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Abstract
This paper is devoted to the study of a class of evolution inclusion in Banach spaces
with nonlocal plus local mixed initial conditions. Under some mild assumptions, a unique
solvability result to the multivalued evolution problem is obtained via the arguments of
fixed point principle and the theory of C0-semigroup.
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1. Introduction
Let X be a real Banach space, an m-dissipative operator A : D(A) ⊆ X ⇝ X generate

a nonlinear semigroup of contractions {S(t) : t > 0} by the exponential formula S(t) =
lim
n→∞

(I + t
nA)−n (see [10]). Given a constant τ ≥ 0, and a continuous function f :

R+ × C([−τ, 0] : D(A)) → X, in this paper we consider the following evolution inclusion
with mixed nonlocal plus local initial conditions{

u′(t) ∈ Au(t) + f(t, ut), t ∈ R+,
u(t) = p(u)(t) + ψ(t), t ∈ [−τ, 0]. (1.1)

Here, the function p : C([−τ,+∞);D(A)) → C([−τ, 0];D(A)) shown in the nonlocal
condition is non-expansive, and the local initial condition ψ : [−τ, 0] → X is continuous,
such that p(u)+ψ ∈ C([−τ, 0];D(A)) for each u ∈ Cb([−τ,+∞);D(A)). From the control
point of view, the nonlocal initial condition p is can be seemed a feedback operator.

It should be pointed out that our problem contains several interesting particular cases.
The existence and boundedness of the C0-solution to problem (1.1) with some suitable
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assumptions have been demonstrated by Vrabie [24] which has proved it by Schaefer Fixed
Point Theorem. When ψ vanishes, that is, ψ(t) ≡ 0, problem (1.1) reduces to{

u′(t) ∈ Au(t) + f(t, ut), t ∈ R+,
u(t) = p(u)(t), t ∈ [−τ, 0]. (1.2)

Such problem (1.2) has been studied widely. Burlică and Roşu [6] established to problem
(1.2) a general existence result for bounded C0-solutions and proved the uniform asymp-
totic stability of the C0-solutions. Further, a sufficient condition for the unique C0-solution
of problem (1.2) to be almost periodic has been given by Vrabie [23], moreover, it is also
shown that the trajectory of the C0-solution for problem (1.2) is relatively compact in
t ∈ [−τ,+∞). To make the problem more special, replace f(t, ut) with f(t) in (1.2), then
problem (1.2) turns out to be of the form{

u′(t) ∈ Au(t) + f(t), t ∈ R+,
u(t) = p(u)(t), t ∈ [−τ, 0], (1.3)

and this case has already been discussed by Meknani, Zhang and Abdelhamid [18], which
states that problem (1.3) has a unique pseudo-almost periodic C0-solution. These above
documents are the starting point for the analysis of our paper.

Some other aspects of the argument on problem (1.1) have been studied by several
authors over the past few years. For example, periodic problems, such as Papageorgiou,
Rădulescu and Repovš [20], Akagi and Stefanelli [2], and Xue and Cheng [25], anti-periodic
problems like Chen Nieto, and O’Regan [8], and Cheng, Cong and Hua [9], mean-value
initial condition problems such nondelayed problems. In addition, as their applicability
to mathematical modelling in a completely generic condition, it can be referred to Deng
[12] and McKibben [16]. Besides, when the operator A is represented as a single-valued
operator in problem (1.1), it also has already been studied like Sattayatham, Tangmanee
and Wei [21]. Some recent contributions to the C0-solution of problem (1.1) have been
built up in Lizama and Alvarez [3], Lizama and Alvarez-Pardo [15], Meknani [17], Burlică,
Roşu and Vrabie [7], Paicu and Vrabie [19], Bilal, Cârjă, Donchev, Javaid and Lazu [5],
and Aizicovici and Lee [1]. While, in our paper we prove the uniqueness and the pseudo-
almost periodicity of the C0-solution for problem (1.1), in addition, we got to find out
that the trajectory of the unique C0-solution is relatively compact.

In this paper, we present it in four sections. The second section provides some basic
theory on almost periodicity, pseudo-almost periodicity, and the nonlinear evolution equa-
tions governed by the m-dissipation operator in Banach spaces. The third section is where
the main results of this paper are set out and proved. The final section gives a special
example about a pseudo-almost periodic C0-solution in the form of problem (1.1).

2. Preliminaries
Through the paper, we denote by Cb([a,+∞);X) the space of all bounded and con-

tinuous functions defined on [a,+∞) with values in X, endowed with the sup-norm
‖ · ‖Cb([a,+∞);X). Let Cb([a,+∞);D(A)) be a closed subset in Cb([a,+∞);X) i.e., the
space of all functions u ∈ Cb([a,+∞);X) with u(t) ∈ D(A) for each t ∈ [a,+∞). We
use the symbol C([a, b];X) to stand for the space of all continuous functions which are
defined on [a, b] with values in X, endowed with the sup-norm ‖ · ‖C([a,b];X). Similarly
C([a, b];D(A)) is a closed subset in C([a, b];X) is formed by all functions u ∈ C([a, b];X)
with u(t) ∈ D(A) for each t ∈ [a, b]. In what follows, let u ∈ C([−τ,+∞);X) and t ∈ R+,
ut ∈ C([−τ, 0];X) is defined by ut(s) := u(t+ s) for each s ∈ [−τ, 0] (see [14]).

Next, let us recall some necessary materials concerning almost periodic functions, pseudo-
almost periodic functions, m-dissipative operators and nonlinear evolution equations in
Banach space.
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Let us introduce the following notations{
S := {(rn)n : rk ∈ [0,+∞), ∀k ∈ N},
S∞ := {(rn)n : rk ∈ [0,+∞), ∀k ∈ N, limn rn = +∞}.

‘

Definition 2.1 ([23]). For a Banach space (X, ‖·‖X) and a ∈ R, a function f : [a,+∞) →
X is said to be almost periodic (a.p.) if the sequence (t 7→ f(t + rn))n has no less than
one convergent subsequence in Cb([a,+∞);X) for each (rn)n ∈ S, it means that with a
subsequence (t 7→ f(t + rnk

))k of (t 7→ f(t + rn))n and there is f̃ ∈ Cb([a,+∞);X) such
that

lim
k
f(t+ rnk

) = f̃(t),

uniformly for t ∈ [a,+∞).

Remark 2.2. Obviously, when an almost periodic function f is continuous, it is uniformly
continuous. Furthermore, an uniformly continuous function f : [a,+∞) → X is said to be
almost periodic if and only if the sequence (t 7→ f(t+rn))n has no less than one convergent
subsequence in Cb([a,+∞);X) for each (rn)n ∈ S∞.

Definition 2.3 ([23]). Let Ω be an open subset of Y , and (Y, ‖ · ‖Y ) be a Banach space.
For a function f ∈ C([a,+∞) × Y ;X), the family {t 7→ f(t, u) : u ∈ Ω} is said to be
uniformly almost periodic (u.a.p.) if there are a function f̃ : [a,+∞) × Ω → X and a
subsequence (rnk

)k ⊆ (rn)n such that for each (rn)n ∈ S∞ with

lim
k
f(t+ rnk

, u) = f̃(t, u)

uniformly for (t, u) ∈ [a,+∞) × Ω.

Remark 2.4. If there is an almost periodic function g ∈ C([a,+∞);R), and a bounded
function h ∈ C(Y ;X) on Ω, such that f(t, u) = g(t)h(u) holds, then the family of functions
{t 7→ f(t, u);u ∈ Ω} is uniformly almost periodic. Likewise, if there are g̃ ∈ C([a,+∞);X)
is almost periodic and h ∈ C(Y ;X) such that f(t, u) = g̃(t) + h(u) holds, then the family
of functions {t 7→ f(t, u);u ∈ Y } is uniformly almost periodic.

Also, we consider the following function spaces defined by
AP (R+, X) = {f ∈ C(R+, X) : f is a.p.}

endowed with the norm ‖f‖AP (R+,X) = sup
s∈R+

{‖f(s)‖X} and

AP (R+ ×X,X) = {f ∈ C(R+ ×X,X) : f is u.a.p.}
endowed with the norm ‖f‖AP (R+×X,X) = sup

s∈R+,u∈X
{‖f(s, u)‖X}. It is obvious that they

are Banach spaces. Besides, we need the following function spaces

PAP0(R+, X) = {f ∈ Cb(R+, X) : lim
r→∞

1
r

∫ r

0
‖f(t)‖Xdt = 0}

and

PAP0(R+ ×X,X) = {f ∈ Cb(R+ ×X,X) : for each u ∈ X, lim
r→∞

1
r

∫ r

0
‖f(t, u)‖Xdt = 0}.

Definition 2.5 ([26]). A function f ∈ Cb(R+, X) is called pseudo-almost periodic if there
are g ∈ AP (R+, X) and h ∈ PAP0(R+, X) such that f = g + h holds.

Definition 2.6 ([26]). Let Ω be an open subset of Y , and (Y, ‖·‖Y ) be a Banach space. For
a function f ∈ C([a,+∞)×Y ;X), the family {t 7→ f(t, u) : u ∈ Ω} is said to be uniformly
pseudo-almost periodic if there are g ∈ AP (R+ ×X,X) and h ∈ PAP0(R+ ×X,X) such
that f = g + h uniformly for (t, u) ∈ [a,+∞) × Ω.



Pseudo-almost periodic C0-solution for evolution inclusion ... 1483

Remark 2.7 ([11]). If there is a constant L > 0 such that f(t, x) ∈ PAP (R+ × X;X)
satisfies ‖f(t, x) − f(t, y)‖X ≤ L‖x− y‖X for each t ∈ R+ and x, y ∈ X, then f(·, u(·)) ∈
PAP (R+;X) for each u(t) ∈ PAP (R+;X).

More information about pseudo-almost periodic functions can be found in Diagana [13].
Next, we provide several theory of dissipative operators and nonlinear evolution equations
in Banach spaces, for more details readers can refer Barbu [4].

For every x, y ∈ X, let [x, y]t := 1
t (‖x + ty‖X − ‖x‖X), and [x, y]+ = lim

t↓0
[x, y]t :=

inf{[x, y]t; t > 0}. An operator A : D(A) ⊆ X ⇝ X is a dissipative operator if [x1 −
x2, y1 − y2]+ ≤ 0 holds for each xi ∈ D(A) and yi ∈ Axi, i = 1, 2. Furthermore, if for
λ > 0, R(I−λA) = X is satisfied, then A is called m-dissipative, where R(I−λA) denotes
the range of I − λA.

For each f ∈ L1(a, b;X), we say that u ∈ C([a, b];D(A)) is a C0-solution (or an integral
solution) on [a, b] of the evolution equation

u′(t) ∈ Au(t) + f(t), (2.1)
if the inequality

‖u(t) − x‖X ≤ ‖u(s) − x‖X +
∫ t

s
[u(τ) − x, f(τ) + y]+dτ, (2.2)

is satisfied for each x ∈ D(A), y ∈ Ax and a ≤ s ≤ t ≤ b.

Lemma 2.8 ([4]). If an m-dissipative operator A : D(A) ⊆ X ⇝ X satisfies A + ωI
is dissipative with the positive constant ω. It follows that for each f ∈ L1(a, b;X) and
ξ ∈ D(A), on [a, b], the evolution equation (2.1) has a unique C0-solution u to satisfy the
initial condition u(a) = ξ. Then

‖u(t) − v(t)‖X ≤ e−ω(t−s)‖u(s) − v(s)‖X +
∫ t

s
e−ω(t−θ)‖f(θ) − g(θ)‖Xdθ (2.3)

holds for each a ≤ s ≤ t ≤ b, with u and v are two C0-solutions of (2.1) corresponding to
f and g ∈ L1(a, b;X) respectively. In particular,

‖u(t) − x‖X ≤ e−ω(t−s)‖u(s) − x‖X +
∫ t

s
e−ω(t−θ)‖f(θ) + y‖Xdθ (2.4)

holds for each a ≤ s ≤ t ≤ b, if x ∈ D(A) and y ∈ Ax.

Denote by u(·, τ, ξ, f) the unique C0-solution v : [τ, b) → D(A) of the problem (2.1)
with the initial condition v(τ) = ξ, for ξ ∈ D(A), f ∈ L1(a, b;X) and a ≤ τ < b. Denoting
{SA(t) : D(A) → D(A), t ≥ 0} as the contraction semigroup generated by the Crandall-
Liggett’s exponential formula for A over D(A), for each t ≥ 0 and ξ ∈ D(A), there is
SA(t)ξ = u(t, 0, ξ, 0). In addition, if operator family (SA(t))t≥0 is a compact operator
family, then A generates a compact semigroup on D(A).

Lemma 2.9 ([22]). If A : D(A) ⊆ X ⇝ X is an m-dissipative operator, which generates
a compact semigroup, then in C([c, b];X), where a < c < b, for F be uniformly integrable
in L1(a, b;X) and B ⊆ D(A) be bounded the C0-solutions set {u(·, a, ξ, f); f ∈ F, ξ ∈ B}
is relatively compact. Moreover, the C0-solutions set is relatively compact in C([a, b];X)
when B is relatively compact in X.

3. Main results
For problem (1.1), the following assumptions were made about the data.

(HA) The m-dissipative operator A : D(A) ⊆ X ⇝ X meets the following requirements:
(A1) A+ ωI is dissipative for a positive number ω, and 0 ∈ D(A), 0 ∈ A0,
(A2) A generates a compact semigroup over D(A).
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(Hf ) The continuous function f : R+ × C([−τ, 0];D(A)) → X satisfies:
(f1) for each u ∈ C([−τ, 0];D(A)) and t ∈ R+,

‖f(t, u)‖X ≤ m+ l‖u‖C([−τ,0];X),

where m, l > 0,
(f2) for each u, v ∈ C([−τ, 0];D(A)) and t ∈ R+,

‖f(t, u) − f(t, v)‖X ≤ l‖u− v‖C([−τ,0];X),

where l is from the last assumption,
(f3) for t ∈ [0,+∞), {t 7→ f(t, v) : v ∈ C} is equi-uniformly continuous, where C is

an arbitrary bounded subset of C([−τ, 0];D(A)),
(f4) for t ∈ [0,+∞), {t 7→ f(t, v) : v ∈ C} is uniformly pseudo-almost periodic,

where C is an arbitrary bounded subset of C([−τ, 0];D(A)).
(Hc) There are positive constants l, τ >, and ω such that the non-resonance condition

is satisfied, that is:
(c1) l < ω,
(c2) leωτ < ω.

(Hp) p : Cb([−τ,+∞), D(A)) → C([−τ, 0];D(A)) is a nonlocal condition satisfying:
(p1)

‖p(u)‖C([−τ,0];X) ≤ ‖u‖Cb([0,+∞);X),

for each u ∈ Cb([−τ,+∞), D(A)),
(p2) there is α > 0 such that

‖p(u) − p(v)‖C[−τ,0];X) ≤ ‖u− v‖Cb([α,+∞);X),

for each u, v ∈ Cb([−τ,+∞), D(A)),
(p3) in C([τ, 0];X), P (Ẽ) is relatively compact, where Ẽ ⊆ Cb([−τ,+∞), D(A))

is a bounded set, Ẽ is relatively compact in C̃b([σ,+∞);X) for each σ > 0,
(p4) p is continuous from its domain endowed with the locally convex space topol-

ogy of C̃b([−t,+∞);X) to C([−τ, 0];X).
(Hψ,p) for each u ∈ Cb([−τ,+∞);D(A)), p(u)+ψ ∈ C([−τ, 0];D(A)), where ψ ∈ Cb([−τ, 0];X).

Lemma 3.1 ([24]). Let (HA), (f1) and (f3) in (Hf ), (c1) in (Hc), (Hp) and (Hψ,p) be
satisfied. Then (1.1) has at least one C0-solution u ∈ Cb([−τ,+∞);D(A)) which satisfies

‖u‖Cb([−τ,+∞);X) ≤ [ ω

ω − l
( 1
eωa − 1

+ l

ω
) + 1]‖ψ‖C([−τ,0];X) + m

ω − l
. (3.1)

Theorem 3.2. Under the hypothesis of Lemma 3.1, the C0-solution of problem (1.1) is
unique if (f2) in (Hf ), and (c2) in (Hc) are satisfied. Moreover, u is globally asymptotically
stable.

Proof. Proving its uniqueness by contradiction, if u, v ∈ C([−τ,+∞);X) are two dis-
tinguish C0-solutions of problem (1.1), then applying (2.3), (f1), (f2), and (p2) for each
t ∈ [0,+∞) we have

‖u(t) − v(t)‖X ≤ e−ωt‖u(0) − v(0)‖X +
∫ t

0
e−ω(t−s)‖f(s, us) − f(s, vs)‖Xds

≤ e−ωt‖u− v‖Cb([α,+∞);X) + 1 − e−ωt

ω
l‖u− v‖C([α,+∞);X).

For any t ≥ α, it follows from the last inequality above that

(1 − l

ω
)‖u(t) − v(t)‖X(1 − e−ωt) ≤ 0,
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since (c1), (1 − l
ω )(1 − e−ωt) > 0 is easily obtained, it follows that ‖u(t) − v(t)‖X = 0.

Further, we can infer ‖u(t) − v(t)‖X = 0 for each t ∈ [0,+∞). Next we consider the
situation when t ∈ [−τ, 0]. By (p2), we get

‖u(t) − v(t)‖X ≤ ‖u− v‖C([α,+∞);X) = 0.

In conclusion, we have proved that the C0-solution of problem (1.1) is unique.
Taking the unique C0-solution of problem (1.1) as u ∈ Cb([−τ,+∞);D(A)). For an

arbitrary fixed φ ∈ C([−τ, 0];D(A)), denote v ∈ Cb([−τ,+∞);D(A)) as the unique C0-
solution to problem {

v′(t) = Av(t) + f(t, vt), t ∈ R+,
v(t) = φ(t), t ∈ [−τ, 0]. (3.2)

Using (f1) and (2.3), we can get

‖u(t) − v(t)‖X ≤ e−ωt‖u(0) − v(0)‖X +
∫ t

0
le−ω(t−s)‖us − vs‖C([−τ,0];X)ds

for every t ∈ [0,+∞). Notes

eωs‖us − vs‖C([−τ,0];X) ≤ eωτ sup
θ∈[−τ,0]

{eω(s+θ)‖u(s+ θ) − v(s+ θ)‖X}

for all s ≥ 0. Then we can deduce

eωt‖u(t) − v(t)‖X ≤ ‖u(0) − v(0)‖X +
∫ t

0
le−ωτ sup

θ∈[−τ,0]
{eω(s+θ)‖u(s+ θ) − v(s+ θ)‖X}ds

for each t ∈ [0,+∞). By Lemma 4.3 in [6] it has

eωt‖u(t) − v(t)‖X ≤ ‖u(0) − v(0)‖X + ‖u− v‖C([−τ,0];X)+

leωτ (‖u(0) − v(0)‖X + ‖u− v‖C([−τ,0];X))
∫ t

0
ele

ωτ (t−s)ds

for each t ∈ [0,+∞). Then we shall be able to infer

‖u(t) − v(t)‖X ≤ e−(τ−b)t(‖u(0) − v(0)‖X + ‖u− v‖C([−τ,0];X))

for each t ∈ [0,+∞). As leωτ < ω, which suggests

lim
t→+∞

‖u(t) − v(t)‖X = 0.

This implies the second assertion of this theorem is valid. □

Remark 3.3. It should be pointed out that Banach’s fixed-point theorem also can be
used to prove the existence and uniqueness of the C0-solution to problem (1.1) (see [23]).

The next theorem sates that the C0-solution u of problem (1.1) has closed compact
orbit and is pseudo-almost periodic.

Theorem 3.4. Suppose (I − A)−1 is compact. Then under assumptions (HA), (Hf ),
(Hp)and (Hc), the unique C0-solution has closed compact orbit to problem (1.1) for which
it is pseudo-almost periodic.

To prove the theorem, the following theorem is required.

Lemma 3.5. Assume that (HA), (f1), (f2) and (f3) in (Hf ), (Hc), (Hp)and (Hψ,p) hold.
Then for problem (3.2) the unique C0-solution, v, over [−τ,+∞) is uniformly continuous.

Proof. It is sufficient to prove the uniform continuity of u since it is continuous.

‖v(t+ h) − v(t)‖X ≤ e−ωt‖v(h) − v(0)‖X +
∫ t

0
e−ω(t−s)‖f(s+ h, vs+h) − f(s, vs)‖Xds
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hold for every h > 0 and each t ∈ [0,+∞). Suppose that γ : [0,+∞) → [0,+∞) is the
modulus for the family

F (ω, l) := {t 7→ f(t, v) : v ∈ B(ω, l)},
with equi-uniform continuity, where

B(ω, l) := {v ∈ C([−τ, 0];D(A)) : ‖v‖C([−τ,0];X) ≤ [ ω

ω − l
( 1
eωa − 1

+ l

ω
)+1]‖ψ‖C([−τ,0];X)+ m

ω − l
}.

Namely, for each h > 0 we have
γ(h) := sup{‖f(t+ θ, v) − f(t, v)‖X : θ ∈ (0, h], t ∈ [0,+∞), v ∈ B(ω, l)}.

Then lim
h↓0

γ(h) = 0 since, on [0,+∞), F (ω, l) is equi-uniformly continuous beneath as-

sumption (f3) in (Hf ). Therefore, for every h > 0 and each t ∈ [0,+∞), we have

‖v(t+ h) − v(t)‖X ≤ e−ωt‖v(h) − v(0)‖X +
∫ t

0
e−ω(t−s)[l‖vs+t − vs‖C([−τ,0];X) + γ(h)]ds

≤ e−ωt‖v(h) − v(0)‖X +
∫ t

0
e−ω(t−s)l‖vs+t − vs‖C([−τ,0];X)ds+ γ(h)

ω
.

Further, for every fixed h > 0 and each t ∈ [0,+∞),

‖v(t+ h) − v(t)‖X ≤ γ(h)
ω − leωτ

+ e−(ω−leωτ )t[‖v(h) − v(0)‖X + ‖vh − v0‖C([−τ,0];X)]

≤ γ(h)
ω − leωτ

+ ‖vh − v0‖C([−τ,0];X)

can be obtained from Lemma 4.2 in [23]. Finally, it follows that u is uniformly continuous
from right on [0,+∞) by lim

h↓0
γ(h) = lim

h↓0
‖vh − v0‖C([−τ,0];X) = 0. □

Now we can go ahead and prove the last theorem.
Proof of Theorem 3.4. For each t ∈ [−τ, 0], and a unique C0-solution u ∈ Cb([−τ,+∞);
D(A)) to problem (1.1), write φ = p(u) + ψ. By Lemma 3.5 we can claim that u is
uniformly continuous from the right on [0,+∞). Denote Jλ = (I−λA)−1, where λ > 0, the
contraction semigroup generated by the operator A on D(A) is denoted as {S(t) : t ≥ 0}.
Then

‖Jλu(t) − u(t)‖X ≤ 4
λ

∫ λ

0
[‖u(t+ s) − u(t)‖X + ‖S(s)u(t) − u(t+ s)‖X ]ds (3.3)

is obtained based on Lemma 2.2 in [23]. On the other hand, for each t, s ∈ [0,+∞),through
Lemma 2.1 in [23], there is

‖S(s)u(t) − u(t+ s)‖X ≤
∫ t+s

t
‖f(θ, uθ)‖Xdθ (3.4)

established. Let δ : [0,+∞) → [0,+∞) be defined as
δ(λ) := sup{‖u(t+ s) − u(t)‖X : s ∈ [0, λ]; t ∈ [−τ,+∞)}

which is the modulus of uniform continuity from the right of u on [−τ,+∞), further,
lim
λ↓0

δ(λ) = 0.

Then through (3.3), (3.4) and (f1), we have

‖Jλu(t) −u(t)‖X ≤ 4
λ

∫ λ

0
{[ lm

ω − l
+ ‖ψ‖C([−τ,0];X)((

1
eωa − 1

+ l

ω
) lω

ω − l
+ l) +m]s+ δ(λ)}ds

≤ 2λ[ lm

ω − l
+ ‖ψ‖C([−τ,0];X)((

1
eωa − 1

+ l

ω
) lω

ω − l
+ l) +m] + 4δ(λ)

for each t ∈ [0,+∞) and λ > 0. Hence
lim
λ↓0

‖Jλu(t) − u(t)‖X = 0
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uniformly for t ∈ [0,+∞). Due to the boundedness of u and the compactness of Jλ is
compact for each λ > 0, the positive trajectory of u can be deduced to be relatively
compact. The proof of the first assertion of the Theorem 3.2 has been completed, and
then we show that u is pseudo-almost periodic. This requires proving that there exists
v ∈ AP (R+;X) and w ∈ PAP0(R+;X) to enable u to be factored into u = v + w, and v
is C0-solution to {

v′(t) ∈ Av(t) + g(t, vt), t ∈ R+,
v(t) = p(v)(t) + ψ(t), t ∈ [−τ, 0], (3.5)

as well as w is C0-solution to{
w′(t) ∈ Aw(t) + h(t, wt), t ∈ R+,
w(t) = [p(v + w) − p(v)](t), t ∈ [−τ, 0], (3.6)

where g + h = f , with g(·, v(· + s)) ∈ AP (R+;X), h(·, w(· + s)) ∈ PAP0(R+;X) for each
s ∈ [−τ, 0]. Via Remark 2.2, it suffices to show for every sequence (rn)n ∈ S∞ that there
is

lim
n
v(t+ rn) = ṽ(t)

uniformly for t ∈ [0,+∞) one can show that show that v is almost periodic. By the
boundedness of u, which is a consequence of Theorem 3.1, we can obtain boundedness of
C= {vt : t ∈ [0,+∞)} on C([−τ, 0];X). And there is a function g̃ : [0,+∞) × C→ X such
that, for each v ∈ C,

lim
n
g(t+ rn, v) = g̃(t, v)

uniformly for t ∈ [0,+∞) on at least one subsequence. In particular,
lim
n
g(s+ rn, vs) = g̃(s, vs) (3.7)

uniformly for s ∈ [0,+∞). In addition, by the uniform continuity of v, from [−τ,+∞) to
X, {s 7→ v(s + rn) : n ∈ N} can be shown to be equi-continuous. Moreover, A relatively
compact trajectory for u leads us to infer a relatively compact cross section in X for the
above family. We infer from Arzelà-Ascoli’s Theorem [22] that {s 7→ v(s + rn) : n ∈ N}
is relatively compact in Cb([−τ,+∞);X) is given uniform convergence over a compact
topology. Thus, if necessary, another subsequence can be chosen so that there is ṽ ∈
Cb([−τ,+∞);X) making

lim
n
v(t+ rn) = ṽ(t) (3.8)

holds uniformly for t ∈ [−τ, k], k ∈ N. For the completion of this proof it is neces-
sary to state, on the sub-subsequence, (v(t + rn))n convergence to under the norm of
Cb([0,+∞);X). For this reason, without losing generality, the sequence (v(· + rn))n can
be assumed to satisfy the above properties. According the continuity of g and (3.8), it is
clear that

lim
n
g(s, vrn+s) = g(s, ṽs)

uniformly for 0 ≤ s ≤ k, k ∈ N. We conclude from the boundedness of (s 7→ g(s, vrn+s))n
along with (3.7) and (3.8), that ṽ is the unique C0-solution of problem{

ṽ′(t) ∈ Aṽ(t) + g(t, ṽt), t ∈ R+,
ṽ(t) = lim

n
v(t+ rn), t ∈ [−τ, 0].

At the moment, it can be noted that

‖v(t+ rn) − ṽ(t)‖X ≤ e−ωt‖v(rn) − ṽ(0)‖X +
∫ t

0
e−ω(t−s)‖g(s+ rn, vs+rn) − g(s, ṽs)‖Xds

≤ e−ωt‖v(rn) − ṽ(0)‖X +
∫ t

0
e−ω(t−s)‖g(s+ rn, vs+rn) − g(s+ rn, ṽs)‖Xds

+
∫ t

0
e−ω(t−s)‖g(s+ rn, ṽs) − g(s, ṽs)‖Xds
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for each t ∈ [0,+∞) and n ∈ N. Then apply similar reasoning as in [23], for each n ∈ N,
denote an := ‖v(rn) − v(0)‖X satisfies lim

n
an = 0, and bn := sup{‖g(t+ rn, v) − g̃(s, v)‖X :

s ∈ [0,+∞), v ∈ C} satisfies lim
n
bn = 0. Form the last inequality we get

‖v(t+ rn) − ṽ(t)‖X ≤ e−ωtan + 1 − e−ωt

ω
bn +

∫ t

0
le−ω(t−s)‖vs+rn − ṽs‖C([−τ,0];X)ds

≤ e−ωtan + bn
ω

+
∫ t

0
le−ω(t−s)‖vs+rn − ṽs‖C([−τ,0];X)ds

for each t ∈ [0,+∞) and n ∈ N. Applying the Lemma 4.2 in [23], we can get

‖v(t+ rn) − ṽ(t)‖X ≤ (an + ‖vrn − v0‖C([−τ,0];X))e−(ω−b)t + bn
ω − b

≤ an + bn
ω − b

+ ‖vrn − v0‖C([−τ,0];X)

for each t ∈ [0,+∞) and n ∈ N, where b = leωτ . Further, the almost periodicity of v can
be obtained from

lim
n

‖v(t+ rn) − ṽ(t)‖X = 0

uniformly for t ∈ [0,+∞), which is a consequence of lim
n
an = lim

n
bn = lim

n
‖vrn −

v0‖C([−τ,0];X) = 0. Next, we will demonstrate that w(t) ∈ PAP0(R+;X). In reality,
according (2.3), we can obtain that

‖w(t)‖X ≤ ‖u(t) − v(t)‖X ≤ e−ω(t−s)‖u(s) − v(s)‖X +
∫ t

s
e−ω(t−θ)‖f(θ, uθ) − g(θ, vθ)‖Xdθ,

consequently,
1
r

∫ r

0
‖w(t)‖Xdt ≤ I + J,

where
I = 1

r

∫ r

0
e−ω(t−s)‖u(s) − v(s)‖Xdt,

J = 1
r

∫ r

0

∫ t

s
e−ω(t−θ)‖h(θ, wθ)‖Xdθdt.

Hence we have to prove that I and J converge to 0 as r → +∞. In fact, as r → +∞ there
are

I = 1
r

∫ r

0
e−ω(t−s)‖u(s) − v(s)‖Xdt

≤ 2
r

[ m

ω − l
+ ‖ψ‖C([−τ,0];X)((

1
eωa − 1

+ l

ω
) ω

ω − l
+ 1)]

∫ r

0
e−ω(t−s)dt

≤ 2
rω

[ m

ω − l
+ ‖ψ‖C([−τ,0];X)((

1
eωa − 1

+ l

ω
) ω

ω − l
+ 1)]eωs → 0,

and
J = 1

r

∫ r

0

∫ t

s
e−ω(t−θ)‖h(θ, wθ)‖Xdθdt

≤ 1
r

∫ r

0

∫ t

0
e−ω(t−θ)‖h(θ, wθ)‖Xdθdt

≤ 1
r

∫ r

0
‖h(t, wt)‖Xdt

∫ +∞

0
e−ωδdδ

≤ 1
rω

∫ r

0
‖h(t, wt)‖Xdt → 0,

Hence, we deduce that 1
r

∫ r
0 ‖w(t)‖Xdt → 0 as r → +∞, that is to say w(t) ∈ PAP0(R+;X).

To sum up, u is a pseudo-almost periodic C0-solution for (1.1). 2
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4. Application

To illustrate our main results, an example shall be presented now. Consider the existence
and uniqueness of pseudo-almost periodic C0-solution for the following problem:

∂u
∂t (t, x) = −a∂u∂x(t, x) − ωu(t, x) + f(t, ut)(x), (t, x) ∈ R+ × R,
u(t, x) = u(t, x+ π), t ∈ R+,
u(t, x) = p(u)(t)(x) + ψ(t, x), t ∈ [−τ, 0], x ∈ (0, π).

(4.1)

Cπ is the space consisting of all π-periodic functions u ∈ C(R;R), for each u ∈ Cπ endowed
with the norm ‖ · ‖Cπ := ‖u‖([0,π];R). For D(A) = {u ∈ Cπ : u′ ∈ Cπ}, considering Au =
−a∂u∂x(t, x)−ωu(t, x), where a ∈ R\{0} and ω > 0. And obviously the operator A satisfies
hypothesis (HA), reference [23]. Let f : [0,+∞) × C([−τ, 0];Cπ) → Cπ be continuous,
such as f(t, ut) = ut sin t + ut sin(

√
2t) + ut

1+t2 with ut(s) ∈ C([−τ, 0];Cπ) for t ∈ [0,+∞).
It is clear that the function f(t, ut) satisfies hypothesis (Hf ). Furthermore, define p :
([−τ,+∞);Cπ) → C([−τ, 0];Cπ) as p(u)(t) =

∫ +∞
τ k(θ)u(t + θ)dθ with

∫ +∞
τ |k(θ)|dθ = 1

for k ∈ L1([−τ,+∞);R). Obviously, this satisfies the hypothesis (Hp).

Theorem 4.1. Under the following assumptions, problem (4.1) has a unique globally
asymptotically stable pseudo-almost periodic C0-solution, which has compact orbit.

(a) For each u, v ∈ C([−τ, 0];Cπ) and t, s ∈ [0,+∞),
‖f(t, u) − f(s, v)‖Cπ ≤ l[|t− s| + ‖u− v‖C([−τ,0];Cπ)],

‖f(t, 0)‖Cπ ≤ m

where m, l > 0;
(b) leωτ < ω;
(c) for t ∈ [0,+∞), {t 7→ f(t, u) : u ∈ C} is equi-uniformly continuous, where C is an

arbitrary bounded of subset C([−τ, 0];Cπ);
(d) for t ∈ [0,+∞), {t 7→ f(t, u) : u ∈ C} is uniformly pseudo-almost periodic, where

C is an arbitrary bounded of subset C([−τ, 0];Cπ);
(e) there is α > 0, for each u, v ∈ Cb([−τ,+∞);Cπ), it is valid to have

‖p(u) − p(v)‖C([−τ,0];Cπ) ≤ ‖u− v‖Cb([α,+∞);Cπ),

in particularly,
‖p(u)‖C([−τ,0];Cπ) ≤ ‖u‖Cb([0,+∞);Cπ).

.

Proof. Define B : D(B) ⊆ Cπ → Cπ to be{
D(B) = {u ∈ Cπ : u′ ∈ Cπ},
Bu = −au′, u ∈ D(B).

To prove the example it is sufficient to write problem (4.1) in the form of (1.1) with
A = B − ωI and f and p as above. The next step shows that (I −A)−1 is compact.

For each ξ ∈ Cπ, x ∈ R and t ≥ 0, it may be inferred from [22] that a C0-group of
isometries {T (t) : t ∈ R} is generated by B, where

[T (t)ξ](x) = ξ(x− at).
Hence, {S(t) : t ≥ 0} is a contracted C0-semigroup generated by A, where

S(t) = e−ωtT (t).
From Arzelà-Ascoli’s Theorem for infinite-dimensional versions [22], it follow that, in Cπ,
the closures of

{u ∈ D(A) : ‖u‖Cπ + ‖Au‖Cπ ≤ k}
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is compact, where k ∈ R+. Then, (I − A)−1 is compact, which can be inferred from [22].
Overall, all the assumptions of Theorem 3.2 and Theorem 3.4 are held, from which we
conclude. □
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