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Control Algorithm, Crack propagation is a significant mechanism for quasi-brittle materials under
Fracture, applied loading. It can occur very suddenly and causes numerical instabilities and
Finite Element Method, deficiencies in some problems. This behavior manifest itself as non-convergence
Quasi-brittle, solutions i.e. the inability to obtain the entire load-displacement curve or jumps in
Snap-back. the load displacement curve. In this study, a control technique is implemented to

obtain the whole load-displacement curve when crack propagation causes severe
numerical instabilities such as snap-back behavior. The performance of the control
technique was demonstrated by simulating uniaxial tension test of pre-notched
plate, three-point bending test of a notched beam and mixed-mode test of a notched
plate. This study shows that the control algorithm is able to produce a stable
solution path for these kinds of problems. This method can be easily implemented
in available commercial finite element codes without the need for any user defined
subroutines.

CENTIKLI ELEMANLARIN KIRILMASININ BiR KONTROL ALGORITMASI
KULLANILARAK STABILIiZASYONU

Anahtar Kelimeler 0z

Kontrol Algoritmasi, Catlak yayilimi, ylik etkisine maruz yari-gevrek malzemelerin davranisini belirleyen
Kirilma, 6nemli bir mekanizmadir. Catlak yayilimi ¢ok aniden ortaya ¢ikabilmekte ve bu da
Sonlu Elemanlar Ydntemi, bazi problemlerin analizinde sayisal dengesizliklere ve kusurlara neden
Yari-gevrek, olabilmektedir. Bu davranis kendini sayisal sonucun iraksamasi yani biitiin ytk
Snap-back (geri tepme). yerdegistirme egrisinin elde edilememesi olarak veya yilik-yerdegistirme egrisinde

sicrama seklinde gosterir. Bu calismada catlak yayillmasiin biitiin yiik-yer
degistirme egrisinin elde edilmesinde sayisal sorunlar yarattigi, snap-back (geri
tepme) davranisinda oldugu gibi, durumlar icin bir kontrol algoritmasi uygulanmasi
verilmistir. Kontrol tekniginin performansi tek ¢entikli levhaya uygulanan dogrudan
cekme deneyi, ¢entikli kirislerde ii¢ noktali egilme deneyi ve iki ¢entikli levhalarin
karisik kirilma modu testi simiile edilerek gosterilmistir. Bu g¢alisma, kontrol
algoritmasinin bu tiir problemler icin kararli bir ¢6ziim yolu iretebildigini
gostermistir. Bu yontem herhangi bir kullanici taniml alt rutine ihtiya¢ duymadan
mevcut ticari sonlu eleman kodlarinda kolayca uygulanabilir.
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Highlights

e Implementation of a control technique is introduced to increase loading in a more controlled manner.

e Snap-back behavior is obtained successfully by using proposed control algorithm.

e Simulation of uniaxial tension test of pre-notched plate, three-point bending test of a notched beam and
mixed-mode test of a notched plate are conducted to demonstrate the performance of the proposed
algorithm.

Graphical Abstract
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Figure. Load versus crack tip vertical displacement.

Purpose and Scope

The aim of this research is to implement a control technique, which is able to produce a stable solution path, when
crack propagation causes severe numerical instabilities such as snap-back behavior.

Design/methodology/approach

A strategy for solving snap-back behavior is developed by introducing auxiliary nodes in order to control load
increment. Spring elements are created, which connect the nodes of specimen to auxiliary nodes. Relation between
the force of the control node and the displacement of node at the crack is described by arranging stiffness matrix.

Findings
The performance of the control algorithm shows that the relevant control algorithm prevents numerical
instabilities and provides a framework which enables increasing load in a more controlled manner.

Research limitations/implications

For future research, it is suggested that same approach can be extended to work under explicit dynamic framework
and modified for non-monotonic loading pattern.

Practical implications

It can be easily applied by user who need to stabilize computational models of brittle and quasi-brittle materials
fracture. It can reduce computational cost of their research.

Social Implications
There won’ t be an impact on society of this research.

Originality

Proposed control algorithm is used to simulate different type of crack propagation problems and results are
compared with experimental ones. Researchers who are interested in finite element analysis to simulate failure
analysis and crack propagation which shows some numerical stabilities can use this model.

" Corresponding author: lale@itu.edu.tr, +90-212-285-3752
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1. Introduction

Quasi-brittle materials have a heterogeneous characteristic which is very significant in many engineering
applications. Even under comparatively low load ratios, microcracks initiate and with the increase of load they
propagate and grow and some of them may coalesce into macrocracks. This often causes material degradation and
affects the performance of the structure. According to the experimental studies, strain localization is observed in
the post-peak phase of loading process, which manifests itself as a softening part in load-displacement curve. For
quasi-brittle materials, this softening part can be very sharp which arises severe difficulties when simulating it
numerically. Therefore, failure study of quasi-brittle materials is of great importance in computational mechanics.
Stiffness degradation and strength reduction take place during the softening regime of quasi-brittle materials. It is
well known that post-peak behavior cannot be obtained by using load-controlled scheme. On the other hand, if
softening part is not too sharp, softening part of the load-displacement curves can be obtained by employing
displacement-controlled scheme successfully. In contrast, in some structural problems a sudden decrease in both
load and displacement can be observed, as depicted in Figure 1, which is so called snap-back instability.
Conventional displacement-controlled scheme cannot find a stable solution for this kind of problem. After the
stress attains to its maximum value, the simulations cannot converge and consequently are interrupted.

L

Figure 1. Schematic representation of snap-back behavior

A variety of sophisticated solution techniques have been proposed over decades in order to get an equilibrium
state for these kind of problems. A pioneering procedure of solution named as “arc-length” type approach that uses
the length of the equilibrium path as a control parameter has been developed independently by Riks (Riks, 1972;
Riks, 1979). Wempner (Wempner, 1971), and Ramm (Ramm, 1981). Crisfield (Crisfield, 1981; Crisfield, 1983)
modified this mentioned method considering an improved suitability for finite element analysis. Also, Borst (De
Borst, 1988; De Borst, 1989) applied a numerical approach, which is an incremental-iterative combination in
loading procedure with an indirect displacement control for soil. Moreover, Tvergaard (Tvergaard, 1976)
developed a method by defining additional equations in order to provide controlled increase of deformation based
on Rayleigh-Ritz method. Instead of pressure, loading is prescribed by increasing the enclosed volume of the
domain and it is applied to simulate the stability of internally pressurized elasto-plastic spherical shells. On the
other hand, Seguardo and Llorca (Segurado & LLorca, 2004) suggested a different strategy for solving snap-back
behavior by introducing an auxiliary node in order to control load increment. This method is based on searching
a new variable which monotonically increases during whole loading stage. In their work, they prescribe the sum
of crack opening inside a volume while keeping the remote load as a variable of that opening. Paneda et al. followed
same approach and employed this approach to get stable result for cohesive crack model (CCM) (Martinez-Pafieda
& Fleck, 2018; Martinez-Pafieda, et al.,, 2017) . In the studies of Carpinteri et al. (Carpinteri, 1989; Carpinteri, 1989;
Carpinteri & Colombo, 1989), a cohesive crack model (CCM) is applied in order to investigate the instability
problems in softening materials due to size effect, which causes a significant change in the load-displacement curve
where crack propagation arises with a sudden drop in the load carrying capacity. Also, Biolzi et al. (Biolzi, et al,,
1989; Biolzi, 1990) discovered that large-sized beams exhibited an unstable post-peak behavior and solved this
problem with a brittleness number approach. Bocca et al. (Bocca, et al.,, 1990) used a stress-based assumption to
mode-I and mixed mode problems.

Additionally, some numerical simulations require adaptive load-increment (reduction of load increment) beyond
post-peak in order to get softening branch encountered while simulating three-point bending test. Especially for
the analysis of bigger specimen without notch or specimen with a significantly smaller notch in comparison to the
its size (Ayhan, et al., 2021; Lale & Gianluca, 2021). For these kind of difficulties, corresponding control algorithm
can be used in order to have more control on crack-mouth opening versus load relation. On the other hand, some
simulations might require imposing of constant ratio of displacement in two directions such as mix-mode failure
test. For this type of task, control algorithm can offer a great advantage.

The motivation of this paper is to implement a control algorithm by following Seguardo and Llorca (Segurado &
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LLorca, 2004) approach, which overcomes the mechanical instabilities as well as enables to increase control over
loading pattern. Some numerical examples, such as uniaxial tension test, three-point bending and mixed-mode
fracture are simulated in order to investigate the performance of this control algorithm. The numerical results
obtained from this study show that relevant control technique makes the loading more controlled and can
successfully simulate the snap-back behavior. The presented method will contribute to the development of
numerical simulation of the fracture behavior of quasi-brittle materials. It can also improve our understanding of
the fracture mechanics of cementitious composites by producing the entire load-displacement correctly, including
post-peak.

2. Implementation of Control Algorithm

Here, to describe the algorithm, a simple structural element with a predefined crack having a length of “a” is shown
in Figure 2. A plate subjected to a vertical displacement u, from both sides is considered so that mode-I crack can

be observed. An auxiliary node (Nc) is defined as a control node. Also, a node at the crack mouth (N1) and another
node (NL) on the outer boundary where the loading is applied are described. It is important to mention here that

displacement of the crack tip is related to the vertical force of the control node by uyl = nyC . Similarly, the
displacement of the auxiliary node is taken equal to the vertical force imposed on outer boundary, uyc = nyL .

Schematic representation of the method to establish these relationships as seen in Figure 2. Two auxiliary spring
elements are created, which connect the control node (Nc) with the nodes (N1) and (Nv), respectively.

(uy 2 =(f,)"

|

v,

Figure 2. Control algorithm scheme

Relation between the vertical force of the control node and the vertical displacement of node at the crack mouth
can be described by using a stiffness matrix as follows;

fl 0 o]fuM
S b o
fy 1 0fuy

On the other hand, second relation between the vertical load of the node on the outer boundary and vertical
displacement of the control node is settled with the stiffness matrix below;

M 0 17[uM
yNC = ijc (2)
fy 00 u,

It is worth indicating here that a vertical force should be imposed on the control node in order to provide
monotonically increasing vertical crack tip displacement. Moreover, the remote displacement on the outer
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boundary becomes an outcome of the solution. It should be worth mentioning here that diagonal terms of the
stiffness matrices are taken as very small number such as in numerical analysis.

The control algorithm explained in the previous section is implemented via input file of finite element analysis
programming software Abaqus (Abaqus, 2011) by providing stiffness matrices, which are defined in Equations (1)
and (2). Itis important to clarify that the equations explained above are defined for this elementary case. For other
types of problems, the stiffness matrices should be redefined due to the crack opening directions.

3. Material Model

Compressive and tensile behavior of concrete are described by using concrete damaged plasticity model (CDPM)
of Abaqus, which can represent the behavior of quasi-brittle material. It is based on coupling isotropic damage and
plasticity. Typical tensile and compressive stress-strain behavior of the model under uniaxial loading are given in
Figure 3.
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Figure 3. Uniaxial strss-strain behevior of concrete in tension (a) and compression (b), taken from (Abaqus, 2011)

CDPM uses two damage variables; one for tension, dt , and one for compression, dC , in order to denote the elastic

stiffness decrease, under tension and compression separately. Damage variables can be between zero (intact state)
and one (state for fully damage).

d..=d(&%);0<d,, <1 (3)

where indices t and c indicate tensile and compressive features. £ ,&” are the effective plastic strains for tensile
and compressive strength, which control the evolution of yield surface.

With these two damage variables, stress can be related to strain under uniaxial tension and compression as follow;
o.=0-d )E (s . —&" 4
t,c t,c 0 t,c t,c ( )

where E; is the intact elastic stiffness of the material.

Under multiaxial loading, stress tensor (¢) can be desribed as,
c=(1-d)o
= _pe | (5)
c=D;: (s —gf )

Here, 6 denotes effective stress and Dzl is the elasticity matrix for intact material, d stands for damage in
multiaxial loadings d =(1-d,)(1-d,).

CDPM utilizes following yield surface (F) in effective stress space (Lubliner, et al., 1989; Lee & Fenves, 1998),
which enables different evolution of yield surface under tension and compression;
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F= (:I/lfa)(q73aﬁ+,b’(gp' )<5max>fy<75max >)750 (s2)=0 (6)

Here, Omax demonstrates principal stress in effective stress space. pand { denote first and second stress
invariants as follows;

Ez—%trace(ﬁ), q=,/=(5:9) (7N

Additionally, other parameters required for the definition of yield surface are given below

o= (Gbo/dco)_l

2(O_bo/oco)_l;OSaSO.S
p=Z o)1) @
5 (&™)
_3(1_ Kc)
Y=ok 1

Here, ¥, 0,,,5 denote the dilatation angle, the uniaxial tensile strength and eccentricity parameter, respectively.

4. Numerical Simulation

In this section, numerical examples are conducted to demonstrate the performance of control algorithm. These
examples include Mode-I and mixed mode fracture (Mode-I+Mode-II) propagation. Moreover, an example to
overcome the snap-back instability is also presented.

4.1. Uniaxial Tension Specimen

Uniaxial tension specimen (UTS) is modeled to simulate mode-I fracture. All geometrical details and boundary
conditions are depicted in Figure 4. Specimen is assumed under plane strain condition by preventing the out-of-

plane deformation. A concentrated force is imposed in the vertical direction on the control node nyC =0.05 .In

the simulation, CDPM is used to define material property of the specimen. Young’s modulus and Poisson’s ratio are
chosen as E=30GPa and v=0.2, respectively. Tensile behavior is defined by using tensile strength and the fracture
energy, fi=3MPa and G=20]Joule/m?2.

fu

Wwwoot

crack”’

F§4—9Omm—+
o

—

Figure 3. Geometrical details of uniaxial tension specimen (UTS)
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The specimen is analyzed for 3 cases; first case is without control algorithm, second one is with control algorithm
and last one is with the solution using Riks method (arc-length method) developed previously in the works of Riks
(Riks, 1972; Riks, 1979). Obtained load-displacement curves are shown in the Figure 5. It can be seen from the
figure that the model without control algorithm can only reaches the peak point and cannot go on beyond peak
and analysis is interrupted, which means it cannot capture snap-back behavior. However, it is worth noting that
model with control algorithm can capture snap-back behavior like Riks method.

2501
2001
Z, 150
o
I
3
100 -
50 —e— without algorithm
—a&— control algorithm
—»— Riks methaod

0 . . .
G.00 0.01 0.02 0.03 0.04
Displacement [mm]

Figure 5. Load versus crack tip vertical displacement

4.2. Three-point Bending Beam Test

Three-point bending beam with a predefined notch which is also an example of Mode-I failure is simulated to
investigate load versus crack mouth opening displacement (CMOD) behavior. Geometrical and loading details of
the specimen, which are taken from the experimental study performed by Hoover et al. (Hoover, et al., 2013), are
presented in Figure 6a. The thickness of the beam is t=40mm. Control algorithm implemented in the input file is
defined using the tip nodes (N1 and N2) at the two sides of the notch, as shown in Figure 6b. Control node (Nc) is

connected to these two tip nodes with two linear elements and to a remote boundary node (N.) with one linear
element.

i(uy)NL

| a=0.025D
AN AN -

e 1=2.176D —— >

[ _ |
< L =2.4D >| N L N 5

(a) (b)

Figure 6.a) Geometrical details of three-point bending specimen b) control algorithm scheme.
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Here, horizontal displacements of the crack tip nodes are utilized to calculate CMOD, as (u;ql —ufz ) . The relation

between the crack mouth nodes and control node is given by a stiffness matrix as follows;

Ny
X
Nl
y
N
U’ (10)
N
uyz

Ne
Uy

Ne
L E Uy

u
u

= O O O O
O O O o o

f c

X
Ne
L fy

P O O O O O
O O O O o o
O O O O O o
O O O O O o
O O O O O o

|
[N

In this example, an element with two degree-of-freedom (UX, uy) is required in order to describe CMOD as a

function of vertical force applied on the control node. Also, the relation between control node and remote node
(Loading one) is similar as described in Equation (2).

In the simulation, material properties of the quasi-brittle specimen are selected as follows; modulus of elasticity
is E=30GPa, Poisson’s ratio is v=0.2. Tension softening part of the material is characterized with a tensile stress of
f=3MPa and a fracture energy of G=20]Joule/m?2. The vertical concentrated force is subjected to control node NC
to obtain the load versus the opening displacement of crack. Figure 7 shows a comparison between the models
with (Imp-cont) and without control (Imp-wo-cont) algorithm as well as experimental results for the beam D=215,
500 mm. From the Figure 7a, it can be seen that for D=215 mm, analysis without control algorithm stops at the
peak and cannot find a proper solution path whereas the simulation with control algorithm is able to capture post
peak successfully. Also, one can easily notice that while explicit simulation gives an oscillatory post-peak behavior,
model with control algorithm produces a smooth post-peak response which is compatible with experimental
results. Figure 7b demonstrates results for the beam having depth D=500 mm, simulation under the framework of
implicit with control algorithm and explicit analysis give similar results as they produce in D=215 mm. On the
other hand, simulation without control algorithm can find a solution path beyond the peak but behavior exhibit a
very large jump which doesn’t produce correct post-peak behavior as can be seen from the figure. Overall, control
algorithm can capture peak values correctly and produce a smooth post-peak behavior.

15 —— Explicit —— Explicit
—s=— |mp-wo-cont 30 —=— Imp-wo-cont
—e— |mp-cont ll‘ —e— Imp-cont

10
=
=,
o

59

0 | | |

0.0 0.1 0.2 0.3

cme (a) 1

Figure 4.Load versus crack mouth opening displacement (CMOD) curve of three-point bending test; a) D=215 mm, b) D=500
mm.
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4.3. Mixed Mode Specimen

Double Edge Notched (DEN) specimen is considered to simulate the mixed mode fracture, which is a combination
of Mode-I and Mode-II (Nooru-Mohamed, 1993), where the specimen is subjected to lateral and axial
displacements simultaneously. Points where vertical and lateral displacement obtained in the experimental study
are shown in Figure 8. Axial deformation &n of the specimen is calculated by considering average vertical
displacement between N1Nz and N3N4. On the other hand, lateral deformation 8s is taken as the average horizontal
displacement between S1 and Sz. In the experimental research, these specimens are subjected to different loading
paths like 8x/6s =1 or 8n/8s=2 and so on.

It is worth mentioning here that in the simulation it is not easy to keep loading ratio constant during fracturing
process without control algorithm.

The dimensions and boundary conditions of DEN specimen are shown in Figure 8. The mechanical properties of
the material are selected as follows; Elasticity modulus is E=30000MPa, Poisson’s ratio is v=0.2. Tensile and
compressive stresses are fi=2.4MPa and f.=33.6MPa, respectively. It is also noted that while out-of-plane thickness
is 50 mm in experimental research, it is taken as 5 mm in order to decrease the computational cost.

]Uaxiaf
Ulateral 20m S7.5mm
E N N2 Sl
E [ .
._ﬁ_.|
65mm h IT5mm
E
E
» —_— Nl ﬂ
SE - N3 4
97.5mm
50mm
£

——— 200mm ——
Figure 5.Geometrical details of double edge notched (DEN) specimen (Nooru-Mohamed, 1993)

In order to keep constant ratio between axial and lateral deformation during the loading of the specimen,
additional stiffness matrices are defined in the input file of Abaqus. Two control algorithms are implemented
separately, for the axial (6n) and lateral (6s) deformation. The first auxiliary element is defined between a control

node and the nodes (N1, N2, N3, N4) as well as another element between the same control node and a remote node

for uaxial. Here, vertical displacement of specimen is described in terms of u;\'

N . . .
", uy2,u, Uy, which is assigned as

NN Ns N,
Uy ‘|‘Uy Uy Uy

2

and control node can be described using following stiffness matrix;

the force of auxiliary control node, nyc - [ J . The relation between the corresponding nodes

— - N,

0 00 0 0 Offy
0 00 0 0 0fur
0t={0 0 0 0 Ofur (11)
0 00 0 0 Ofut
fie] 05 05 05 -0.5 0]|u)e

The second auxiliary element is prescribed for the lateral deformation. Lateral displacement of the specimen is
defined in terms of the lateral displacement at the nodes (S1, Sz) and another element between the same control

node and a remote node on the boundary. Lateral displacement of the specimen is defined by the horizontal

displacements at S1 and Sz (U*,u ), and it is taken equal as the horizontal force on the control node (Nc¢) as
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Sz
flo = (ufl - u; ] . The relation between the crack tip nodes and control node can be given by a following stiffness

matrix;
0 0 0 O uxsl
0+=0 0 O ufz
fxNC 1 050 uxNC

(12)

Same relation between the control node and the node on the upper left part of the specimen are defined as shown
in previous examples.

Obtained result for the testloaded equal vertical and lateral displacement is given in Figure 9. During the all phases
of the simulation, the ratio between axial and lateral deformation 6n/8s =1 is obtained, and given in Figure 9a. Load
versus axial and lateral displacements are plotted together with the experimental results, as shown in Figure 9b-
C.

0.15
20 —e— control algorithm 30 .
= EXP.
15 -
0.10
—_ — 20 N
z Z10 £ .
£ = = :
o © 1] "
IS Q -]
~ 5 ]
0.05 10
0
2 —e— control algorithm
- ratio EXP.
0.00 0
0.00 0.05 0.10 0.15 0.00 0.05 0.10 0.15 G.00 0.05 0.10 0.15
Sy [mm] Displacement [mm] Displacement [mm]
(a) (b) (©)

Figure 6.a) Calculated axial deformation versus lateral deformation én/ds =1 b) Axial load-displacement curves c) Lateral
load-displacement curves.

Similarly, Figure 10 shows the curves of the simulation having loading ratio as én/8s =2. The ratio between axial
and lateral deformation dn/8s=2 is given in Figure 10a. Load versus axial and lateral displacements as well as
experimental results are given in Figure 10b-c.

0.075 25
b —— control algorithm
= EXP. 15
20
0.050 _
- z 15 Z
e ] %10
E o
& E 10 g
s} —
0.025
5
5
—+— control algorithm
- ratio = EXP.
0.000 0 0
TG00 0.05 0.10 015 0.0 0.1 0.2 0.3 G.00 0.05 0.10 0.15 0.20
&y [mm] Displacement [mm] Displacement [mm]
(a) (b) (C)

Figure 10.a) Calculated axial deformation versus lateral deformation én/ds =2 b) Axial load-displacement curves c) Lateral
load-displacement curves.

Models with implemented control algorithm can capture load versus displacement curves for both directions quite
well and it enables to control loading ratio successfully.

5. Results
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A control algorithm is implemented to increase loading in a more controlled manner and its performance is
investigated using three different simulations; one of them uniaxial tension test which exhibit snap-back behavior,
the other one is three-point bending beam test and last one is mixed mode test which is to be subjected to constant
ratio of displacement in two directions. The performance of the control algorithm in the finite element model is
demonstrated that the whole load-displacement curve can be obtained while simulating brittle and quasi-brittle
failures. Based on this study, the following conclusions can be drawn

i) The employed control algorithm is able to handle snap-back behavior successfully.

ii) Control algorithm provides a framework which enables increasing load in a more controlled manner
such as increasing load on remote nodes result a monotonic increase in crack opening.

iii) When a more sophisticated loading scheme is required, it can be employed as shown in mixed mode
simulations.

For the future study, same approach will be extended to work under explicit dynamic framework and it will be
modified for non-monotonic loading pattern.
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