
dτ
∥∥∥

2

≤

∥∥∥∥∥∥x̂v
h(t) − x̂v

h(0) −
i−1∑
j=0

(xv
j+1 − xv

j ) − t − ti

h
(xv

i+1 − xv
i )

∥∥∥∥∥∥
2

+
i−1∑
j=0

∫ tj+1

tj

∥∥∥∥[ρf

(
1 − θ − t − tj

h

)
(xv

j+1 − xv
j )
]∥∥∥∥

2
+ ρf |tj+1 − τ |dτ

+
∫ t

ti

∥∥∥∥[ρf

(
1 − θ − t − ti

h

)
(xv

i+1 − xv
i )
]∥∥∥∥

2
+ ρf |ti+1 − τ |dτ

≤
i−1∑
j=0

hρf ∥xv
j+1 − xv

j ∥2 + i

2
h2ρf + (t − ti)ρf ∥xv

i+1 − xv
i ∥2 + h2

2
ρf

≤a.s.

[
ρf (ρf α1 + ρf + γ) + ρf

2

]
(T + h)h.

Therefore, we can conclude that

lim
k→∞

∥Wvk
hk

(t)∥2 = 0,

which implies that lim
k→∞

∥Wvk
hk

∥X = 0.

Since ϕ∗ ∈ L a.s., we have f + ϕ∗ ∈ L a.s.. By the Lebesgue dominated convergence
theorem, we find

sup
t∈[0,T ]

∥∥∥∥x∗(t) − x∗(0) −
∫ t

0
f(τ, x∗(τ)) + ϕ∗(τ)dτ

∥∥∥∥
2

= lim
k→∞

sup
t∈[0,T ]

∥∥∥∥x̂vk
hk

(t) − x̂vk
hk

(0) −
∫ t

0
f(τ, x̂vk

hk
(τ)) + ϕ∗(τ)dτ

∥∥∥∥
2

= lim
k→∞

∥Wvk
hk

∥X + lim
k→∞

∥Jvk
hk

∥X = 0.

Hence, we conclude that x∗ is a weak solution of system (4.3). □
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