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Abstract: This study proposes a new neighborhood parameter selection method for distance-weighted k-Nearest 

Neighbors (DWKNN) classification. According to this method, individual circular neighborhood boundaries are formed 

as per class. Then, these circular boundaries are respectively positioned such that their centers become a test element. 
Membership of the test elements within classes is determined by the elements pertaining to the class which stays within 

the circle and constitute solely that circle. The proposed method is originally the state of circular attribute of the distance, 

or DWKNN. The proposed solution applies the circular attribute contribution approach in the issue of neighborhood 

boundary selection in the DWKNN method. Because the circles constituting the neighborhood boundary in the proposed 

method are determined of a given class structure for the first time, and since the circles were designated according to the 

classification nature, the goal is maximum performance of the proposed model. The method proposed in the study has 

been tested on real datasets, and these tests show that the proposed method has contributed approximately 2% to the 

success of the DWKNN method. 
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1. Introduction 
 

Due to advantages such as simplicity and efficiency, 

the k-Nearest Neighbors algorithm (KNN) is a 

frequently used and well-known classification method 

(1, 2, 3, 4, 5). Moreover, it only requires one parameter, 

namely k, the neighborhood parameter (6). The KNN 
algorithm has subsequently been improved upon to 

create the distance-weighted KNN (DWKNN), which 

enhanced its performance (7). Nevertheless, one crucial 

problem in both the KNN and DWKNN methods is the 

selection of a suitable number of neighbors, as the 

identification of different classes might create different 

numbers of neighbor. If the chosen k parameter is too 

small, it leads to poor classification outcomes in discrete 

and noisy datasets. However, if the chosen k parameter 

is too big, the classification outcomes might also suffer 

due to the presence of outliers (8, 9, 10, 11). 
In the literature, many methods have been developed 

for parameter selection (12, 13, 14, 15, 16). However, 

these methods are not often used in actual practice. As 

these methods entail sophisticated mathematical 

operations, they minimize the simplicity aspect of the 

KNN algorithm. For this reason, the k-fold cross 

validation technique is the best known method for 

parameter selection (17, 18, 19). However, the biggest 

disadvantage of this technique is its high processing  

 

 

time. Therefore, a new parameter selection method with 

short processing time is needed. 

Current methods propose using the same neighborhood 

parameters for all classes. However, the structure and 

properties of each class might be different. For this reason, 

the neighborhood limit for each class should be distinctively 

designated and the class membership of the test elements 

should be evaluated according to this defined neighborhood 

limit. The neighborhood limit as per class should also be 
created so as to produce the best results, according to its 

particular structure. The membership of the test element as 

per class to that class should then be evaluated according to 

the distance of test elements that lie within the neighborhood 

boundary. Since the method proposed in the study based on 

circular features as per class, it is called Circular Attribute 

Neighbors (CAN). 

In this study, the superiority of the proposed method over 

the current method is explained both experimentally and 

mathematically. A flowchart of this study can be seen in 

Figure 1. 
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Figure 1. Study flowchart 

  

2. Materials and Methods 
  

In the study, four actual datasets (i.e., Wine, Seeds, 

Balance-Scale and Parkinson’s Tele-monitoring 

datasets) were employed. These datasets were taken 

from the UCI machine learning repository (20). The 

properties of these datasets are shown in Table 1. Both 
CAN and DWKNN evaluate neighbors with the same 

logic, thus the performance of the proposed CAN 

method is compared with the results of each dataset 

when DWKNN is applied. To obtain a reliable 

classification performance, the classifiers were assessed 

with a 10-fold cross-validation technique. For every 

cycle, 90% of the dataset was used as training and the 

remaining 10% was used as the test element. The 

computer calculations were run with the MATLAB 

program. 

 
Table 1. Features of UCI Datasets Used. 

  

Dataset 

Number 

of 

Instances 

Number 

of 

Features 

Classes 
Mean 

Distances 

Wine 178 13 3 4.55 

Seeds 210 7 3 4.92 

Balance 
scale 

625 4 3 3.89 

Parkinson’s 

Tele-
monitoring 

5875 25 42 4.68 

Calculation of mean distance can be seen in section 2.2 

 

2.1. Technical background 
  

A class element has a relationship with all other 
elements belonging to the same class. However, the 

degree of this relationship is not the same for all 

elements. For example, the relationship between a given 

class element and the elements closest to itself is strong, 

yet the relationship between this same class element and the 

element farthest from it is weak. Thus, remote elements 

within the same class of elements hold less meaning for a 

given element. Using this logic, meaningful neighbors of a 

class element should be designated according to their 

distance from that given class element. 

In statistics, the term “mean value” is used to represent 
all values; in CAN, the relationship of an element to another 

element that belongs to the same class can also be calculated 

via mean value. Namely, the mean distance of an element 

from another element within the same class can be used 

significant neighbors within the same class. Thus elements 

that are closer to a given class element are the meaningful 

neighbors of this class element. 

So if the mean inter-class element distance is calculated, 

the value found can be used to determine the meaningful 

neighborhood limit for all class elements. Namely, the 

meaningful elements are those elements that are closer to a 
test class element than the mean interclass element distance. 

Similarly, these elements closer to a test element than the 

mean inter-class elements distance are the meaningful 

elements (i.e., meaningful neighbors) of that class. 

  

2.2. Mathematical Notation 
  

Let us suppose that there is a class formed by elements 

n1, n2, n3, and n4 (Figure 2). 
  

 

Figure 2. Determination of meaningful neighbors of a given class 
element, according to the mean inter-class elements distance 

  

In this class, some terms can be shown in equations 

below: 

 

If the data set N is in equation (1), 

 

𝑁 = (𝑛1,  𝑛2, … … … 𝑛𝑥)    (1) 
 
The mean distance between each element is in equation (2) 

 

𝐷𝑥 =
1

𝑥 − 1
∑ |𝑛𝑥 −  𝑛𝑚|

𝑥

𝑚=1

 (2) 

 

Then, the mean distance of all (radius) is in equation (3). 

 

𝐴 =
1

𝑥
∑ 𝐷𝑚

𝑥

𝑚=1

 (3) 
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Finally, the meaningful element can be determined in 

equation (4), 

 

𝑀𝑥,𝑚 = [
|𝑛𝑥 −  𝑛𝑚| ≤ 𝐴 , 𝑀𝑒𝑎𝑖𝑛𝑖𝑛𝑔𝑓𝑢𝑙
|𝑛𝑥 −  𝑛𝑚| > 𝐴 , 𝑀𝑒𝑎𝑛𝑖𝑛𝑔𝑙𝑒𝑠𝑠

] (4) 

 

While Mx,m is the meaningfulness of nm for nx. 

 

According to the equations above, the mean inter-

class elements distance is 10/3. If we draw a circle 10/3 

radius over a test element and centered the resulting 
circle over this test element, the number of other class 

members that remain inside the circle would represent 

the number of meaning neighbors for the given test 

element (i.e., the element at the center of the circle). The 

number of meaningful neighbors for the elements in 

Figure 2 is shown in Table 2. 

 
Table 2. Meaningful Number of Neighbors For Each 

Element in the Sample Dataset Shown in Figure 2. 

  

Class 

Elements 

Meaningful Neighbor Number 

(number of neighbors closer than 10/3 

distance) 

n1 2 

n2 3 

n3 3 

n4 1 

  

The membership of a test element of a given class 

can be discovered in the same way. The meaningful 
neighbors are those elements whose distance from the 

test element is closer than mean inter-class elements 

distance value of 10/3. As seen in Table 2, whereas an 

element near the class center has many meaningful 

neighbors, the number of meaningful neighbors for the 

outermost elements is far fewer. According to the same 

computation method, whereas the neighbor element 

number of the test elements closer to the class center is 

higher, the neighbor element number of the test elements 

closer to the outermost element is lower. An illustration 

of the determination of the neighbors can be seen in 
Figure 3. 

  

 

Figure 3. Visual representation of neighbor determination 

  

2.3. Algorithm 
  

The algorithm of the proposed method is as follows: 
Let us assume that there are two classes 

 

𝐴 = {𝐴1, 𝐴2,⋯,𝐴𝑛,} and 𝐵 = {𝐵1, 𝐵2,⋯,𝐵𝑚,}, and that X is 

a test element. 

 

At the same time, rA, is the mean inter-elements distance 

of class A elements, and 𝑟𝐵  is the mean inter-elements 

distance of class B elements. 

 

Thus, if a Circle A is formed using radius 𝑟𝐴 and a Circle 

B is formed using radius 𝑟𝐵 : 

 

1. The center of Circle A is positioned over X, as X is 

the test element. 

2. The class A elements that remain inside Circle A 

constitute the neighbors of X that belong to Class – A. 

3. The membership degree of X to Class A, according to 

the distance between X and X’s neighbors within 

Class A, is fixed at M1. 

4. The center of Circle B is positioned over X, as X is 

the test element. 

5. The class B elements that remain inside Circle B 

constitute the neighbors of X that belong to Class B. 

6. The membership degree of X to Class B, according to 

the distance between X and X’s neighbors within 

Class – B and X, is fixed at M2. 

7. If M1>M2 then X belongs to Class A, but if M1<M2 

then X belongs to Class B. 

Thus, a distinctive neighborhood boundary is generated 

in the method as per class and these limits are calculated 
according to the structure of the inter-class elements 

distance. 

  

3. Results and Discussion 
  

Both the CAN method proposed in this study and the 
DWKNN method both use the same neighbor assessment 

algorithms, as the neighbors in both methods are weighted 

according to distance. Thus the proposed CAN method will 

be compared to the DWKNN method by choosing the k – 

parameters that produce the best results for the DWKNN 

method. However, classic (individual) KNN also used as a 

classifier to datasets for preferable comparision. During 

these tests, the standard deviations formed due to application 

of cross validation method have been shown with the sign of 

“±”. The success rates of the methods are as shown in Table 

– 3.  
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Table 3. Accuracy of the CAN and DWKNN Methods. 

  

Data set KNN DWKNN CAN 

Wine 
73.39±0.18 

(1) 

76.69±0.11 

(1) 
78.38±0.12 

Seeds 
87.73±0.23 

(13) 

90.76±0.56 

(11) 
92.85±0.59 

Balance 

scale 

84.75±0.31 

(9) 

87.95±0.47 

(11) 
89.48±0.81 

Parkinson’s 

Tele-

monitoring 

93.77±0.22 

(1) 

96.33±0.16 

(1) 
98.51±0.14 

The values in the parentheses indicate the k values through which the 

best results were acquired. The standard deviations are shown with the 

± values. 

As seen in Table-3, success rates of the classic 

(individual) KNN method were very low to proposed 

method. KNN method has therefore not been taken into 

account in the detailed assessment (It has been excluded 

from detailed evaluation ). Furthermore, classifiers were 

tested separately for each metric distances (Euclidean, 

Mahalanobis, City block, Minkowski, Chebyshev, 

Correlation, Hamming, Jaccard and Spearman). 

However, only the Euclidean Distance results are in 

Table 3, since the best results obtained in euclidean 
distance. 

The accuracy rate of the CAN method is 

approximately 2% higher than the maximum 

performance of DWKNN (i.e., DWKNN results 

obtained by selection of best suitable k parameter; Table 

3). Comparison of CAN and DWKNN methods for 

individual datasets seen in Figures 4 through 7. 

 
Figure 4. Success rates of the DWKNN and CAN methods 

for the Wine dataset. 

 
Figure. 5. Success rates of the DWKNN and CAN methods 

for the Seed dataset. 

  
Figure 6. Success rates of the DWKNN and CAN methods for the 

Balance scale dataset. 

  

  

Figure 7. Success rates of the DWKNN and CAN methods for the 

Parkinson’s Tele-monitoring dataset. 

 

Also these figures can seen in Table 4. 

 
Table 4. Accuracy Comparision of the CAN and DWKNN 

Methods for each k parameter. 

  

Optimum K Values are Darkened 

 

Figures 4 through 7 show that as different neighborhood 

parameters (i.e., k-parameters) for the DWKNN method are 
selected, the CAN method becomes 2% more successful than 

DWKNN method. Furthermore, since there is no parameter 

selection in the CAN method, the success remains fixed and 

 
K 

Parameter 
Wine Seeds 

Balance 
scale 

Parkinson’s 
Tele-

monitoring 

D
W

K
N

N
 

1 76.69 89.01 78.93 96.33 

3 73.32 88.32 81.81 95.21 

5 69.92 87.85 82.87 93.08 

7 69.87 89.23 87.26 93.03 

9 70.72 90.30 87.34 84.11 

11 70.02 90.76 87.95 73.74 

13 69.98 89.39 87.45 72.63 

15 70.02 89.12 87.08 71.34 

C
A

N
 

Radius 78.38 92.85 89.48 98.51 
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this rate is approximately 2% better than the highest 

performance obtained by the DWKNN method. 

In addition, it can be seen that the success rates are 

inversely proportional to mean distances in Table 2. 

So,it can be said that the proposed method is more 

successful at the data sets having the low mean distance 

between the elements. 
The method proposed was assessed by the following 

process. There are two stages of the DWKNN method, 

namely 1) parameter selection, and 2) making the test 

element a member. The difference between DWKNN 

and CAN methods lies in this initial parameter selection 

stage. In the CAN method, a separate neighborhood 

limit is created for each class, and it is when these limits 

are determined that the inter–class components distance 

is considered. Therefore, as the quantity and the number 

of classes increases, the CAN method’s processing time 

also increases (i.e., in the parameter selection stage). In 
the DWKNN method, during first stage, either the 

parameter is estimated or the parameter selection 

algorithms are applied. If the parameter selection is 

determined through estimation, because it may take time 

to identify the accurate parameter, the parameter 

selection stage of the DWKNN method may be longer 

than that of the CAN method. Similarly, if the parameter 

selection algorithm is employed, because application of 

the parameter selection algorithm may also take time, 

the parameter selection algorithm of DWKNN method 

might again be longer than CAN method.  
Moreover, if the suitable parameter is bigger, 

DWKNN’s second stage (i.e., making the test element a 

member) will last longer, and DWKNN will need longer 

processing times for smaller datasets. Furthermore, it is 

unknown whether DKWKNN’s parameter selection 

time will be faster or slow for bigger and multi-class 

datasets t. Processing times for the datasets used were 

also compared (Table 5). 

 
Table 5. Processing Time for the DWKNN and CAN 

Methods. 

  

Data set 
DWKNN 

(As per parameter) 
CAN 

Wine 0,89 0,95 

Seeds 0,86 0,91 

Balance-scale 1,11 1,35 

Parkinson’s Tele-
monitoring 

3,2 5,8 

Values are in seconds 

The processing time of the CAN method is close to 

the processing time of the DWKNN method under ideal 
circumstances(Table 5). Namely, when the ideal 

parameter is selected for the DWKNN method, its 

processing time is roughly equivalent to the processing 

time of the CAN method, which means that unless lucky 

parameter estimations are done, the processing period of 

the DWKNN method will be longer than CAN method. 

If a suitable parameter selection shall be materialized by 

parameter selection algorithm, it is unavoidable that 

DWKNN method would be slower due to parameter 

selection algorithm. Thus, we conclude that the CAN 

method’s processing time is superior to DWKNN. Finally,, 

it should be noted that the CAN method processing time for 

the Parkinson’s Tele-monitoring dataset increased because 

that dataset had more the class numbers and element 

numbers than the other datasets.  
  

4. Conclusions and Proposals 
  

In this study, a new k-neighborhood parameter selection 

method, CAN, is proposed for the DWKNN method. The 

most important difference between the proposed method and 
the classical neighborhood parameter designation is the 

selection of ideal neighborhood limits by class individually. 

The ideal neighborhood limit associated with each class is 

determined according to dataset dissemination, thereby 

maximizing the performance of the method proposed and 

ultimately improving the performance of DWKNN. In 

addition, the proposed method does not require trial of 

parameter selection, and its performance is fixed so as to 

produce the best ideal performance.  

Moreover, since the neighborhood limit is only 

designated once, the proposed method does not lengthen the 

processing period; rather, the processing time is often 
shortened as the neighborhood parameter is not subject to a 

time-consuming trial and error period.  

The biggest disadvantage of the proposed method is the 

presence of local density zones in the classes. In such cases, 

some test elements might be affected by the local density of 

the classes. However, this disadvantage is not found in KNN 

methods.  

Another disadvantage of the proposed method is that its 

processing time is a little bit long, as the neighborhood limit 

creation operation depends on the mean inter-elements 

distance. Nevertheless, when compared to the trial and error 
or parameter selection algorithms used in the DWKNN 

method during parameter selection, in general this proposed 

method is be expected to be faster than the DWKNN method. 

In conclusion, the proposed method is suitable for use 

with actual datasets, as it augments the performance by 

selecting appropriate parameters that yield the highest 

performance without entailing parameter estimation. 
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