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Abstract
In this paper, a new two-parameter lifetime distribution, called the Marshall-Olkin Bilal
distribution is introduced and its various structural properties are discussed. The proposed
model results from the Marshall-Olkin family of distributions with the baseline model as
Bilal distribution. We examined different statistical aspects like moments, quantile func-
tion, order statistics and entropy. The hazard rate function of the proposed distribution
can be increasing and upside-down bathtub shaped. The model parameter estimation is
carried out by maximum likelihood, least squares, and weighted least squares methods,
and a simulation study is performed. The flexibility of the proposed model is evaluated
by two real data sets by comparing with different contending models. Its application
in time series is studied by the associated autoregressive minification process, and the
auto-correlation structure is derived. The acceptance sampling plans formulated for the
proposed model and the characteristic results are illustrated.
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1. Introduction
In order to interpret real-world phenomena in a wide range of disciplines, many proba-
bility distributions have been proposed in the statistical literature. In particular, lifetime
distributions play a fundamental role in several reliability fields, such as finance, manufac-
turing and biological sciences. Considerable effort has been expended in developing large
classes of standard probability distributions along with relevant statistical methodologies.
Using order statistics in lifetime distribution production, Abd-Elrahman [2] introduced
the Bilal distribution providing better flexibility in modelling real data sets compared to
the exponential and Lindley distributions.
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The Bilal distribution has less skewness and kurtosis than the exponential distribution
and is a member of the class of new better than used in failure rates. As a potential
baseline model in the construction of flexible lifetime distributions, recently, there has
been a great interest in extensions, generalizations and related applications of the Bilal
distribution. As a solution for the unimodal hazard rate function (HRF) of the Bilal
distribution, Abd-Elrahman [1] introduced the two-parameter generalization called general
Bilal distribution. A three-parameter generalization, called the Harris extended Bilal
distribution was introduced by [27], and its various properties have been discussed. The
application of U-statistics in the estimation of the scale parameter of Bilal distribution was
discussed by [28]. To overcome the deficiencies of the existing distributions for modelling
extremely skewed datasets, Altun [13] developed log-Bilal distribution and the associated
regression. As a significant solution in associated regression and INAR(1) process for
over-dispersed count datasets, Altun [12] introduced the Poisson-Bilal distribution. A
bivariate version of the Bilal distribution, the Farlie-Gumbel-Morgenstern bivariate Bilal
distribution and its inferential aspects using concomitants of order statistics were discussed
by [29]. A new discrete Bilal distribution and its associated count time series model are
proposed in the work by [4]. These studies have demonstrated the versatility of the
Bilal distribution. There is, however, scope for reaching the goal of improved statistical
modelling.

The extended distributions proposed by adding additional parameters generally provide
improved flexibility. By adding an extra parameter to the baseline distribution, Marshall
and Olkin [26] introduced the Marshall-Olkin family of distributions, providing more flex-
ibility in analyzing real data sets. This new method has the stability property, and the
resulting distribution has broad field behaviour in probability density function (PDF) and
HRF with respect to the baseline distribution. Further, it offers an adaptable framework
for modelling a wide range of phenomena and is applicable in various fields, including
reliability analysis, finance, health science, and simulation studies. Using exponential
distribution as a baseline model, Marshall and Olkin [26] developed the Marshall-Olkin
exponential (MOE) distribution and its various properties have been discussed. Some
notable contributions on the Marshall-Olkin family of distributions are given in [19], [21]
and [24].

Thus, we develop a flexible lifetime model based on the Bilal distribution with more
dynamic density and provide adequate real data modelling by introducing a shape pa-
rameter. The present study is motivated by the need for an improved model which also
accommodates the properties of the one-parameter Bilal and its two-parameter generaliza-
tion, namely general Bilal distribution. In addition to that, an empirical comparison study
with respect to the MOE distribution is discussed. The prowess of the proposed model in
real phenomena is demonstrated in the areas of time series analysis and reliability testing
plans.

In time series analysis, autoregressive models occupy a prominent position. The autore-
gressive processes are widely used in time series models with non-Gaussian distributions
due to naturally occurring non-Gaussian Markovian time series. The minification process
has the capability to define an autoregressive process that can’t be generated using linear
random coefficient models, and constant HRF having marginals as non-Gaussian distri-
bution. The use of acceptance sampling approaches in a quality control setting has given
rise to a number of research interests in recent years. Accordingly, many authors have
developed several kinds of sampling plans assuming that the lifetime of the units follows
the distribution under consideration. Due to certain restrictions, examining the whole
production unit is impossible. So, the acceptance sampling plan (ASP) acts as a decision
rule for the acceptance of a lot from a sample of products. It arose from a consideration
of both consumer and producer risks, representing a middle ground between complete
inspection and no inspection.
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In this article, we establish a two-parameter generalization of Bilal distribution, using
the vision of [26], the Marshall-Olkin Bilal (MOB) distribution, followed by its statistical
properties and associated application in various fields. The main contribution of this pa-
per is that it establishes the practical usefulness of the proposed distribution. We tried to
compare the proposed model with the Bilal distribution, the two-parameter general Bilal
distribution and the MOE distribution, which is demonstrated through various statistical
properties and real data analysis. The application in time series modelling is evaluated
by the autoregressive minification process with the MOB distribution as marginals. We
propose the reliability test plan for accepting or rejecting a lot, where the lifetime of the
product follows the MOB distribution, and its several characteristic results are investi-
gated.

The remaining part of the paper is organized in the following order. Section 2 describes
the nature of the PDF of the MOB distribution. In Section 3, we introduce the associated
statistical properties like HRF, moments, moment generating function (MGF), quantile
function, mean residual life function, Rényi entropy, order statistics and stress-strength
parameter. The parameter estimation of the model under maximum likelihood (ML),
least squares (LS), and weighted least squares (WLS) methods and the Fisher information
matrix is discussed in Section 4. The asymptotic behaviour of the MOB distribution,
with the help of certain simulated data sets, is discussed in Section 5. Section 6 assesses
the performance of the proposed distribution with two real data sets. The autoregressive
minification process with the MOB distribution as marginals is discussed in Section 7.
The ASP associated with the MOB distribution is developed, and the characteristics are
presented in Section 8. Finally, the study is concluded in Section 9.

2. The Marshall-Olkin Bilal distribution
In this section, we describe the MOB distribution and investigate some of its structural
properties. Following [26], for a baseline distribution having survival function (SF) G1(x)
and PDF g1(x), adding a tilt parameter θ gives rise to Marshall-Olkin extended family of
distribution with the SF

GMO(x) = θ G1(x)
1 − θ G1(x)

, (2.1)

where θ > 0 (θ = 1 − θ). The corresponding PDF is given by

gMO(x) = θ g1(x)(
1 − θ G1(x)

)2 .

On the other hand, Abd-Elrahman [2] introduced the Bilal distribution, with the PDF

f(x;λ) = 6
λ

(
e− 2x

λ − e− 3x
λ

)
, x > 0 (2.2)

and SF
F (x;λ) =

(
3e− 2x

λ − 2e− 3x
λ

)
, x > 0, (2.3)

where λ > 0 is the scale parameter. Taking G1(x) as F (x;λ) in (2.1) results in the MOB
distribution, denoted by MOB (λ, θ). The exact definition is formalized below.

Definition 2.1
A continuous random variable X is said to follow MOB (λ, θ) if it’s PDF and cumulative
distribution function (CDF) is given by

g(x;λ, θ) =
6 θ

(
e− 2x

λ − e− 3x
λ

)
λ
(
1 − θ

[
3e− 2x

λ − 2e− 3x
λ

])2 , x > 0 (2.4)
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Figure 1. Density plot of the MOB distribution.

and

G(x;λ, θ) =
1 −

(
3e− 2x

λ − 2e− 3x
λ

)
(
1 − θ

[
3e− 2x

λ − 2e− 3x
λ

]) , x > 0, (2.5)

respectively, where λ > 0 is the scale parameter and θ > 0 is the shape parameter.
Remark 2.1
If θ = 1, the MOB distribution reduces to the Bilal distribution. (Hence θ = 1 is omitted
voluntarily afterwards).

Figure 1 displays the density plot of the MOB distribution for different parameter values.
We can see that the density of the MOB distribution is unimodal and mainly right-skewed
or almost symmetrical, with a certain flexibility in the median and kurtosis.

Theorem 2.1
Marshall-Olkin Bilal distribution is geometric extreme stable.

Proof.
Let X1, X2, ... be a sequence of independent and identically distributed (iid) random vari-
ables with SF G2(x) and N follows geometric (p) such that X ′

is are independent of N .
Let UN = min(X1, X2, ..., XN ) and VN = max(X1, X2, ..., XN ).
Then the SF of UN is given by

M(x) = P (UN > x) =
∞∑
n=1

G2(x)n−1 (1 − p)n−1 p G2(x) = p G2(x)
1 − (1 − p) G2(x)

.

If Xi follows MOB distribution, then

M(x) =
pθ
(
3e− 2x

λ − 2e− 3x
λ

)
1 − (1 − pθ)

(
3e− 2x

λ − 2e− 3x
λ

) .
Thus, the distribution of UN and Xi belongs to the same family. Therefore, we can say
that the MOB distribution is geometric minimum stable.
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Now, the SF of VN is given by

N(x) = 1 − P (VN < x) = 1 − p G2(x)
1 − (1 − p) G2(x)

= p
′
G2(x)

1 − (1 − p′) G2(x)
,

where p′ = 1
p . If Xi follows MOB distribution, then

N(x) =
p

′
θ
(
3e− 2x

λ − 2e− 3x
λ

)
1 − (1 − p′θ)

(
3e− 2x

λ − 2e− 3x
λ

) .
Thus, the distribution of VN and Xi belongs to the same family. Hence, we can say
that the MOB distribution is geometric maximum stable. Thus, the MOB distribution is
geometric extreme stable.

The following theorem shows that the MOB distribution can be derived by the compound-
ing argument.

Theorem 2.2
Let X|ψ have a (conditional) survival function

G(x;λ|ψ) = exp

−

 1(
3e− 2x

λ − 2e− 3x
λ

) − 1

ψ
 , x > 0, λ > 0,

and ψ have (unconditional) probability density function

p(ψ; θ) = θ e−θψ, ψ > 0, θ > 0.
Then, the (unconditional) distribution of X is MOB (λ, θ).

Proof.
The theorem is trivial, since

G(x;λ, θ) =
∫ ∞

0
G(x;λ|ψ) p(ψ; θ)dψ

=
∫ ∞

0
θ exp

−

(
1 − θ

[
3e− 2x

λ − 2e− 3x
λ

])
θ
(
3e− 2x

λ − 2e− 3x
λ

) ψ

 dψ
=

θ
(
3e− 2x

λ − 2e− 3x
λ

)
(
1 − θ

[
3e− 2x

λ − 2e− 3x
λ

]) .
Hence proved.

Proposition 2.1
Consider a sequence of iid random variables {Xi, i ≥ 1} with common survival function
F (x) and N be a geometric random variable with parameter θ, which is independent of
{Xi} for all i ≥ 1. Let UN = min

1≤i≤N
Xi. Then, {UN} is distributed as MOB (λ, θ) if and

only if {Xi} follows the Bilal distribution.

3. Statistical properties
3.1. Hazard rate function
From (2.5), the SF of the MOB distribution is given by

G(x;λ, θ) =
θ
(
3e− 2x

λ − 2e− 3x
λ

)
(
1 − θ

[
3e− 2x

λ − 2e− 3x
λ

]) , x > 0. (3.1)
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Figure 2. Plots of the HRF of the MOB distribution.

The odds function of the MOB distribution is given by

λG(x;λ, θ) = G(x;λ, θ)
G(x;λ, θ)

=
1 −

(
3e− 2x

λ − 2e− 3x
λ

)
θ
(
3e− 2x

λ − 2e− 3x
λ

) . (3.2)

The HRF of the MOB distribution is given by

h(x;λ, θ) = 6 (1 − e
−x
λ )

λ
(
3 − 2e− x

λ

) [
1 − θ

(
3e− 2x

λ − 2e− 3x
λ

)] , x > 0. (3.3)

Figure 2 displays HRF of the MOB distribution for different parameter values. It shows
that the HRF can be increasing and upside-down bathtub, which is not shared by the
Bilal distribution.

The cumulative HRF of the MOB distribution is given by

Λ(x;λ, θ) =
∫ x

0
h(t;λ, θ)dt =

∞∑
i=0

i−1∑
j=0

ci,j β
∗(x, 2i+ j + 1, 2), (3.4)

where β∗(x, 2i+ j + 1, 2) is the incomplete beta function in terms of e
−t
λ and

ci,j = 6 (−1)j 3i−j 2j θi

λ
.

The derivation is given in Appendix A.
The corresponding reverse HRF is given by

r(x;λ, θ) = g(x;λ, θ)
G(x;λ, θ)

=
6 θ

(
e− 2x

λ − e− 3x
λ

)
λ
(
1 − θ

[
3e− 2x

λ − 2e− 3x
λ

]) [
1 −

(
3e− 2x

λ − 2e− 3x
λ

)] . (3.5)

3.2. Moment generating function and moments
Theorem 3.1
The MOB (λ, θ) has finite moments of all positive orders.

Proof.
Since

G(0) = 0 and lim
x→∞

inf x h(x;λ, θ) = ∞,

following [15], we can conclude that MOB (λ, θ) has finite moments of all positive orders.
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Although the Marshall-Olkin extended family has finite moments of all positive order, it
cannot be expressed in closed form. An infinite series expansion is given in the following
proposition.
Proposition 3.1

(1) The MOB density can be expressed as a linear combination of Lehman Type-II-
Bilal distribution ([18]) as follows.

g(x;λ, θ) =
∞∑
i=0

λwi
6(i+ 1)

(i+ 1) f(x;λ) [F (x;λ)]i,

where f(x;λ) & F (x;λ) are given in (2.2) and (2.3).

(2) Let X ∼ MOB (λ, θ). Then, the MGF of X is given by

MX(t) =
∞∑
i=0

i∑
j=0

zi,j λ β(2 + 2i+ j − λt, 2), t < 2
λ
.

(3) Let X ∼ MOB (λ, θ) and r be an integer. Then the rth raw moment of X is given
by

µ
′
r =

∞∑
i=0

i∑
j=0

zi,j r! λr
[ 1

(2 + 2i+ j)r
− 1

(3 + 2i+ j)r
]
.

(4) The rth incomplete moment, mr(y) =
∫ y

0 g(x;λ, θ)dx, for the MOB distribution is
given by

mr(y) =
∞∑
i=0

i∑
j=0

zi,j

[
γ

(
r + 1, (2 + 2i+ j)

λ
, y

)
− γ

(
r + 1, (3 + 2i+ j)

λ
, y

)]
,

where

zij = wi

(
i

j

)
3i−j (−2)j , wi =


(i+1
i

)
θ
i 6
λ θ if 0 < θ < 1

6
λθ (−1)i

[∑∞
l=i(1 − 1

θ )l
(l
i

) (l+1
l

)]
if θ > 1

, (3.6)

β(a, b) =
∫ 1

0
va−1(1 − v)b−1dv, and γ(r + 1, a, y) =

∫ y

0
xr e−ax dx.

The derivation is given in Appendix B.

3.3. Quantile function
The following proposition will give the quantile function of the MOB distribution.

Proposition 3.2
The quantile function of the MOB distribution is given by Q(u;λ, θ) = F−1(x;λ, θ) and
can be expressed as

Q(u;λ, θ) = −λ log[γ(u)], (3.7)
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where

γ(u) =


0.5 + sin(αu + π

6 ) if 0 < α < 0.5
0.5 if α = 0.5
0.5 − cos(αu + π

3 ) if 0.5 < α < 1
,

αu = 1
3
tan−1

(
2
√
α (1 − α)

2 α− 1

)
and α = 1 − (1 − u)

[θ + θ (1 − u)]
.

Proof.
Using (2.5), we have

G(x, λ, θ) = u =⇒ 1 −
(
3e− 2x

λ − 2e− 3x
λ

)
= 1 − (1 − u)

[θ + θ (1 − u)]
. (3.8)

The LHS of (3.8) is the CDF of the Bilal distribution. Hence, the proof follows from the
quantile function of Bilal distribution [2].

Since the MOB distribution has a closed-form quantile function, it has the variate gener-
ation property, which is very useful in simulation studies.

3.4. Mean residual life function
Theorem 3.2
Let X ∼ MOB (λ, θ). Then the mean residual life function of X, m(t) =

∫∞
t

G(x;λ,θ) dx
G(t;λ,θ) , is

given by

m(t) =
([

3 − 2e− t
λ

]−1
− θ e− 2t

λ

) ∞∑
i=0

1+i∑
j=0

zmi,j
λ e

−t(2i+j)
λ

(2 + 2i+ j)
,

where

zmi,j = wmi

(
1 + i

j

)
31+i−j (−1)j 2j

and wmi =


θ
i

if 0 < θ < 1

1
θ2 (−1)i

[∑∞
l=i(1 − 1

θ )l
(l
i

) ]
if θ > 1

.

The derivation is given in Appendix C.

3.5. Order statistics
SupposeX1, X2, . . . , Xn be a random sample from the MOB distribution with PDF g(x;λ, θ)
and CDF G(x;λ, θ). Let Xj:n be the jth order statistic. Then, the PDF of Xj:n is given
by

gj:n(x;λ, θ) =
(
n

j

)
j g(x;λ, θ)[G(x;λ, θ)]n−j [1 −G(x;λ, θ)]j−1.
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Using the expansion of the MOB distribution given in the Proposition [3.1], we have

gj:n(x;λ, θ) =
j−1∑
h=0

cj,h
6 θ1+n−j+h

(
e− 2x

λ − e− 3x
λ

) [
3e− 2x

λ − 2e− 3x
λ

]n−j+h

λ
(
1 − θ

[
3e− 2x

λ − 2e− 3x
λ

])2+n−j+h

=
j−1∑
h=0

∞∑
i=0

cj,h w
∗
i e

− x
λ

(2[1+n−j+h+i])
(
1 − e− x

λ

) (
3 − 2e− x

λ

)i+n−j+h

=
j−1∑
h=0

∞∑
i=0

i+n−j+h∑
m=0

z∗
i,m,j,he

− x
λ

(2[1+n−j+h+i])
(
1 − e− x

λ

)m+1
,

where

z∗
i,m,j,h = cj,h w

∗
i

(
i+ n− j + h

m

)
3i+n−j+h−m (−1)m 2m, cj,h =

(
n

j

)
j (−1)h

(
j − 1
h

)

and w∗
i =


(i+1+n−j+h

i

)
θ
i 6
λ θ

1+n−j+h if 0 < θ < 1

6
λθ (−1)i

[∑∞
l=i(1 − 1

θ )l
(l
i

) (l+1+n−j+h
l

)]
if θ > 1

.

The distribution of sample minima and maxima, and L-moments follow from the density
of order statistics.

3.6. Entropy
Entropy is one of the measures of uncertainty about a random variable. One of the most
common measures of entropy, Rényi entropy, is given in the following proposition.

Proposition 3.3
Let X ∼ MOB (λ, θ). Then the Rényi entropy of X is given by
IR(x) = (1 − v)−1logE[g(X;λ, θ)v−1], with v > 0 and v ̸= 1, and can be expressed as

IR(x) = (1 − v)−1 log

 ∞∑
i=0

i∑
j=0

zvi,j λ β(2v + 2i+ j, v + 1)

 ,
where zvi,j is obtained by replacing wi by wvi in (3.6) and it is given by

wvi =


(−2v
i

)
(−1)i θi 6v

λv θv if 0 < θ < 1

6v

λvθv (−1)i
[∑∞

l=i(1
θ − 1)l

(l
i

) (−2v
l

)]
if θ > 1

.

The derivation is given in Appendix D.

3.7. Stress-strength parameter
Let X and Y be two independent random variables following MOB (λ, θ). Then the
stress-strength parameter, R = 1 −

∫∞
0 g(x;λ, θ) G(x;λ, θ) dx, is given by

R = P (Y < X) = 1 −
∫ ∞

0
g(x;λ, θ) G(x;λ, θ)dx = 1 −

∞∑
i=0

1+i∑
j=0

zssi,j λβ(4 + 2i+ j, 2),
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where

zssi,j = wssi

(
1 + i

j

)
31+i−j (−1)j 2j

and wssi =


(i+2
i

)
θ
i 6
λ θ

2 if 0 < θ < 1

6
λθ (−1)i

[∑∞
l=i(1 − 1

θ )l
(l
i

) (l+2
l

)]
if θ > 1

.

The derivation is given in Appendix E.

4. Parameter estimation
Here, we estimate the unknown parameters of the MOB distribution using ML, LS and
WLS methods.

4.1. Maximum likelihood estimation
Let x1, x2, . . . , xn be a random sample from MOB (λ, θ). From (2.4), the log-likelihood
function is given by

logL(λ,θ) = n log
(6 θ
λ

)
−

n∑
i=1

2xi
λ

+
n∑
i=1

log
(
1 − e− xi

λ

)
−2

n∑
i=1

log
(

1 − θ[3e− 2xi
λ − 2e− 3xi

λ ]
)
.

(4.1)
The ML estimates (λ̂, θ̂) of the parameters (λ, θ) are now obtained from the solution of
following equations:

∂ logL(λ,θ)
∂λ

= 0 and
∂ logL(λ,θ)

∂θ
= 0 .

Now

∂ logL(λ,θ)
∂λ

= −n

λ
+

n∑
i=1

2xi
λ2 −

n∑
i=1

xie
− xi

λ

(1 − e− xi
λ )λ2

+ θ
n∑
i=1

6 xi
(
e− 2xi

λ − e− 3xi
λ

)
λ2

(
1 − θ[3e− 2xi

λ − 2e− 3xi
λ ]
)

and
∂ logL(λ,θ)

∂θ
= n

θ
−

n∑
i=1

[3e− 2xi
λ − 2e− 3xi

λ ](
1 − θ[3e− 2xi

λ − 2e− 3xi
λ ]
) .

Since we can’t find the solution in an explicit form when equating to zero, we would go for
direct maximization of (4.1) using numerical methods with the help of statistical software.

The inferential analysis on the parameters can be performed using the asymptotic prop-
erties of ML estimates. For the parameter estimate ϕ̂ = (λ̂, θ̂), assuming underlying
regularity conditions

ϕ̂ ∼ N2(02,K
−1),

where K−1 is the information matrix of the parameters and for large values of n,
K = n−1Jn where

Jn =

∂2 logL(λ,θ)
∂λ2

∂2 logL(λ,θ)
∂λ∂θ

∂2 logL(λ,θ)
∂θ∂λ

∂2 logL(λ,θ)
∂θ2


(λ,θ)=(λ̂,θ̂)

.
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4.2. Least squares and weighted least squares estimation
Let x(1), x(2), . . . , x(n) be the order statistics of a random sample of size n from the
MOB (λ, θ). By minimizing the following equation, we obtain the LS estimates of the
parameters (λ, θ):

LS(λ,θ) =
n∑
i=1

 1 −
(

3e−
2x(i)

λ − 2e−
3x(i)

λ

)
(

1 − θ

[
3e−

2x(i)
λ − 2e−

3x(i)
λ

]) − i

n+ 1


2

. (4.2)

The WLS estimates of the parameters (λ, θ) are obtained by minimizing the following
equation:

WLS(λ,θ) =
n∑
i=1

(n+ 1)2(n+ 2)
i(n− i+ 1)

 1 −
(

3e−
2x(i)

λ − 2e−
3x(i)

λ

)
(

1 − θ

[
3e−

2x(i)
λ − 2e−

3x(i)
λ

]) − i

n+ 1


2

. (4.3)

5. Simulation
The model performance is analysed by means of a simulation study. The simulation is
carried out by 1,000 replications for sample of sizes n= 50, 100, 150, 200 and 250 with
the following parameter values: (λ, θ) = (1.5, 0.4), (1.8, 0.64), (0.76, 1.41) and (2.2, 2.7).
The parameter estimation is carried out by ML, LS and WLS methods, and the following
quantities were computed.

(1) Bias of the parameters,

Bias(α̂)= 1
N

N∑
i=1

(α̂i − α), α ∈ {λ, θ}.

(2) Root mean square error (RMSE) of the parameters,

RMSE(α̂) =
√

1
N

N∑
i=1

(α̂i − α)2, α ∈ {λ, θ}.

Table 1 lists the bias and RMSE for the ML, LS and WLS estimates of the parameters
λ and θ.
In general, we can conclude that ML, LS, and WLS estimations performed very well. The
RMSE and bias decrease as n increases.

6. Data analysis
We assess the performance of the proposed model by two real datasets, the carbon fibres
data set provided by [25], and the cancer patient data set given in [31]. We compare the
performance of the MOB distribution with some other competing models such as Bilal (B)
distribution, General Bilal (GB) distribution introduced by [1], Exponentiated Exponential
(EE) distribution defined by [20], Gamma (G) distribution, Weibull (W) distribution and
Exponentiated Lindley (EL) distribution discussed by [30].

We estimate the unknown parameters of the MOB distribution by the ML method
and assess the model performance by information criteria and goodness-of-fit statistics.
The smaller values of the Akaike information criterion (AIC) and Bayesian information
criterion (BIC) and the larger value of log likelihood (logL) indicate the model adequacy.
The goodness of fit of the model is evaluated by employing the Kolmogorov-Smirnov (KS)
statistic and associated p value, Anderson-Darling (AD), Cramer-von Mises (CM) and
average scaled absolute error (ASAE) ([17]) statistics. The smaller the goodness-of-fit
measures, the better the fit.
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Table 1. Simulation results of the MOB distribution.

λ = 1.5, θ = 0.4

n
MLE LSE WLSE

Estimate Bias RMSE Estimate Bias RMSE Estimate Bias RMSE

λ

50 1.5671 0.0671 0.5481 1.9059 0.4059 0.8622 1.8398 0.3398 0.8043
100 1.5237 0.0237 0.3993 1.7683 0.2683 0.6995 1.6924 0.1924 0.5970
150 1.4945 0.0055 0.3187 1.6984 0.1984 0.5928 1.6119 0.1119 0.4639
200 1.5149 0.0149 0.2824 1.6666 0.1666 0.5372 1.5882 0.0882 0.3969
250 1.5211 0.0211 0.2771 1.5000 0.0000 0.0000 1.5688 0.0688 0.3615

θ

50 0.4822 0.0822 0.2564 0.4081 0.0081 0.2773 0.4206 0.0206 0.2698
100 0.4643 0.0643 0.2160 0.4113 0.0113 0.2447 0.4202 0.0202 0.2300
150 0.4554 0.0554 0.1833 0.4122 0.0122 0.2238 0.4241 0.0241 0.2048
200 0.4347 0.0347 0.1583 0.4140 0.0140 0.2091 0.4220 0.0220 0.1868
250 0.4257 0.0257 0.1493 0.4000 0.0000 0.0000 0.4211 0.0211 0.1753

λ = 1.8, θ = 0.64

n
MLE LSE WLSE

Estimate Bias RMSE Estimate Bias RMSE Estimate Bias RMSE

λ

50 1.8765 0.0765 0.4248 2.0401 0.2401 0.5394 2.0000 0.2000 0.5039
100 1.8445 0.0445 0.3274 1.9680 0.1680 0.4504 1.9236 0.1236 0.3927
150 1.8209 0.0209 0.2860 1.9338 0.1338 0.3974 1.8880 0.0880 0.3419
200 1.8310 0.0310 0.2585 1.9166 0.1166 0.3719 1.8751 0.0751 0.3092
250 1.8166 0.0166 0.2402 1.8000 0.0000 0.0000 1.8622 0.0622 0.2925

θ

50 0.6686 0.0286 0.2378 0.5961 0.0439 0.2629 0.6123 0.0277 0.2541
100 0.6594 0.0194 0.2104 0.6085 0.0315 0.2396 0.6238 0.0162 0.2260
150 0.6646 0.0246 0.1937 0.6152 0.0248 0.2222 0.6326 0.0074 0.2075
200 0.6558 0.0158 0.1776 0.6245 0.0155 0.2117 0.6382 0.0018 0.1942
250 0.6593 0.0193 0.1698 0.6400 0.0000 0.0000 0.6398 0.0002 0.1867

λ = 0.76, θ = 1.41

n
MLE LSE WLSE

Estimate Bias RMSE Estimate Bias RMSE Estimate Bias RMSE

λ

50 0.7682 0.0082 0.1052 0.7917 0.0317 0.1090 0.7863 0.0263 0.1059
100 0.7638 0.0038 0.0807 0.7803 0.0203 0.0907 0.7748 0.0148 0.0843
150 0.7613 0.0013 0.0745 0.7775 0.0175 0.0827 0.7719 0.0119 0.0774
200 0.7652 0.0052 0.0680 0.7768 0.0168 0.0784 0.7719 0.0119 0.0725
250 0.7623 0.0023 0.0645 0.7600 0.0000 0.0000 0.7693 0.0093 0.0685

θ

50 1.4576 0.0476 0.3487 1.3766 0.0334 0.3579 1.3970 0.0130 0.3543
100 1.4369 0.0269 0.3238 1.3831 0.0269 0.3398 1.4008 0.0092 0.3321
150 1.4393 0.0293 0.3108 1.3847 0.0253 0.3213 1.4030 0.0070 0.3151
200 1.4296 0.0196 0.2876 1.3962 0.0138 0.3124 1.4109 0.0009 0.3024
250 1.4322 0.0222 0.2778 1.4100 0.0000 0.0000 1.4103 0.0003 0.2907

λ = 2.2, θ = 2.7

n MLE LSE WLSE
Estimate Bias RMSE Estimate Bias RMSE Estimate Bias RMSE

λ

50 2.2106 0.0106 0.2241 2.2462 0.0462 0.2196 2.2377 0.0377 0.2159
100 2.2005 0.0005 0.1656 2.2232 0.0232 0.1737 2.2161 0.0161 0.1655
150 2.1969 0.0031 0.1516 2.2199 0.0199 0.1564 2.2112 0.0112 0.1489
200 2.2063 0.0063 0.1374 2.2213 0.0213 0.1437 2.2149 0.0149 0.1372
250 2.2012 0.0012 0.1295 2.2000 0.0000 0.0000 2.2113 0.0113 0.1296

θ

50 2.7582 0.0582 0.4575 2.6634 0.0366 0.4607 2.6901 0.0099 0.4584
100 2.7294 0.0294 0.4366 2.6692 0.0308 0.4474 2.6893 0.0107 0.4443
150 2.7304 0.0304 0.4286 2.6689 0.0311 0.4299 2.6930 0.0070 0.4240
200 2.7211 0.0211 0.4041 2.6844 0.0156 0.4187 2.7022 0.0022 0.4136
250 2.7222 0.0222 0.3906 2.7000 0.0000 0.0000 2.6963 0.0037 0.4029

6.1. The cancer patient data set
We consider a sample of 128 bladder cancer patients and their emission times (in months)
given in [31]. Figure 3 displays the total time on test (TTT) plot and box plot for the



Marshall-Olkin Bilal distribution 213

0.0 0.4 0.8

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

i/n

T
(i/

n)

0
20

40
60

80

x

Figure 3. The TTT plot (left) and box plot (right) for the cancer patient data
set.

data, and we can see that the observations are right-skewed and have an upside-down
bathtub HRF, thus indicating the applicability of the proposed model.

Table 2. ML estimates with SE (in parentheses) and goodness-of-fit-measures for
the cancer patient data set.

Distribution Estimates logL AIC BIC KS p value AD CM ASAE
MOB 30.669 0.094 -411.9 827.8153 833.5194 0.0426 0.97 0.3960 0.0297 0.0081(λ, θ) (12.6342) (0.0742)

B 11.088 -424.7 851.3509 854.2029 0.1303 0.03 4.5073 0.6902 0.0261(λ) (0.7081)
MOE 0.110 1.056 -414.3 832.6523 838.3564 0.0812 0.37 1.1130 0.1700 0.0147(λ, θ) (0.0199) (0.3215)
GB 1.015 11.182 -424.6 853.2829 858.9869 0.1278 0.03 4.3549 0.6575 0.0271(θ, λ) (0.0555) (0.7988)
EE 1.218 8.254 -413.1 830.1552 835.8592 0.0725 0.51 0.7137 0.1278 0.0000(α, β) (0.1488) (0.9245)
EL 0.733 0.165 -416.3 836.5719 842.2759 0.0927 0.22 1.3228 0.2465 0.0188(α, β) (0.0911) (0.0166)
W 1.048 9.560 -414.1 832.1738 837.8778 0.0700 0.56 0.9578 0.1537 0.0152(θ, λ) (0.0676) (0.8529)
G 1.173 0.125 -413.4 830.7356 836.4396 0.0732 0.50 0.7706 0.1353 0.0153(α, β) (0.1308) (0.0173)

Table 2 lists the ML estimates with SE (in parentheses) for different models. We can
see that the MOB distribution has the maximum logL and the least AIC and BIC values.
Moreover, the KS statistic is minimum with a large p value, and the AD, CM and ASAE
statistics have the smallest values. We can conclude that the MOB distribution performs
well among the considered competitive models.

The fitted PDF and CDF plots, Q-Q and P-P plots are given in Figure 4. We can see
that the MOB distribution provides a better fit in the estimated density and CDF plots.
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Figure 4. The fitted PDF (a) and CDF plots (b), Q-Q plot (c) and P-P plot (d)
for the cancer patient data set.

The points in the Q-Q and P-P plots are almost in a straight line. Hence, we can infer
that the MOB distribution yields the best fit for the cancer patient data.

6.2. The carbon fibres data set
Here, we consider the uncensored 60 real observations on the breaking stress of carbon
fibres given in [25]. Figure 5 displays the TTT plot and box plot for the data, and we can
see that the observations are symmetrical and have an increasing HRF, thus indicating
the applicability of the proposed model.

Table 3 lists the ML estimates with standard errors (SE) for different models. We can
see that the MOB distribution has the maximum logL and the least AIC and BIC values.
Moreover, the KS statistic is minimum with a large p value, and the AD, CM and ASAE
statistics have the smallest values. Here too, the MOB distribution performs well among
the considered competitive models.

The fitted PDF and CDF plots, Q-Q and P-P plots are given in Figure 6. We can see
that the MOB distribution provides a better fit in the estimated density and CDF plots.
The points in the Q-Q and P-P plots are almost in a straight line. Hence, we can infer
that the MOB distribution yields the best fit for the carbon fibres data.

7. Minification process
Now, we look forward to the application of the MOB distribution in the field of time series
analysis. For this, we are going to create a minification process with marginals as the
MOB distribution.
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Figure 5. The TTT plot (left) and box plot (right) for the carbon fibres data
set.

Table 3. ML estimates with SE (in parentheses) and goodness-of-fit-measures for
the carbon fibres data set.

Distribution Estimates logL AIC BIC KS p value AD CM ASAE
MOB 0.992 92.939 -85.1 174.1501 178.5294 0.061 0.97 0.3235 0.0513 0.0203(λ, θ) (0.1060) (59.2891)

B 3.347 -112.7 227.4284 229.6180 0.249 0.00 8.0711 1.5402 0.1833(λ) (0.2957)
MOE 1.9899 0.2153 -85.2 174.3457 178.725 0.061 0.97 0.327 0.0523 0.0203(λ, θ) (250.1131) (161.3181)
GB 1.167 3.680 -110.7 225.3547 229.7340 0.280 0.00 9.2839 1.8605 0.1565(θ, λ) (0.0868) (0.3541)
EE 9.198 0.993 -95.4 194.7447 199.1240 0.155 0.08 2.0939 0.3731(α, β) (2.1489) (0.0987)
EL 7.040 1.246 -93.8 191.5939 195.9733 0.147 0.12 1.8381 0.3286 0.0564(α, β) (1.6725) (0.1090)
W 3.441 3.062 -86.1 176.1352 180.5145 0.082 0.76 0.4859 0.0836 0.0229(λ, θ) (0.3309) (0.1149)
G 7.487 2.713 -91.2 186.3351 190.7144 0.133 0.20 1.3106 0.2461 0.0381(α, β) (1.2754) (0.4780)

Theorem 7.1
Consider a first-order autoregressive minification process with the structure

Xn =
{
ϵn with probability θ

min(Xn−1, ϵn) with probability 1 − θ
, (7.1)

where 0 < θ < 1 and {ϵn, n ≥ 1} are iid random variables and independent of Xn. Then
{Xn, n ≥ 0} is a stationary Markovian first-order autoregressive model with marginals as
the MOB distribution if and only if {ϵn} follows the Bilal distribution.
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Figure 6. The fitted PDF (a) and CDF plots (b), Q-Q plot (c) and P-P plot (d)
for the carbon fibres data set.

Proof.
From (7.1), the SF is given by

FXn(x) = θ F ϵn(x) + (1 − θ) FXn−1(x) F ϵn(x). (7.2)

Under the stationary equilibrium, it becomes

FX(x) = θF ϵ(x) + (1 − θ)FX(x)F ϵ(x) =⇒ FX(x) = θF ϵ(x)[
1 − (1 − θ)F ϵ(x)

] . (7.3)

If we take F ϵ(x) in (7.3) as

F ϵ(x) =
(
3e− 2x

λ − 2e− 3x
λ

)
,

then FX(x) is the survival function of the MOB distribution.
Conversely, let

FXn(x) =
θ
(
3e− 2x

λ − 2e− 3x
λ

)
(
1 − θ

[
3e− 2x

λ − 2e− 3x
λ

]) . (7.4)

Then, using (7.3), we can conclude that F ϵn(x) is distributed as Bilal, and it is easy to
show that the process is stationary.

Remark 7.1
Here we assume that X0 follows the MOB distribution. However, X0 can have any distri-
bution, and the result can be proved by mathematical induction.
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Figure 7. Sample path behaviour of the MOB minification process with param-
eter values λ = 2.5, θ = 0.73 (a) and λ = 5.6, θ = 0.46 (b).

Theorem 7.2
Consider a kth order autoregressive minification process with structure

Xn =



ϵn with probability θ0

min(Xn−1, ϵn) with probability θ1

min(Xn−2, ϵn) with probability θ2

: :
. .

min(Xn−k, ϵn) with probability θk

, (7.5)

where 0 < θi < 1, θ1 + θ1 + ... + θk = 1 − θ0. Then {Xn} is a Markovian kth order
autoregressive model with marginals as the MOB distribution if and if only if {ϵn} is
distributed as Bilal.
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Table 4. The sample first-order auto-correlation with SD (in parentheses) for
different values of parameters.

λ
θ 0.1 0.25 0.35 0.5 0.6

0.13 0.63818 0.42909 0.33234 0.22040 0.16079
(0.0444) (0.0513) (0.0536) (0.0555) (0.0559)

0.82 0.63834 0.42898 0.33226 0.22058 0.16117
(0.0463) (0.0506) (0.0524) (0.0537) (0.0538)

1.2 0.63769 0.42893 0.33233 0.22028 0.16050
(0.0453) (0.0523) (0.0550) (0.0568) (0.0569)

2.8 0.63833 0.42915 0.33231 0.21998 0.16012
(0.0439) (0.0528) (0.0553) (0.0565) (0.0563)

5.5 0.63900 0.42886 0.33224 0.22046 0.16108
(0.0427) (0.0502) (0.0534) (0.0558) (0.0561)

10.7 0.63865 0.43061 0.33436 0.22253 0.16299
(0.0443) (0.0521) (0.0545) (0.0557) (0.0556)

13.9 0.63731 0.42677 0.32997 0.21816 0.15888
(0.0425) (0.0495) (0.0524) (0.0543) (0.0545)

13.9 0.63691 0.42810 0.33165 0.21982 0.16038
(0.0434) (0.0503) (0.0525) (0.0541) (0.0543)

18.4 0.63724 0.42798 0.33178 0.22019 0.16079
(0.0451) (0.0520) (0.0543) (0.0556) (0.0555)

22.8 0.63846 0.42911 0.33195 0.21939 0.15966
(0.0444) (0.0534) (0.0564) (0.0580) (0.0576)

Proof.
The proof follows the same as in Theorem 7.1.

Figure 7 displays the time series plots of the simulated sample path of the MOB mini-
fication process with parameter values (a) λ = 2.5, θ = 0.73 and (b) λ = 5.6, θ = 0.46.
Using the Monte Carlo method, we obtain the first-order auto-correlation of the MOB
minification process. For different sets of parameter values of λ and θ, we simulate 365
observations from the process. For each sequence of observations, we obtain the first-order
sample auto-correlation. The process is repeated 1000 times. Table 4 gives the averages of
the first-order sample auto-correlation and associated standard deviation (SD) in brackets.
We can see that as θ increases, the first-order autocorrelation decreases, irrespective of λ.

8. Acceptance sampling plans
The ASP plays a major role in statistical quality control. Several units that must be
examined under the ASP are subject to intangible cumulative deterioration throughout the
course of their existence. Therefore, it is necessary that the lifetime model accounts for this
degradation and provides a flexible fit. The ASP based on the two-parameter quasi-Lindley
distribution were discussed by [9]. Further, Tripathi et al. [32] introduced an improved
attribute chain sampling plan for Darna distribution. The ASP for the truncated life
test based on Tsallis q-exponential distribution and the power Lomax distribution were
derived by [5] and [7], respectively. In addition to that, the ASP under beta binomial
exponential II distribution was discussed by [22], and using hypergeometric theory for
finite population under Q-Weibull distribution was developed by [6]. Some notable recent
contributions to the area include [3], [8] and [11]. The proposed model is derived from
the geometric compounding of random variables originating from an exponential family.
The real life applicability and simple structure make the proposed model suitable for the
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sampling plans. So, we develop and discuss an ASP for a truncated life test on the MOB
distribution and illustrate the results using lifetime data.

The major concerns of an ASP are the number of units to be reviewed (n) and the
maximum possible number of failures (c) in the reviewed items for the acceptance of a lot.
The process is terminated after a prefixed time, and the number of defects is recorded. If
the number of defects out of n reviewed items does not exceed c at time t, then we accept
the lot with the given probability of at least p∗. The lot is rejected when the number of
defects exceeds c before time t. Thus it can be considered as a decision-making problem,
whether to accept or reject a lot under consideration. So, the primary concern of our
study is to determine the minimum number of units required for the decision rule for a
given ASP.

Assume that the lifetime distribution follows the MOB distribution, with known θ and
unknown λ, so that the average lifetime depends only on λ. Let λ0 be the required
minimum average lifetime. Then, from (2.5), we have

G(t;λ, θ) ≤ G(t;λ0, θ) ⇐⇒ λ ≥ λ0.

The ASP is characterized by the following:
• the number of units n on the test,
• the acceptance number c,
• the maximum test duration t,
• the ratio t

λ0
, where λ0 is the specified average lifetime.

Table 5. Minimum values of n for specified p∗, t
λ0
, λ = 2.7 and θ = 1.75 for

binomial approximation.

p∗ c
t
λ

0.68 0.84 0.99 1.1 1.3 1.42 1.62 1.81 2 2.5

0.75

0 4 3 2 2 2 1 1 1 1 1
1 7 5 4 4 3 3 3 2 2 2
2 11 8 6 6 5 4 4 4 3 3
3 14 10 8 8 6 6 5 5 5 4
4 17 13 10 9 8 7 7 6 6 5
5 20 15 12 11 9 9 8 7 7 6
6 23 18 14 13 11 10 9 8 8 7
7 26 20 16 15 12 11 10 10 9 8
8 29 22 18 16 14 13 12 11 10 10
9 33 25 20 18 15 14 13 12 11 11
10 36 27 22 20 17 16 14 13 13 12

0.95

0 7 5 4 4 3 3 2 2 2 1
1 12 9 7 6 5 4 4 3 3 3
2 16 12 9 8 7 6 5 5 4 4
3 20 15 12 10 8 8 7 6 6 5
4 24 17 14 12 10 9 8 7 7 6
5 27 20 16 14 12 11 9 9 8 7
6 31 23 18 16 13 12 11 10 9 8
7 34 25 21 18 15 14 12 11 10 9
8 38 28 23 20 17 15 14 12 12 10
9 41 31 25 22 18 17 15 14 13 11
10 45 33 27 24 20 18 16 15 14 13
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For the well-being of consumers, the ASP must reject the lot with true average life λ
less than λ0. So, the probability of accepting a bad lot, the consumer’s risk, should not
exceed the value 1-p∗, where p∗ is the lower bound for the probability that the ASP rejects
a lot. The triplet (n, c, t

λ0
) characterize the ASP for a given p∗. Since the ASP can be

considered as a Bernoulli trial, we can use binomial distribution for sufficiently large lots
and obtain the acceptance probability. The main objective is to determine the minimum
sample size n for known values of c and t

λ0
such that

L(p0) =
c∑
i=0

(
n

i

)
pi0 (1 − p0)n−i ≤ 1 − p∗, (8.1)

where p0 = G(t;λ0, θ) is the failure probability before time t. Table 5 displays the mini-
mum values of n for p∗ = 0.75, 0.95, t

λ0
= 0.68, 0.84, 0.99, 1.1, 1.3, 1.42, 1.62, 1.81, 2, 2.5,

c=0,1,2,...,10, λ = 2.7 and θ = 1.75.
For large values of n and small values of p0, we can use Poisson approximation instead of
Binomial with parameter α = np0 as

L1(p0) =
c∑
i=0

αi

i!
e−α ≤ 1 − p∗. (8.2)

The minimum values of n satisfying (8.2) are obtained the same as above and are given
in Table 6.

Table 6. Minimum values of n for specified p∗, t
λ0
, λ = 2.7 and θ = 1.75 for

Poisson approximation.

p∗ c
t
λ

0.68 0.84 0.99 1.1 1.3 1.42 1.62 1.81 2 2.5

0.75

0 4 3 3 3 2 2 2 2 2 2
1 8 6 5 5 4 4 4 4 3 3
2 12 9 8 7 6 6 5 5 5 5
3 15 12 10 9 8 7 7 6 6 6
4 18 14 12 11 9 9 8 8 7 7
5 21 17 14 12 11 10 9 9 9 8
6 25 19 16 14 12 12 11 10 10 9
7 28 21 18 16 14 13 12 11 11 11
8 31 24 20 18 16 15 13 13 12 12
9 34 26 22 20 17 16 15 14 14 13
10 37 29 24 21 19 17 16 15 15 14

0.95

0 9 7 6 5 5 4 4 4 4 4
1 14 11 9 8 7 7 6 6 6 5
2 18 14 12 11 9 9 8 8 7 7
3 22 17 14 13 11 11 10 9 9 9
4 26 20 17 15 13 12 11 11 10 10
5 30 23 19 17 15 14 13 12 12 11
6 34 26 22 20 17 16 15 14 13 13
7 38 29 24 22 19 18 16 15 15 14
8 41 32 26 24 21 19 18 17 16 15
9 45 34 29 26 22 21 19 18 18 17
10 48 37 31 28 24 23 21 20 19 18
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Table 7. The operating characteristic values for the ASP (n, c, t
λ ).

p∗ n c t
λ0

λ
λ0

2 4 6 8 10 12

0.75

14 3 0.68 0.74542 0.98478 0.99801 0.99957 0.99988 0.99996
10 3 0.84 0.74857 0.98435 0.99790 0.99954 0.99986 0.99995
8 3 0.99 0.73698 0.98273 0.99761 0.99947 0.99984 0.99994
8 3 1.1 0.64370 0.97216 0.99593 0.99907 0.99972 0.99990
6 3 1.3 0.67988 0.97563 0.99639 0.99917 0.99974 0.99990
6 3 1.42 0.59539 0.96419 0.99444 0.99868 0.99959 0.99985
5 3 1.62 0.60509 0.96468 0.99442 0.99866 0.99958 0.99984
5 3 1.81 0.48967 0.94401 0.99055 0.99766 0.99925 0.99971
5 3 2 0.38138 0.91693 0.98502 0.99616 0.99874 0.99951
4 3 2.5 0.35415 0.90359 0.98171 0.99515 0.99837 0.99935

0.95

20 3 0.68 0.53026 0.95983 0.99427 0.99873 0.99962 0.99986
15 3 0.84 0.49275 0.95184 0.99280 0.99836 0.99951 0.99982
12 3 0.99 0.46806 0.94571 0.99158 0.99804 0.99940 0.99978
10 3 1.1 0.48437 0.94783 0.99183 0.99808 0.99941 0.99978
8 3 1.3 0.46759 0.94297 0.99077 0.99779 0.99931 0.99974
8 3 1.42 0.36902 0.91851 0.98597 0.99654 0.99890 0.99958
7 3 1.62 0.32925 0.90464 0.98288 0.99567 0.99860 0.99946
6 3 1.81 0.33348 0.90422 0.98256 0.99553 0.99854 0.99944
6 3 2 0.23268 0.86165 0.97275 0.99275 0.99758 0.99905
5 3 2.5 0.16749 0.81494 0.96017 0.98887 0.99616 0.99845

0.4

0.6

0.8

1.0

2.5 5.0 7.5 10.0 12.5
λ

λ0

L(
p)

n = 8, 
t

λ0
 = 0.99

n = 6, 
t

λ0
 = 1.30

n = 5, 
t

λ0
 = 1.62

n = 5, 
t

λ0
 = 1.81

n = 4, 
t

λ0
 = 2.50

Figure 8. The OC curve of the ASP (n, c, t
λ ) with p∗ = 0.75.
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The operating characteristic (OC) function of the ASP (n, c, tλ) gives the probability of
accepting the lot and is given by

L(p) =
c∑
i=0

(
n

i

)
pi (1 − p)n−i, (8.3)

where p = G(t;λ, θ) is considered as a function of λ. The OC function is built on the
grounds of choices of n and c for given values of p∗ and t

λ0
. By considering the fact that

t

λ
= t

λ0

/
λ

λ0
,

the OC values for the ASP (n, c, tλ) are obtained and given in Table 7. The OC curve for
p∗ = 0.75 is displayed in Figure 8.
For the sake of producers, the lot with λ greater than λ0 should be accepted. The prob-
ability of rejecting a lot when λ is greater than λ0, the producer’s risk, can be found by
determining p = G(t;λ, θ) and with the help of binomial distribution. For a specified
producer’s risk of 0.05, it would be interesting to know what value of λ

λ0
will ensure that

a producer’s risk is less than or equal to 0.05, if the proposed sampling plan is adopted.
The smallest value of λ

λ0
must hold:

c∑
i=0

(
n

i

)
pi0 (1 − p0)n−i ≥ 0.95. (8.4)

For the given ASP (n, c, tλ) and prefixed p∗, Table 8 displays the minimum values of λ
λ0

Table 8. Minimum values of λ
λ0

for the ASP (n, c, t
λ ), λ = 2.7 and θ = 1.75 with

producers risk of 0.05.

p∗ c
t
λ0

0.68 0.84 0.99 1.1 1.3 1.42 1.62 1.81 2 2.5

0.75

0 6.97 7.38 6.99 7.76 9.17 6.84 7.8 8.71 9.63 12.03
1 3.23 3.24 3.3 3.67 3.55 3.88 4.42 3.57 3.95 4.93
2 2.6 2.61 2.52 2.8 2.89 2.63 3 3.35 2.79 3.49
3 2.21 2.18 2.18 2.43 2.28 2.49 2.4 2.68 2.96 2.87
4 1.99 2.05 1.99 2.04 2.18 2.12 2.41 2.31 2.55 2.52
5 1.85 1.88 1.87 1.94 1.93 2.1 2.14 2.07 2.28 2.29
6 1.76 1.83 1.78 1.87 1.91 1.91 1.95 1.9 2.1 2.13
7 1.68 1.73 1.72 1.81 1.76 1.76 1.81 2.02 1.96 2.01
8 1.63 1.65 1.67 1.68 1.76 1.79 1.88 1.9 1.85 2.31
9 1.62 1.64 1.62 1.65 1.66 1.69 1.78 1.8 1.76 2.2
10 1.58 1.58 1.59 1.63 1.67 1.71 1.69 1.72 1.9 2.11

0.95

0 9.38 9.7 10.15 11.28 11.43 12.48 11.43 12.77 14.11 12.03
1 4.44 4.64 4.71 4.76 5.01 4.73 5.4 4.94 5.46 6.82
2 3.27 3.39 3.33 3.42 3.69 3.62 3.6 4.02 3.71 4.63
3 2.77 2.85 2.91 2.85 2.87 3.13 3.22 3.17 3.5 3.7
4 2.49 2.46 2.54 2.54 2.62 2.63 2.72 2.7 2.98 3.19
5 2.25 2.29 2.31 2.33 2.45 2.5 2.4 2.68 2.64 2.85
6 2.14 2.17 2.15 2.19 2.2 2.25 2.38 2.43 2.41 2.62
7 2.01 2.02 2.11 2.09 2.14 2.2 2.19 2.24 2.23 2.44
8 1.95 1.96 2.01 2.01 2.09 2.05 2.19 2.1 2.32 2.31
9 1.87 1.91 1.93 1.95 1.95 2.03 2.06 2.15 2.19 2.2
10 1.83 1.83 1.87 1.89 1.93 1.92 1.95 2.04 2.09 2.37
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required to satisfy (8.4).

8.1. Illustration
Let the lifetime follow the MOB distribution with parameters λ = 2.7 and θ = 1.75.
Suppose our interest is an ASP with an unknown average lifetime of 1000 hours and a
termination time of 1100 hours. The consumer’s risk is prefixed at 1 − p∗= 0.25. From
Table 5, the required number of n is 8 for an acceptance number c= 3 and t

λ0
= 1.1.

Hence, the ASP under consideration is (n = 8, c = 3, t
λ0

= 1.1). During the test time,
we have a confidence level of 0.75 that the average lifetime is at least 1000 hours if, at
most, three failures out of 8 are observed. For the Poisson approximation, the ASP under
consideration becomes (n = 9, c = 3, t

λ0
= 1.1). From the Table 7, we can see that, if

λ
λ0

= 2, the producer’s risk is 0.36. The producer’s risk is negligible if it is 10 or 12.
From Table 8, the minimum value of λ

λ0
giving a producer’s risk of 0.05 is 2.85. So if

the consumer’s risk is fixed at a specified level, then the quality can be reached by a
predetermined ratio.

8.2. Application
Here, we consider the data regarding the time (in months) to the first failure of 20 small
electric carts used for internal transportation and delivery in a large manufacturing facility
and whose ASP was discussed by [10]. The data is as follows: 0.9, 1.5, 2.3, 3.2, 3.9, 5,6.2,
7.5, 8.3, 10.4, 11.1, 12.6, 15, 16.3, 19.3, 22.6, 24.8, 31.5, 38.1, 53.

Table 9 gives the goodness-of-fit statistics and information criterion of the MOB and
Akash distribution, respectively. We can see that the MOB distribution has the maximum

Table 9. Goodness-of-fit-measures for the electric carts data.

Model logL AIC BIC KS p value AD CM
MOB -75.7932 153.5865 154.5822 0.1225 0.8901 0.9359 0.0854
Akash -79.1776 160.3552 161.3510 0.2071 0.3130 2.4717 0.2528

logL and the least AIC and BIC values. Moreover, the KS statistic is minimum with a
large p value, and the AD and CM statistics have the smallest values. Hence, the MOB
distribution yields the best fit for the data than the Akash distribution.

We compare the performance of the ASP under the proposed model with respect to the
Akash distribution given in [10] (δ = 0.2017). The ASP is adopted under the assumption
that the lifetime follows the MOB distribution (θ = 1.098544). Let the prefixed average
lifetime be 14.65 months and the testing time be 9.202 months. Thus, n = 20 and t

λ0
=

0.678. Using (8.1), the value of c is obtained as 6 for p∗ = 0.75. Thus, we have the ASP
(n = 20, c = 6 t

λ0
= 0.678). So we reject the lot. The ASP under Akash distribution is

(n = 20, c = 4 t
λ0

= 0.678). Since the MOB distribution provided a better fit to the data
than the Akash distribution, we accept the lot if and only if the number of failures is at
most 5. Here, there are nine values which are less than t. So we reject the lot.

9. Conclusion
We proposed a two-parameter extension of the Bilal distribution by applying the Marshall-
Olkin extended model, known as the Marshall-Olkin Bilal distribution, with the Bilal
distribution as a sub-model. The addition of a shape parameter improved the flexibility of
the proposed model. The MOB density is unimodal, and its different statistical structures
are discussed. Various statistical properties can be determined using numerical approaches
even though they lack closed-form expressions. The HRF of the MOB distribution can
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be increasing and upside-down bathtub shaped. The model parameter estimation was
carried out using ML, LS and WLS methods, and the performance was assessed by a
simulation study. The proposed MOB distribution provided the best fit for the real data
sets when compared to the Bilal, general Bilal and Marshall-Olkin exponential and other
distributions. The application in time series modelling was evaluated by the autoregressive
minification process with the MOB distribution as marginals. The statistical properties
and modelling of the autoregressive minification process are considered for further study.
The ASP with the lifetime of units following the MOB distribution was established. The
operating characteristic values and minimum sample size corresponding to the maximum
possible defects and the minimum ratios of lifetime associated with the producer’s risk
were discussed. The real data modelling shows that ASP with respect to the proposed
model is better than the existing model in the literature. Using the works done in [8],
[14], [16] and [23], we look forward to extending the sampling plans of the proposed model
with respect to neutrosophic statistics.

Acknowledgment. The authors would like to thank the reviewers and the associate
editor for their constructive comments on the paper.
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Appendices
A. Cumulative hazard function

The cumulative hazard function is given by

Λ(x;λ, θ) =
∫ x

0

6 (1 − e
−t
λ )

λ
(
3 − 2e− t

λ

) [
1 − θ

(
3e− 2t

λ − 2e− 3t
λ

)]dt
Using the negative binomial power series

(1 − z)−r =
∞∑
i=0

(
r + i− 1

i

)
zi, |z| < 1, (A.1)

in the denominator, we have

Λ(x;λ, θ) =
∞∑
i=0

∫ x

0

6 (1 − e
−t
λ )

λ
(
3 − 2e− t

λ

) θi (3e− 2t
λ − 2e− 3t

λ

)i

=
∞∑
i=0

∫ x

0

6 3i θi

λ
e− 2ti

λ (1 − e
−t
λ )

(
1 − 2

3
e− t

λ

)i−1

Using the Binomial expansion

(1 − z)r =
r∑
i=0

(−1)i
(
r

i

)
zi, (A.2)

we have,

Λ(x;λ, θ) =
∞∑
i=0

i−1∑
j=0

∫ x

0

(
i− 1
j

)
6 (−1)j 3i−j 2j θi

λ
e− t

λ
(2i+j)(1 − e

−t
λ )

=
∞∑
i=0

i−1∑
j=0

ci,j β
∗(x, 2i+ j + 1, 2),

where β∗(x, 2i+ j + 1, 2) is the incomplete beta function in terms of e
−t
λ and

ci,j = 6 (−1)j 3i−j 2j θi

λ

B. Proposition 3.1
B.1.
Let us distinguish the case 0 < θ < 1 and the case θ > 1.
Case 1 0< θ < 1
Using the negative binomial power series given in A.1, the denominator of the MOB density
given in (2.4) can be expanded as follows,

g(x;λ, θ) =
∞∑
i=0

(
i+ 1
i

)
θ
i 6
λ
θ
(
e− 2x

λ − e− 3x
λ

) (
3e− 2x

λ − 2e− 3x
λ

)i
. (B.1)

Case 2 θ > 1
Let τ = θ−1 =⇒ 0 < τ < 1.
Using A.1 on (2.4), we have

g(x;λ, θ) = 6
λ
τ
(
e− 2x

λ − e− 3x
λ

) ∞∑
l=0

(
l + 1
l

)
(1 − τ)l (1 − [3e− 2x

λ − 2e− 3x
λ ])l. (B.2)
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Using A.2, we have

g(x;λ, θ) =
∞∑
i=0

6 τ(−1)i

λ

[ ∞∑
l=i

(1 − τ)l
(
l

i

)(
l + 1
l

)](
e− 2x

λ − e− 3x
λ

) [
3e− 2x

λ − 2e− 3x
λ

]i
=

∞∑
i=0

wi
(
e− 2x

λ − e− 3x
λ

) [
3e− 2x

λ − 2e− 3x
λ

]i
. (B.3)

The Lehman type-II-G density for an arbitrary parent distribution G4(x), having PDF
g4(x) is given by

gα(x) = α g4(x) [1 −G4(x)]α−1.

Thus,

g(x;λ, θ) =
∞∑
i=0

hi(i+ 1)f(x;λ)[F (x;λ)]i,

where

hi = wi
6

λ(i+ 1)
and wi =


(i+1
i

)
θ
i 6
λ θ if 0 < θ < 1

6
λθ (−1)i

[∑∞
l=i(1 − 1

θ )l
(l
i

) (l+1
l

)]
if θ > 1

.

B.2.
Now, by a suitable decomposition and the generalized binomial theorem, we have(

e− 2x
λ − e− 3x

λ

) [
3e− 2x

λ − 2e− 3x
λ

]i
= 3i e−2(1+i) x

λ

(
1 − e− x

λ

)(
1 − 2

3
e− x

λ

)i
= 3i e−2(1+i) x

λ

(
1 − e− x

λ

) i∑
j=0

(
i

j

)
(−1)j 2j

3j
e−j x

λ

Therefore, from B.3, we have

g(x;λ, θ) =
∞∑
i=0

wi3i e−2(1+i) x
λ

(
1 − e− 3x

λ

) i∑
j=0

(−1)j 2j

3j
e−j x

λ

=
∞∑
i=0

i∑
j=0

zi,j e
− x

λ
(2+2i+j)

(
1 − e− x

λ

)
, (B.4)

where

zi,j = wi

(
i

j

)
3i−j (−1)j 2j . (B.5)

Thus,

MX(t) =
∞∑
i=0

i∑
j=0

zi,j

∫ ∞

0
e− x

λ
(2+2i+j−λt)

(
1 − e− x

λ

)
dx.

Let v = e
−x
λ =⇒ ∂v

∂x = − e
−x
λ

λ , then we have

MX(t) =
∞∑
i=0

i∑
j=0

zi,j λ

∫ 1

0
v(1+2i+j−λt) (1 − v) dv

=
∞∑
i=0

i∑
j=0

zi,j λ β(2 + 2i+ j − λt, 2), t < 2
λ
.
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B.3.
Using B.4, the rth raw moment of the MOB distribution is given by

µ
′
r =

∞∑
i=0

i∑
j=0

zi,j

∫ ∞

0
xr e− x

λ
(2+2i+j) dx−

∫ ∞

0
xr e− x

λ
(3+2i+j) dx

=
∞∑
i=0

i∑
j=0

zi,j r! λr
[ 1

(2 + 2i+ j)r
− 1

(3 + 2i+ j)r
]
.

B.4.
The rth incomplete moment of the MOB distribution is given by

mr(y) =
∞∑
i=0

i∑
j=0

zi,j

∫ y

0
xr e− x

λ
(2+2i+j) dx−

∫ y

0
xr e− x

λ
(3+2i+j) dx

=
∞∑
i=0

i∑
j=0

zi,j

[
γ

(
r + 1, (2 + 2i+ j)

λ
, y

)
− γ

(
r + 1, (3 + 2i+ j)

λ
, y

)]
,

where γ(r + 1, a, y) =
∫ y

0 xr e−ax dx.

C. Mean residual life function
Following the procedure same as in appendix B, we have

G(x;λ, θ) =
∞∑
i=0

wmi

(
3e

−2x
λ − 2e

−3x
λ

)1+i
=

∞∑
i=0

1+i∑
j=0

zmi,j e
− x

λ
(2+2i+j) (1 − e− x

λ ).(C.1)

Now

m(t) =
∫∞
t G(x;λ, θ) dx
G(t;λ, θ)

=
([

3 − 2e− t
λ

]−1
− θ e− 2t

λ

) ∞∑
i=0

1+i∑
j=0

zmi,j
λe

−t(2i+j)
λ

(2 + 2i+ j)
,

where

zmi,j = wmi

(
1 + i

j

)
31+i−j (−1)j 2j

and wmi =


θ
i

if 0 < θ < 1

1
θ2 (−1)i

[∑∞
l=i(1 − 1

θ )l
(l
i

) ]
if θ > 1

.

D. Proposition 3.3
Now, proceeding same as in appendix B and using the generalized binomial theorem, for
any r ∈ R,

(1 − z)−r =
∞∑
i=0

(
−r
i

)
(−1)i zi, |z| < 1,

with
(−r
i

)
= (−r)(−r−1)...(−r−i+1)

i! , we have

gv(x, ;λ, θ) =
∞∑
i=0

wvi e
− 2v+2i

λ

(
1 − e− x

λ

)v (
3 − 2e− x

λ

)i
=

∞∑
i=0

i∑
j=0

zvi,je
− 2v+2i+j

λ

(
1 − e− x

λ

)v
.
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Let d = e
−x
λ =⇒ ∂d

∂x = − e
−x
λ

λ , then we have

IR(x) = (1 − v)−1 log

∫ 1

0

∞∑
i=0

i∑
j=0

zvi,j λ d
(2v+2i+j−1) (1 − d)(v)


= (1 − v)−1 log

 ∞∑
i=0

i∑
j=0

zvi,j λ β(2v + 2i+ j, v + 1)

 ,
where zvi,j is obtained by replacing wi by wvi in B.5 and it is given by

wvi =


(−2v
i

)
(−1)i θi 6v

λv θv if 0 < θ < 1

6v

λvθv (−1)i
[∑∞

l=i(1
θ − 1)l

(l
i

) (−2v
l

)]
if θ > 1

. (D.1)

E. Stress-strength parameter
From (2.4) and (3.1) and proceeding similar as in appendix B

g(x;λ, θ)G(x;λ, θ) =
∞∑
i=0

1+i∑
j=0

zssi,j e
− x

λ
(4+2i+j)

(
1 − e− x

λ

)
.

Then,

R = P (Y < X) = 1 −
∫ ∞

0
g(x;λ, θ) G(x;λ, θ)dx

= 1 −
∞∑
i=0

1+i∑
j=0

zssi,j

∫ ∞

0
e− x

λ
(4+2i+j)

(
1 − e− x

λ

)
dx.

Let v = e
−x
λ =⇒ ∂v

∂x = − e
−x
λ

λ , then

R = 1 −
∞∑
i=0

1+i∑
j=0

zssi,j λ

∫ 1

0
v(3+2i+j) (1 − v) dx.

= 1 −
∞∑
i=0

1+i∑
j=0

zssi,j λβ(4 + 2i+ j, 2),

where

zssi,j = wssi

(
1 + i

j

)
31+i−j (−1)j 2jand

wssi =


(i+2
i

)
θ
i 6
λ θ

2 if 0 < θ < 1

6
λθ (−1)i

[∑∞
l=i(1 − 1

θ )l
(l
i

) (l+2
l

)]
if θ > 1

.


