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ABSTRACT. As one new result, for a symmetric Toeplitz sinc n× n-matrix A(t) depending on a parameter t, lower
estimates (tending to infinity as t vanishes) on the pertinent condition number are derived. A further important finding
is that prior to improving the obtained lower estimates it seems to be more important to determine the lower bound on
the parameter t such that the smallest eigenvalue µn(t) ofA(t) can be reliably computed since this is a precondition for
determining a reliable value for the condition number of the Toeplitz sinc matrix. The style of the paper is expository
in order to address a large readership.
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1. Introduction

This paper is organized as follows. In Section 2, a symmetric Toeplitz sinc n×n-matrix A(t) =
An(t) is defined and the problem with its pertinent condition number κ2(t) is described. The
entries of this n×n-matrix are made up of s(0) := 1 and s(jt) := sin(jπt)/(jπt), j = 1, . . . , n−1
and are investigated for 0 < t < 1. Such a matrix appears frequently in the study of minimum
phase filter designs [10] and numerical integration/differentiation of bandlimited systems [11].
As properties of the matrices A(t), we found that the limit limt→0 A(t) = A exists and also that,
for the eigenvalues µj(t), j = 1, . . . , n of A(t), the limits limt→0 µj(t) = µj = µj(A), j = 1, . . . , n
exist and, further, that the values of the entries of A and µj , j = 1, . . . , n can be given explicitly.
In Section 3, two-sided estimates on µj(t), j = 1, . . . , n are derived. The eigenvalues are arranged
according to µ1(t) ≥ · · · ≥ µn(t) and µ1 ≥ · · · ≥ µn. In Section 4, two upper bounds on the
smallest eigenvalue µn(t) are obtained. Thereby, in Section 5, three lower estimates on the
condition number κ2(t) = µ1(t)/µn(t) can be derived. These lower bounds are new and tend to
infinity as t tends to zero. For comparison reasons, in Section 6, a lower bound on µ1(t) and an
upper bound on µn(t) are stated from a paper of D. Hertz delivering an upper bound on the
condition number. Section 7 contains numerical verifications of the obtained estimates on κ2(t)
for some examples. In Section 8, linearly independent eigenvectors of the matrix A = limt→0 A(t)
are derived that form a basis of Rn. Then, in Section 9, appropriate computational methods
for the determination of µn(t) and µ1(t) are presented, and in Section 10, these computational
methods are applied to a series of matrices A(t) = An(t). Finally, Section 11 contains the
conclusions followed by the References.
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2. Some Properties of a Toeplitz Sinc Matrix A(t)

A Toeplitz sinc matrix is defined as

(2.1) A(t) = An(t) =


s(0) s(t) s(2 t) · · · s((n− 2) t) s((n− 1) t)
s(t) s(0) s(t) · · · s((n− 3) t) s((n− 2) t)
s(2 t) s(t) s(0) · · · s((n− 3) t)

...
s((n− 1) t) s((n− 2) t) · · · s(t) s(0)

 ,
where 0 < t < 1 and s(0) = 1 as well as s(t) = sinc(t) = sin(πt)/(πt). From [9, Theorem 2.2],
it follows that this matrix is positive definite by setting there t1 = 0, ti = (i− 1) t, i = 2, . . . , n
and taking into account that s(-t)=s(t) for 0 < t < 1. As t gets smaller, the condition number
of this matrix deteriorates quickly. The question that one might ask therefore is: Can one find
a way to estimate the largest and smallest eigenvalues of this matrix? This would help us to
monitor the condition number of the above Toeplitz sinc matrix and is the starting point of our
investigation.

The following theorem presents some properties of the matrices A(t).

Theorem 2.1. Let the matrix A(t) = An(t) in (2.1) be given. Further, let the eigenvalues
µj(t) = µj(A(t)) = µj(An(t)) be arranged according to
(2.2) µ1(t) ≥ µ2(t) ≥ · · · ≥ µn(t).
Then, the limits
(2.3) A := lim

t→0
A(t)

as well as
(2.4) µj = µj(A) := lim

t→0
µj(t) = lim

t→0
µj(A(t)), j = 1, . . . , n

exist and

(2.5) A = An = lim
t→0

A(t) = lim
t→0

An(t) =



1 1 1 · · · 1 1
1 1 1 · · · 1 1
1 1 1 · · · 1 1

...
1 1 1 · · · 1 1


.

Further, the limits in (2.4) are eigenvalues of A, and with appropriate enumeration of the eigen-
values µj := µj(A), j = 1, . . . , n, one has
(2.6) lim

t→0
µ1(A(t)) = lim

t→0
µ1(An(t)) = µ1(A) = µ1 = n,

(2.7) lim
t→0

µj(A(t)) = lim
t→0

µj(An(t)) = µj(A) = µj = 0, j = 2, . . . , n.

Proof. (2.5): The Toeplitz matrix A(t) = An(t) ∈ Rn×n according to (2.1) reads

A(t) = An(t) =


s(0) s(t) s(2 t) · · · s((n− 2) t) s((n− 1) t)
s(t) s(0) s(t) · · · s((n− 3) t) s((n− 2) t)
s(2 t) s(t) s(0) · · · s((n− 3) t)

...
s((n− 1) t) s((n− 2) t) · · · s(t) s(0)


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for 0 < t < 1 and s(0) := limt→0 s(t) := limt→0 sinc(t) := limt→0 sin(π t)/(π t) = 1. From this,
apparently (2.5) follows.

(2.6) and (2.7): This is seen as follows. Matrix A = An in (2.5) is a rank-one symmetric
matrix. Hence, there is only one non-zero eigenvalue, namely µ1(A), and therefore µ1(A) must
equal tr(A) = n. Since the limits limt→0 µj(t) exist and are equal to µj for j = 1, . . . , n if one
chooses an appropriate enumeration, the assertion follows.

(2.3): This follows immediately from (2.5).
(2.4): This follows immediately from (2.6) and (2.7).
So, on the whole, Theorem 2.1 is proven. �

For later use, we arrange the eigenvalues µj = µj(A) according to
(2.8) µ1 ≥ · · · ≥ µn.

Remark 2.1. Another elementary proof of Theorem 2.1 will be given at the end of Section 3.

Remark 2.2. Theorem 2.1 also follows from [4, Theorem 17, p. 263] that is a much more
general result.

3. Two-Sided Estimates on the Eigenvalues µj(t), j = 1, . . . , n of A(t)

(i) Upper Estimate on µ1(t) According to [5, Section 5.4, Formula (7), p. 89], we have

µ1(t) = |µ1(t)| ≤ ‖A(t)‖∞ = max
j=1,··· ,n

n∑
k=1
|ajk(t)| .

Now,
s((n− 1) t) < · · · < s(2 t) < s(t) < s(0) = 1

yielding the upper estimate

(3.9) 0 < µ1(t) ≤
n−1∑
k=0

1 = n.

(ii) Lower Estimate on µ1(t)
We use [5, Section 5.4, Formula (28), p. 94]. Thereby, employing (2.2) and (2.8),

|µ1 − µ1(t)| ≤ ‖A−A(t)‖∞ = max
j=1,··· ,n

n∑
k=1
|ajk − ajk(t)|

with
(3.10)

A−A(t)

=


0 1− s(t) 1− s(2 t) · · · 1− s((n− 2) t) 1− s((n− 1) t)

1− s(t) 0 1− s(t) · · · 1− s((n− 3) t) 1− s((n− 2) t)
1− s(2 t) 1− s(t) 0 · · · 1− s((n− 3) t)

...
1− s((n− 1) t) 1− s((n− 2) t) · · · 1− s(t) 0

 .
Because of

1 > s(t) > s(2 t) > · · · > s((n− 1) t),
we obtain

−s(t) < −s(2 t) < · · · < −s((n− 1) t)
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and thus
(3.11) 1− s(t) < 1− s(2 t) < · · · < 1− s((n− 1) t).

Therefore,
µ1(t) = µ1(t)− µ1 + µ1 ≥ µ1 − |µ1 − µ1(t)|

≥ µ1 − ‖A−A(t)‖∞ ≥ µ1 − n [1− s((n− 1) t)]
= n− n [1− s((n− 1) t)] = n s((n− 1) t)

so that we obtain the lower estimate
(3.12) µ1(t) ≥ n s((n− 1) t) .

(iii) Two-Sided Estimate on µ1(t)
On the whole, we have the two-sided estimate

(3.13) n s((n− 1) t) ≤ µ1(t) ≤ n .
(iv) Two-Sided Estimates on µj(t), j = 2, . . . , n

Since µj = 0, j = 2, . . . , n, one has

0 < µj(t) = | − µj(t)| = |µj − µj(t)| ≤ ‖A−A(t)‖∞ ≤ max
j=1,...,n

n∑
k=1
|ajk − ajk(t)|.

Along with (3.10) and (3.11), we herewith conclude that
(3.14) 0 < µj(t) < (n− 1) [1− s((n− 1) t)], j = 2, . . . , n .

(v) Elementary Proof of limt→0 µ1(t) = n

Taking the limit as t→ 0 in the two-sided estimate (3.13), we get
(3.15) lim

t→0
µ1(t) = n

since
lim
t→0

s((n− 1) t) = 1 .

(vi) Elementary Proof of limt→0 µj(t) = 0, j = 2, . . . , n
Taking the limit as t→ 0 in the two-sided estimate (3.14), we get

(3.16) lim
t→0

µj(t) = 0, j = 2, . . . , n

since
lim
t→0

s((n− 1) t) = 1 .

(vii) Elementary Proof of limt→0 µ1(t) = µ1 = n
One has the chain of implications

det(A(t)− µ1(t) I) = 0
⇒

lim
t→0

det(A(t)− µ1(t) I) = 0
⇒

det(lim
t→0

A(t)− lim
t→0

µ1(t) I) = 0
⇒

det(A− lim
t→0

µ1(t) I) = 0.

Thus, lim
t→0

µ1(t) is an eigenvalue of A that is denoted by µ1. Therefore,

det(A− µ1 I) = 0.
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Together with
µ1 = n,

one obtains
(3.17) lim

t→0
µ1(t) = n = µ1 .

(viii) Elementary Proof of limt→0 µj(t) = µj = 0, j = 2, . . . , n
The Proof is similar to that in (vii).

Remark 3.3. The points (v) - (viii) deliver an elementary proof of Theorem 2.1. This is
because they show that the limits lim

t→0
µj(t), j = 1, . . . , n exist and are eigenvalues of A. In

particular, the elementary proof is independent of [4] the application of which is in a way like
using a sledge-hammer to crack a nut.

4. Two Upper Estimates on Smallest Eigenvalue µn(t)

(i) First Upper Estimate
As is known,

0 < |A(t)| := det(A(t)) = µ1(t)µ2(t) · · · µn(t) < 1
at least for sufficiently small t in 0 < t < 1 since from Section 3 we know that µj =
µj(A) = 0, j = 2, . . . , n so that in particular µn(t)→ 0 as t→ 0. This entails

0 < [µn(t)]n ≤ |A(t)| < 1
for 0 < t ≤ t1 with sufficiently small t1 or the first upper estimate

(4.18) 0 < µn(t) ≤ |A(t)| 1
n < 1

for 0 < t ≤ t1 with sufficiently small t1.
(ii) Second Upper Estimate

The derivation of the second upper estimate is based on [3, Corollary 8.1,4, p.411]
that, in turn, is proven in [8, pp. 103-104] using the Courant-Fischer Minimax Theorem.
The cited corollary is called Theorem 4.2 here and, in our notation, reads as follows:

Theorem 4.2. If Ar denotes the leading r-by-r principal submatrix of an n-by-n symmetric
matrix A, then for r = 1 : n− 1 the following interlacing property holds:

µr+1(Ar+1) ≤ µr(Ar) ≤ µr(Ar+1) ≤ · · · ≤ µ2(Ar+1) ≤ µ1(Ar) ≤ µ1(Ar+1) .

For r = n− 1, Theorem 4.2 delivers
µn(An) ≤ µn−1(An−1),

where An = A. Now, we apply the last estimate to the Toeplitz sinc matrix (for short: Tsinc
matrix) A(t) = An(t) ∈ Rn×n and remark that the leading (n− 1)× (n− 1) submatrix of this
matrix is the Tsinc matrix An−1(t). This entails the chain of inequalities

µn(An(t)) ≤ µn−1(An−1(t)),

µn−1(An−1(t)) ≤ µn−2(An−2(t)),
· · ·

µ3(A3(t)) ≤ µ2(A2(t)),
where

µ2(A2(t)) = 1− s(t)
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and
µ1(A2(t)) = 1 + s(t)

which follows from
|A2(t)− µ(t)I| =

∣∣∣∣ 1− µ(t) s(t)
s(t) 1− µ(t)

∣∣∣∣ = 0 .

This yields the second upper estimate

(4.19) 0 < µn(t) := µn(An(t)) ≤ 1− s(t), 0 < t < 1 .

5. Three Lower Estimates on Condition Number κ2(t) := µ1(t)/µn(t)

(i) First Lower Estimate on κ2(t)
From the first upper estimate on µn(t), we obtain

1
µn(t) ≥

1
|A(t)| 1

n

> 1

for 0 < t ≤ t1 with sufficiently small t1. This yields the first lower estimate

(5.20) κ2(t) = µ1(t)/µn(t) ≥ n s((n− 1) t)
|A(t)| 1

n

:= e1(t)

for 0 < t ≤ t1 with sufficiently small t1.
(ii) Second Lower Estimate on κ2(t)

From the second upper estimate on µn(t), we obtain
1

µn(t) ≥
1

1− s(t)
for 0 < t ≤ t1 with sufficiently small t1. This yields the second lower estimate

(5.21) κ2(t) = µ1(t)/µn(t) ≥ n s((n− 1) t)
1− s(t) := e2(t)

for all t in 0 < t < 1.
(iii) Third Lower Estimate on κ2(t)

Combining the preceding results, one gets the third lower estimate

(5.22) κ2(t) = µ1(t)/µn(t) ≥ max{e1(t), e2(t)} := e3(t)

for 0 < t ≤ t1 with sufficiently small t1.

6. Bounds Stated by D. Hertz and Application

In this section, we apply the bounds on the extreme eigenvalues of Toeplitz matrices stated
in [1] to our symmetric Toeplitz matrix A(t) defined in (2.1). As application, one obtains upper
bounds on κ2(t) = µ1(t)/µn(t).

Let

(6.23) a(t) = [a1(t), a2(t), . . . , an(t)], 0 < t < 1

be the first row of A(t), and define

(6.24) ã(t) := [a1(t), |a2(t)|, . . . , |an(t)|], 0 < t < 1.

From (2.1), we have

(6.25) ã(t) = a(t), 0 < t < 1.
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Further, define

(6.26) λk = −λk = 2 cos
(

π

floor[(n− 1)/(k − 1)] + 2

)
, k = 2, . . . , n.

As in Section 2, we assume that the eigenvalues µk(t), k = 1, . . . , n are arranged according
to (2.2). Then, one has, in our notation, the following theorem.

Theorem 6.3. The maximal eigenvalue µ1(t) of the symmetric Toeplitz matrix A(t) in (2.1) is
bounded from above by the inner product
(6.27) µ1(t) ≤ (a(t), w), 0 < t < 1,
where a(t) is as in (6.23) and the vector w is defined by
(6.28) w = [1, λ2, . . . , λn]
and λk is as in (6.26).

Proof. The theorem is a direct consequence of [1, Theorem 1]. �

Remark 6.4. Theorem 6.3 can hold only if (a(t), w) > 0, of course.

Further, one has the following theorem.

Theorem 6.4. The minimal eigenvalue µn(t) of the symmetric Toeplitz matrix A(t) in (2.1) is
bounded from below by the inner product
(6.29) µn(t) ≥ (a(t), w), 0 < t < 1,
where a(t) is as in (6.23) and the vector w is defined by
(6.30) w = [1, λ2, . . . , λn].
Note that using (6.26), we obtain
(6.31) w = [1,−λ2, . . . ,−λn].

Proof. The theorem is a direct consequence of [1, Theorem 2]. �

Remark 6.5. Theorem 6.4 can hold only if (a(t), w) > 0, of course.

Remark 6.6. From Theorems 6.3 and 6.4, we get the upper estimates
(6.32) κ2(t) = µ1(t)/µn(t) ≤ (a(t), w)/(a(t), w), 0 < t < 1
provided that (a(t), w) > 0 and (a(t), w) > 0 for 0 < t < 1.

7. Numerical Verification of the Estimates on κ2(t) := µ1(t)/µn(t) for Some
Examples

In this section, we present estimates on κ2(t) = µ1(t)/µn(t) for fixed t = 0.1 and n = 2, . . . , 6.
For this, corresponding Matlab computations were carried out. The expressions e1(t), e2(t), e3(t)

are estimates from below (tending to ∞ as n→∞ and t→ 0) on κ2(t), expression e4(t) is de-
fined as condition number κ2(t) = µ1(t)/µn(t), whereas expression e5(t) is an estimate from
above on κ2(t) provided that (a(t), w) > 0 and (a(t), w) > 0. Its derivation follows from two
theorems stated by D. Hertz. The pertinent upper estimate should at least be positive since
κ2(t) is so. But, it turns out to be negative since (a(t), w) < 0 for n ≥ 3. Consequently, e5(t)
cannot deliver an upper bound on κ2(t).

In the following estimate e1(t), the determinant |A(t)| = det(A(t)) enters. This is computed in
two ways, namely first with Matlab routine det and second, for comparison reasons, as a product
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of the eigenvalues of A(t). From numerical considerations, it is clear that the determination of
|A(t)| can be achieved through elementary operations by casting matrix A(t) into triangular
form without changing the determinant so that the product of the diagonal elements gives the
determinant. We think that this technique is behind the Matlab routine det. The second
way via the product of the eigenvalues that is computationally much more costly is used only
for comparison reasons. This is because if one computes the determinant via the product of
eigenvalues µj(t), j = 1, . . . , n, then one has immediately κ2(t) = µ1(t)/µn(t) and needs no
estimates.

Now, the details of the computations follow.
For n = 2, we obtain

A(t) =
[

1.000000000000000 0.983631643083466
0.983631643083466 1.000000000000000

]
,

µ(t) =
[

0.016368356916534
1.983631643083466

]
,

d(n, t) := µ1(t)µ2(t) = 0.032468790724921,
|A(t)| = det(A(t)) = det(An(t)) = 0.032468790724921,

and 
e1(t)
e2(t)
e3(t)
e4(t)
e5(t)

 :=


n s((n− 1)t)/|A(t)| 1

n

n s((n− 1)t)/(1− s(t))
max{e1(t), e2(t)}
µ1(t)/µn(t)

(a(t), w)/(a(t), w)

 =


10.917656600748638
1.201869739399289 ×102

1.201869739399289 ×102

1.211869739399293 ×102

1.211869739399306 ×102

 .
For n = 3, we obtain

A(t) =

 1.000000000000000 0.983631643083466 0.935489283788639
0.983631643083466 1.000000000000000 0.983631643083466
0.935489283788639 0.983631643083466 1.000000000000000

 ,
µ(t) =

 0.000145422566712
0.064510716211361
2.935343861221926

 ,
d(n, t) :=

n∏
j=1

µ1(t) . . . µj(t) = 0.032468790724921,

|A(t)| = det(A(t)) = det(An(t)) = 0.032468790724921,
and 

e1(t)
e2(t)
e3(t)
e4(t)
e5(t)

 :=


n s((n− 1)t)/|A(t)| 1

n

n s((n− 1)t)/(1− s(t))
max{e1(t), e2(t)}

n s((n− 1)t)/(1− s(t))
µ1(t)/µn(t)

(a(t), w)/(a(t), w)

 =


92.936401783180301
1.714569071090478 ×102

1.714569071090478 ×102

2.018492677986877 ×102

−2.507665165149629

 .
For n = 4, we obtain

A(t) =


1.000000000000000 0.983631643083466 0.935489283788639 0.858393691334140
0.983631643083466 1.000000000000000 0.983631643083466 0.935489283788639
0.935489283788639 0.983631643083466 1.000000000000000 0.983631643083466
0.858393691334140 0.935489283788639 0.983631643083466 1.000000000000000

 ,
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µ(t) =


0.000001113119258
0.000870415161304
0.157973552463136
3.841154919256300

 ,
d(n, t) :=

n∏
j=1

µ1(t) . . . µj(t) = 5.879147433554857× 10−1,

|A(t)| = det(A(t)) = det(An(t)) = 5.879147434765446× 10−1,

and 
e1(t)
e2(t)
e3(t)
e4(t)
e5(t)

 :=


n s((n− 1)t)/|A(t)| 1

n

n s((n− 1)t)/(1− s(t))
max{e1(t), e2(t)}
µ1(t)/µn(t)

(a(t), w)/(a(t), w)

 =


6.972971989701032 ×102

2.097690551864878 ×102

6.972971989701032 ×102

3.450802681898942 ×106

−1.838422415548006

 .
For n = 5, we obtain

A(t) =


1.000000000000000 0.983631643083466 0.935489283788639 0.858393691334140 0.756826728640657
0.983631643083466 1.000000000000000 0.983631643083466 0.935489283788639 0.858393691334140
0.935489283788639 0.983631643083466 1.000000000000000 0.983631643083466 0.935489283788639
0.858393691334140 0.935489283788639 0.983631643083466 1.000000000000000 0.983631643083466
0.756826728640657 0.858393691334140 0.935489283788639 0.983631643083466 1.000000000000000

 ,

µ(t) =


0.000000008008103
0.000008896854399
0.003035674827786
0.307675090716305
4.689280329593409

 ,

d(n, t) :=
n∏

j=1
µ1(t) . . . µj(t) = 3.120469248845038× 10−16,

|A(t)| = det(A(t)) = det(An(t)) = 3.120469141684447× 10−16,

and 
e1(t)
e2(t)
e3(t)
e4(t)
e5(t)

 :=


n s((n− 1)t)/|A(t)| 1

n

n s((n− 1)t)/(1− s(t))
max{e1(t), e2(t)}
µ1(t)/µn(t)

(a(t), w)/(a(t), w)

 =


4.776639739123309 ×103

2.311859194236440 ×102

4.776639739123309 ×103

5.855669475721616 ×108

−1.549163591209945

 .
For n = 6, we obtain

A(t) =


1.000000000000000 0.983631643083466 0.935489283788639 0.858393691334140 0.756826728640657 0.636619772367581
0.983631643083466 1.000000000000000 0.983631643083466 0.935489283788639 0.858393691334140 0.756826728640657
0.935489283788639 0.983631643083466 1.000000000000000 0.983631643083466 0.935489283788639 0.858393691334140
0.858393691334140 0.935489283788639 0.983631643083466 1.000000000000000 0.983631643083466 0.935489283788639
0.756826728640657 0.858393691334140 0.935489283788639 0.983631643083466 1.000000000000000 0.983631643083466
0.636619772367581 0.756826728640657 0.858393691334140 0.935489283788639 0.983631643083466 1.000000000000000

 ,

µ(t) =


0.000000000055683
0.000000080040530
0.000039987658742
0.008055094169584
0.521314905500388
5.470589932575071

 ,
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d(n, t) :=
n∏

j=1
µ1(t) . . . µj(t) = 4.094114597934044× 10−24,

|A(t)| = det(A(t)) = det(An(t)) = 4.094097171079637× 10−24,

and
e1(t)
e2(t)
e3(t)
e4(t)
e5(t)

 :=


n s((n− 1)t)/|A(t)| 1

n

n s((n− 1)t)/(1− s(t))
max{e1(t), e2(t)}
µ1(t)/µn(t)

(a(t), w)/(a(t), w)

 =


3.019986597952274 × 104

2.333599306077634 × 102

3.019986597952274 × 104

9.824603336342802 × 1010

−1.460059391749488

 .
Discussion of the Computational Results on the Estimates on κ2(t) := µ1(t)/µn(t) for the
Examples

The computational results underpin the theoretical findings. In particular, they show that the
lower estimates e1(t), e2(t), e3(t) on e4(t) = κ2(t) = µ1(t)/µn(t) tend to ∞ as t → 0, as it
must be. Further, apparently expression e3(t) is the best lower bound out of the lower bounds
ej(t), j = 1, 2, 3. But, with growing dimension n, it underestimates the condition number
κ2(t) = µ1(t)/µn(t) significantly. In order to find out more on the reason for this, in the
next sections, it will be investigated for what values of t and to how many decimal places the
eigenvalues µ1(t), µn(t), and the condition number κ2(t) = µ1(t)/µn(t) can be determined. We
hope that the pertinent results will deliver upper bounds on n and lower bounds on t that form
estimates for the applicability of the best estimate e3(t) on e4(t) = κ2(t).

The estimates stated by D. Hertz for n ≥ 3 are not applicable since (a(t), w) < 0 for n ≥ 3.

8. The Eigenvectors of A = limt→0 A(t)

For symmetric matrices A(t) and A, when A(t) → A (t → 0), one uses, as a rule, the eigen-
vectors of A(t) associated with an eigenvalue µ(t) of A(t) as an approximation of an eigenvector
of A provided the eigenvectors of A(t) can be determined much easier than those of A. Here, it
is almost the other way around. The reason for this is that the eigenvalues of matrix A can be
determined very simply, and various linearly independent associated eigenvectors can likewise
be determined very easily.

This will be shown in the present section.
In the next section, these eigenvectors of A will be used as initial vectors for the power method

resp. the inverse power method to compute µ1(t) resp. µn(t).
Now, the computational details follow. n = 3:
(i) Determination of the eigenvector w1 associated with µ1 = 3
One has

A =

 1 1 1
1 1 1
1 1 1


so that

A =

 1 1 1
1 1 1
1 1 1

  1
1
1

 =

 3
3
3

 = 3

 1
1
1

 .
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Therefore, the eigenvector w1 pertinent to µ1 = 3 is equal to

w1 = e :=

 1
1
1

 .
The associated normed eigenvector reads

w1 = 1√
3

 1
1
1

 ∈ R3.

The generalization to the case A ∈ Rn×n clearly is

w1 = 1√
n

 1
...
1

 ∈ Rn.

(ii) Determination of the eigenvector w2 and w3 associated with µ2 = 0 and µ3 = 0
From

A =

 1 1 1
1 1 1
1 1 1

  v1
v2
v3

 = 0

 v1
v2
v3

 =

 0
0
0

 ,
we obtain

v1 + v2 + v3 = 0
or

v3 = −v1 − v2.

v1 = 1, v2 = 1:
With these values,

v =

 v1
v2

−v1 − v2

 =

 1
1
−2

 .
v1 = 1, v2 = −1:

With these values,

v =

 v1
v2

−v1 − v2

 =

 1
−1
0

 .
The normed eigenvectors are thus

w1 = 1√
3

 1
1
1

 , w2 = 1√
6

 1
1
−2

 , w3 = 1√
2

 1
−1
0

 .
Apparently,

(wj , wk) = δj,k, j, k = 1, 2, 3 .
There are other eigenvectors, for example,

w1 = 1√
3

 1
1
1

 , w2 = 1√
2

 0
1
−1

 , w3 = 1√
2

 −1
0
1

 .
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n = 5: Let

w1 = 1√
5


1
1
1
1
1

 , w2 = 1√
2


0
1
−1
0
0

 , w3 = 1√
2


0
0
1
−1
0

 , w4 = 1√
2


0
0
0
1
−1

 , w5 = 1√
2


−1
0
0
0
1

 .

Then, w1 ∈ Rn = R5 is a normed eigenvector corresponding to the largest eigenvalue µ1 = n = 5
of A ∈ Rn×n = R5×5, whereas wj , j = 2, . . . , n = 5 are linearly independent normed eigenvectors
corresponding to the eigenvalues µj = 0, j = 2, . . . , n = 5 that are linearly independent, but not
pairwise orthogonal. However, one has

(w1, wj) = 0, j = 2, . . . , 5 .
Let

e±1 =


1
−1

0
0
0

 , e±2 =


0
1
−1

0
0

 , e±3 =


0
0
1
−1

0

 , e±4 =


0
0
0
1
−1

 , e±5 =


−1

0
0
0
1

 ∈ Rn = R5

and

e =


1
1
1
1
1

 ∈ Rn = R5.

Then, the components of e±j , j = 2, 3, 4, 5 are cyclic permutations of e±1:
e±2 = P (23451)(e±1), e±3 = P (34512)(e±1), e±4 = P (45123)(e±1), e±5 = P (51234)(e±1)

so that
w1 = 1√

5
e, w2 = 1√

2
e±2, w3 = 1√

2
e±3, w4 = 1√

2
e±4, w5 = 1√

2
e±5.

A set of pairwise orthogonal eigenvectors can be obtained when we apply Schmidt’s orthogonal-
ization method to these linear independent eigenvectors wj , j = 1, . . . , 5.

The generalization from n = 5 to arbitrary n ∈ N of eigenvectors wj , j = 1, . . . , n as above
can be done in a straightforward way.

9. Appropriate Computational Methods for the Determination of µn(t) and µ1(t)

Since µn(t) → 0 (t → 0) and µ1(t) → n (t → 0), it is clear that κ2(t) → ∞ (t → 0) which
posed the problem to determine lower estimates on κ2(t). A related important question is how
µn(t) and µ1(t) can be computed such that the outcome is reliable.

For the determination of the largest eigenvalue µ1(t) of A(t) ∈ Rn×n, the power method
is appropriate as described, for example, in [5, Section 10.1.1] and for compact symmetric
operators in [7, Section 7]. As initial vector x0 ∈ Rn, one can use every non-zero real n-vector.
However, the eigenvector w1 = (1/

√
n) [1, . . . , 1]T ∈ Rn corresponding to µ1 = µ1(A) seems to

be especially advantageous as initial vector x0.
For the determination of the smallest eigenvalue µn(t) of A(t), the inverse iteration can be

used as described in [5, Section 10.1.3]. This is a modification of the power method where the
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n t µn(t) µ1(t)
5 0.1 0.800810× 10−10 4.68928
10 0.3 0.586776× 10−12 3.33055
15 0.6 0.669565× 10−8 1.66666

Table 1. Computational Results for µn(t) and µ1(t)

power method is applied to the inverse of a non-singular matrix. For short, we call this method
inverse power method.

Based on these methods, pertinent Matlab programs were developed. For comparative rea-
sons, also Matlab routine eig.m is applied that computes not only the largest and smallest
eigenvalues of a square matrix, but all eigenvalues which is computationally disadvantages, of
course.

10. Application of the Computational Methods to a Series of Matrices A(t)

First, with the inverse power method mentioned in Section 9, for n = 5, 10, 15 and t = 0.1,
we tried to determine the smallest eigenvalues µn(t). For n = 5 and t = 0.1, this was possible.
For n = 10 and t = 0.1, the developed Matlab program issued the error code NaN meaning
Not a Number. This error code is typically put out by Matlab, for instance, when a division
by zero is tried. For short, the determination of µn(t) by the inverse power method was not
possible for n = 10 and t = 0.1. It was neither possible for n = 10 and t = 0.2. However,
the determination of µn(t) was possible for n = 10 and t = 0.3. Similarly for n = 15 and
t = 0.1, . . . , 0.5, µn(t) could not be determined by the inverse power method. However, µn(t)
could be successfully determined for n = 15 and t = 0.6.

Further, for all those pairs (n, t) the smallest eigenvalues µn(t) could be computed successfully
for, also the pertinent largest eigenvalues µ1(t) could be determined by the power method. In
Table 1, the computational results are compiled. For comparison reasons, we applied also the
Matlab routine eig.m.

For n = 5, t = 0.1, we obtained the following vector of not-arranged eigenvalues
µ(t) = [−0.1224, −0.6286, −0.5261, 0.3238, 0.4326]T .

Since µj(t) < 0, j = 1, 2, 3, program eig.m delivers a false result without issuing a warning or
error code.

For n = 10, t = 0.3, we obtained the following vector of not-arranged eigenvalues

µ(t) = [0.0075, −0.1683, −0.4915, −0.2763, 0.2189, 0.2698, „; 0.3038, −0.2039,
−0.3721, 0.0683]T .

Since µj(t) < 0, j = 2, 3, 4, 8, 9, program eig.m delivers a false result without issuing a warning
or error code.

For n = 15, t = 0.6, we obtained the following vector of not-arranged eigenvalues

µ(t) = [0.0037, 0.0758, −0.3355, 0.2519, 0.2716, 0.1537, 0.0616, −0.0000,
0.0219, −0.0291, 0.1980, −0.4128, 0.2169, 0.0254, −0.0006]T .

Since µj(t) < 0, j = 3, 8, 10, 12, 15, program eig.m delivers a false result without issuing a
warning or error code.

As we see, the computation of µj(t), j = 1, . . . , n by the Matlab routine eig.m is not only
costly since it computes all eigenvalues, but it also delivers false results without any error warn-
ing.
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n t = t µn(t) µ1(t)
5 0.004256 0.01148× 10−17 4.999
10 0.3300 0.3514× 10−11 3.028
15 0.5350 0.1698× 10−10 1.868

Table 2. Determination of minimal t = t in 0 < t < 1 such that µn(t) can be
reliably computed

Consequences of the Computational Results
The computational results of this section shows that the critical point in the determination

of the condition number κ2(t) = µ1(t)/µn(t) is the smallest eigenvalue µn(t) of A(t) = An(t).
As a consequence, instead of trying to derive better closed-form lower estimates on κ2(t) than
those we have already obtained, the efforts should be laid on the reliable computation of the
smallest eigenvalue µn(t) as a function of n and t.

For n = 5, 10, 15, we have determined the minimal t = t up to four significant places such that
µn(t) can be computed by the inverse power method. For these values of t, we then determined
also µ1(t). The results are assembled in Table 2.

11. Conclusions

Starting point of this paper was the aim to derive lower estimates on the condition number
κ2(t) of the symmetric Toeplitz sinc matrix A(t) = An(t). This is of interest since κ2(t) → ∞.
The aim was achieved, but numerical calculations showed that the derived lower estimates signif-
icantly underestimate the condition number with growing n and vanishing t. Thus, this finding
shifted the effort to the problem of effectively and reliably determining the smallest eigenvalue
µn(t) of the symmetric Toeplitz sinc matrix A(t) = An(t). It turned out that the inverse power
method is most appropriate to do this. The pertinent computational experiments showed, for
instance, that for n = 5 and t = 0.1, µn(t) can be determined by this method. But, for n = 10
and t = 0.1 and t = 0.2, this was not possible. However, for n = 10 and t = 0.3, the inverse
power method was successful in determining µn(t). For n = 15 and t = 0.1, . . . , 0.5, again µn(t)
could not be determined, but for n = 15 and t = 0.6, this was possible. These results were
somehow surprising since, for example, t = 0.6 is not near zero so that the problems begin
(depending on n) with much larger values of t than we thought. The reason for the numerical
problems are, of course, that the computations are done with a restricted number of digital
places of the used machine numbers as opposed to the computation with real numbers that have
an unlimited number of places. Comparative computations with the Matlab routine eig.m de-
livered false results for all the mentioned pairs (n,t) since some of the eigenvalues were negative,
which cannot be correct because A(t) is positive definite. The most important implication of
all these results is that, for calculations with machine numbers (i.e., on computers), priority
should be given to the determination of the lower bound t := inf t of the parameter t such that
µn(t) can be reliably computed for 0 < t = inf t ≤ t < 1. This was done for n = 5, 10, 15
with a precision of four significant places by applying the inverse power method. So, one can
also say that, for calculations on computers, the expression lim

t→0
0<t<1

κ2(t) has to be replaced by

lim
t→t

0<t<t<1, t∈M

κ2(t), where M is the set of machine numbers of the used computer, and further that

the problems begin already with around n = 15 in the sense that with n = 15, the minimal
value t = t reads t = 0.5350 > 0.5 indicating that problems must be expected when using
machine numbers, i.e., when using a computer in calculations involving the Tsinc matrix for
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n ≥ 15 such as the solution of a system of linear equations. The calculations were carried out in
single precision. Corresponding computations in double precision might deliver better results,
but were not done because we think that this would not give new insight in the problem. For
information on the effects of finite precision arithmetic on numerical algorithms, the reader is
referred to [2, Chapters 1 and 2] or [6, Sections 13 and 14]. We mention that in the English
translation of the First Edition [5], Sections 13 and 14 are not yet contained.
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