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Crack propagation is a significant mechanism for quasi-brittle materials under 
applied loading. It can occur very suddenly and causes numerical instabilities and 
deficiencies in some problems. This behavior manifest itself as non-convergence 
solutions i.e. the inability to obtain the entire load-displacement curve or jumps in 
the load displacement curve. In this study, a control technique is implemented to 
obtain the whole load–displacement curve when crack propagation causes severe 
numerical instabilities such as snap-back behavior. The performance of the control 
technique was demonstrated by simulating uniaxial tension test of pre-notched 
plate, three-point bending test of a notched beam and mixed-mode test of a notched 
plate. This study shows that the control algorithm is able to produce a stable 
solution path for these kinds of problems. This method can be easily implemented 
in available commercial finite element codes without the need for any user defined 
subroutines. 

 

  

ÇENTİKLİ ELEMANLARIN KIRILMASININ BİR KONTROL ALGORİTMASI 
KULLANILARAK STABİLİZASYONU 

 

Anahtar Kelimeler Öz 
Kontrol Algoritması, 
Kırılma, 
Sonlu Elemanlar Yöntemi, 
Yarı-gevrek, 
Snap-back (geri tepme). 

Çatlak yayılımı, yük etkisine maruz yarı-gevrek malzemelerin davranışını belirleyen 
önemli bir mekanizmadır. Çatlak yayılımı çok aniden ortaya çıkabilmekte ve bu da 
bazı problemlerin analizinde sayısal dengesizliklere ve kusurlara neden 
olabilmektedir. Bu davranış kendini sayısal sonucun ıraksaması yani bütün yük 
yerdeğiştirme eğrisinin elde edilememesi olarak veya yük-yerdeğiştirme eğrisinde 
sıçrama şeklinde gösterir. Bu çalışmada çatlak yayılmasının bütün yük-yer 
değiştirme eğrisinin elde edilmesinde sayısal sorunlar yarattığı, snap-back (geri 
tepme) davranışında olduğu gibi, durumlar için bir kontrol algoritması uygulanması 
verilmiştir. Kontrol tekniğinin performansı tek çentikli levhaya uygulanan doğrudan 
çekme deneyi, çentikli kirişlerde üç noktalı eğilme deneyi ve iki çentikli levhaların 
karışık kırılma modu testi simüle edilerek gösterilmiştir. Bu çalışma, kontrol 
algoritmasının bu tür problemler için kararlı bir çözüm yolu üretebildiğini 
göstermiştir. Bu yöntem herhangi bir kullanıcı tanımlı alt rutine ihtiyaç duymadan 
mevcut ticari sonlu eleman kodlarında kolayca uygulanabilir. 
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Highlights 

• Implementation of a control technique is introduced to increase loading in a more controlled manner. 
• Snap-back behavior is obtained successfully by using proposed control algorithm. 
• Simulation of uniaxial tension test of pre-notched plate, three-point bending test of a notched beam and 

mixed-mode test of a notched plate are conducted to demonstrate the performance of the proposed 
algorithm. 

Graphical Abstract  

 

 
Figure. Load versus crack tip vertical displacement. 

Purpose and Scope  

The aim of this research is to implement a control technique, which is able to produce a stable solution path, when 
crack propagation causes severe numerical instabilities such as snap-back behavior.  
 
Design/methodology/approach  

A strategy for solving snap-back behavior is developed by introducing auxiliary nodes in order to control load 
increment. Spring elements are created, which connect the nodes of specimen to auxiliary nodes. Relation between 
the force of the control node and the displacement of node at the crack is described by arranging stiffness matrix.  
 
Findings  
The performance of the control algorithm shows that the relevant control algorithm prevents numerical 
instabilities and provides a framework which enables increasing load in a more controlled manner. 
 
Research limitations/implications   

For future research, it is suggested that same approach can be extended to work under explicit dynamic framework 
and modified for non-monotonic loading pattern. 
 
Practical implications   

It can be easily applied by user who need to stabilize computational models of brittle and quasi-brittle materials 
fracture. It can reduce computational cost of their research. 
 
Social Implications   

There won’ t be an impact on society of this research. 
  
Originality 
Proposed control algorithm is used to simulate different type of crack propagation problems and results are 
compared with experimental ones. Researchers who are interested in finite element analysis to simulate failure 
analysis and crack propagation which shows some numerical stabilities can use this model. 
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1. Introduction  
 
Quasi-brittle materials have a heterogeneous characteristic which is very significant in many engineering 
applications. Even under comparatively low load ratios, microcracks initiate and with the increase of load they 
propagate and grow and some of them may coalesce into macrocracks. This often causes material degradation and 
affects the performance of the structure. According to the experimental studies, strain localization is observed in 
the post-peak phase of loading process, which manifests itself as a softening part in load-displacement curve. For 
quasi-brittle materials, this softening part can be very sharp which arises severe difficulties when simulating it 
numerically. Therefore, failure study of quasi-brittle materials is of great importance in computational mechanics. 
Stiffness degradation and strength reduction take place during the softening regime of quasi-brittle materials. It is 
well known that post-peak behavior cannot be obtained by using load-controlled scheme. On the other hand, if 
softening part is not too sharp, softening part of the load-displacement curves can be obtained by employing 
displacement-controlled scheme successfully. In contrast, in some structural problems a sudden decrease in both 
load and displacement can be observed, as depicted in Figure 1, which is so called snap-back instability. 
Conventional displacement-controlled scheme cannot find a stable solution for this kind of problem. After the 
stress attains to its maximum value, the simulations cannot converge and consequently are interrupted.   

 
Figure 1. Schematic representation of snap-back behavior 

 
A variety of sophisticated solution techniques have been proposed over decades in order to get an equilibrium 
state for these kind of problems. A pioneering procedure of solution named as “arc-length” type approach that uses 
the length of the equilibrium path as a control parameter has been developed independently by Riks (Riks, 1972; 
Riks, 1979). Wempner (Wempner, 1971), and Ramm (Ramm, 1981). Crisfield (Crisfield, 1981; Crisfield, 1983) 
modified this mentioned method considering an improved suitability for finite element analysis. Also, Borst (De 
Borst, 1988; De Borst, 1989) applied a numerical approach, which is an incremental-iterative combination in 
loading procedure with an indirect displacement control for soil. Moreover, Tvergaard (Tvergaard, 1976) 
developed a method by defining additional equations in order to provide controlled increase of deformation based 
on Rayleigh-Ritz method. Instead of pressure, loading is prescribed by increasing the enclosed volume of the 
domain and it is applied to simulate the stability of internally pressurized elasto-plastic spherical shells. On the 
other hand, Seguardo and Llorca (Segurado & LLorca, 2004) suggested a different strategy for solving snap-back 
behavior by introducing an auxiliary node in order to control load increment. This method is based on searching 
a new variable which monotonically increases during whole loading stage. In their work, they prescribe the sum 
of crack opening inside a volume while keeping the remote load as a variable of that opening. Paneda et al. followed 
same approach and employed this approach to get stable result for cohesive crack model (CCM) (Martínez-Pañeda 
& Fleck, 2018; Martínez-Pañeda, et al., 2017) .  In the studies of Carpinteri et al. (Carpinteri, 1989; Carpinteri, 1989; 
Carpinteri & Colombo, 1989),  a cohesive crack model (CCM) is applied in order to investigate the instability 
problems in softening materials due to size effect, which causes a significant change in the load-displacement curve 
where crack propagation arises with a sudden drop in the load carrying capacity. Also, Biolzi et al. (Biolzi, et al., 
1989; Biolzi, 1990) discovered that large-sized beams exhibited an unstable post-peak behavior and solved this 
problem with a brittleness number approach.  Bocca et al. (Bocca, et al., 1990) used a stress-based assumption to 
mode-I and mixed mode problems. 
 
Additionally, some numerical simulations require adaptive load-increment (reduction of load increment) beyond 
post-peak in order to get softening branch encountered while simulating three-point bending test.  Especially for 
the analysis of bigger specimen without notch or specimen with a significantly smaller notch in comparison to the 
its size (Ayhan, et al., 2021; Lale & Gianluca, 2021). For these kind of difficulties, corresponding control algorithm 
can be used in order to have more control on crack-mouth opening versus load relation. On the other hand, some 
simulations might require imposing of constant ratio of displacement in two directions such as mix-mode failure 
test. For this type of task, control algorithm can offer a great advantage.   
 
The motivation of this paper is to implement a control algorithm by following Seguardo and Llorca (Segurado & 
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LLorca, 2004) approach, which overcomes the mechanical instabilities as well as enables to increase control over 
loading pattern. Some numerical examples, such as uniaxial tension test, three-point bending and mixed-mode 
fracture are simulated in order to investigate the performance of this control algorithm. The numerical results 
obtained from this study show that relevant control technique makes the loading more controlled and can 
successfully simulate the snap-back behavior. The presented method will contribute to the development of 
numerical simulation of the fracture behavior of quasi-brittle materials. It can also improve our understanding of 
the fracture mechanics of cementitious composites by producing the entire load-displacement correctly, including 
post-peak.  
 
2. Implementation of Control Algorithm 
 
Here, to describe the algorithm, a simple structural element with a predefined crack having a length of “a” is shown 

in Figure 2. A plate subjected to a vertical displacement 
y

u  from both sides is considered so that mode-I crack can 

be observed. An auxiliary node (NC) is defined as a control node. Also, a node at the crack mouth (N1) and another 
node (NL) on the outer boundary where the loading is applied are described. It is important to mention here that 

displacement of the crack tip is related to the vertical force of the control node by 1 CNN

y yu f= . Similarly, the 

displacement of the auxiliary node is taken equal to the vertical force imposed on outer boundary, C LN N

y yu f= .  

Schematic representation of the method to establish these relationships as seen in Figure 2. Two auxiliary spring 
elements are created, which connect the control node (NC) with the nodes (N1) and (NL), respectively. 

 
Figure 2. Control algorithm scheme 

 
Relation between the vertical force of the control node and the vertical displacement of node at the crack mouth 
can be described by using a stiffness matrix as follows;   

   

                  
1 10 0

1 0C C

N N

y y

N N

y y

f u

f u

      
=    

       

 
 
(1) 

  
On the other hand, second relation between the vertical load of the node on the outer boundary and vertical 
displacement of the control node is settled with the stiffness matrix below; 
 

                  
0 1

0 0

L L

C C

N N

y y

N N

y y

f u

f u

      
=    

       

                                                                  
 
(2) 

  
It is worth indicating here that a vertical force should be imposed on the control node in order to provide 
monotonically increasing vertical crack tip displacement. Moreover, the remote displacement on the outer 
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boundary becomes an outcome of the solution. It should be worth mentioning here that diagonal terms of the 
stiffness matrices are taken as very small number such as   in numerical analysis. 
 
The control algorithm explained in the previous section is implemented via input file of finite element analysis 
programming software Abaqus (Abaqus, 2011) by providing stiffness matrices, which are defined in Equations (1)  
and (2). It is important to clarify that the equations explained above are defined for this elementary case. For other 
types of problems, the stiffness matrices should be redefined due to the crack opening directions.  
 
3. Material Model 
 
Compressive and tensile behavior of concrete are described by using concrete damaged plasticity model (CDPM) 
of Abaqus, which can represent the behavior of quasi-brittle material. It is based on coupling isotropic damage and 
plasticity. Typical tensile and compressive stress-strain behavior of the model under uniaxial loading are given in 
Figure 3. 
 

 
Figure 3. Uniaxial strss-strain behevior of concrete in tension (a) and compression (b), taken from (Abaqus, 2011) 

 

CDPM uses two damage variables; one for tension, td  , and one for compression,  cd , in order to denote the elastic 

stiffness decrease, under tension and compression separately. Damage variables can be between zero (intact state) 
and one (state for fully damage). 
 

             ( ), , , ,; 0 1pl

t c t c t c t cd d d=                               (3) 

 

where indices t and c indicate tensile and compressive features. ,pl pl

t c     are the effective plastic strains for tensile 

and compressive strength, which control the evolution of yield surface. 
 
With these two damage variables, stress can be related to strain under uniaxial tension and compression as follow; 
 

           ( ), , , ,(1 ) pl

t c t c o t c t cd E  = − −                             (4) 

 

where 0E  is the intact elastic stiffness of the material. 

Under multiaxial loading, stress tensor (σ) can be  desribed as, 
 

                    ( )

( )

1

:el pl

o

d= −

= −

σ σ

σ D ε ε

                            
(5) 

 

Here, σ  denotes effective stress and 
el

oD   is the elasticity matrix for intact material, d stands for damage in 

multiaxial loadings ( )( )1 1t cd d d= − − . 

 
CDPM utilizes following yield surface ( )F  in effective stress space (Lubliner, et al., 1989; Lee & Fenves, 1998), 

which enables different evolution of yield surface under tension and compression; 
 

  
 

  
   

 
 
  

  
  

  
 

     
 
   
 

  
 
 
  

  
 

     
 
   
 

  
  

  
  

  
 
 
    

 
 
    

 

  
 

      



LALE and AYHAN 10.21923/jesd.1143299 

 

636 
 

( ) ( )( ) ( )max max1 1 3 0pl pl

c cF q p        = − − + − − − =                             (6)                       

Here, max demonstrates principal stress in effective stress space. p and q denote first and second stress 

invariants as follows;  
                             

( ) ( )
1 3

, :
3 2

p trace q s s= − =                             (7) 

  
Additionally, other parameters required for the definition of yield surface are given below 
 

     

( )

( )

( )
( )

( ) ( )

( )

0 0

0 0

1
;0 0.5

2 1

1 1

3 1

2 1

b c

b c

pl

c c

pl

t t

c

c

K

K

 
 

 

 
  

 



−
=  

−

= − − +

−
=

−

                            
(7) 
 

Here,  , ,to    denote the dilatation angle, the uniaxial tensile strength and eccentricity parameter, respectively.  

 
4. Numerical Simulation 
 
In this section, numerical examples are conducted to demonstrate the performance of control algorithm. These 
examples include Mode-I and mixed mode fracture (Mode-I+Mode-II) propagation. Moreover, an example to 
overcome the snap-back instability is also presented. 
 
4.1. Uniaxial Tension Specimen 
 
Uniaxial tension specimen (UTS) is modeled to simulate mode-I fracture. All geometrical details and boundary 
conditions are depicted in Figure 4. Specimen is assumed under plane strain condition by preventing the out-of-

plane deformation. A concentrated force is imposed in the vertical direction on the control node 0.05CN

yf =  . In 

the simulation, CDPM is used to define material property of the specimen. Young’s modulus and Poisson’s ratio are 
chosen as E=30GPa and ν=0.2, respectively. Tensile behavior is defined by using tensile strength and the fracture 
energy, ft=3MPa and Gf=20Joule/m2. 

 
               Figure 3. Geometrical details of uniaxial tension specimen (UTS) 
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The specimen is analyzed for 3 cases; first case is without control algorithm, second one is with control algorithm 
and last one is with the solution using Riks method (arc-length method) developed previously in the works of Riks 
(Riks, 1972; Riks, 1979). Obtained load-displacement curves are shown in the Figure 5. It can be seen from the 
figure that the model without control algorithm can only reaches the peak point and cannot go on beyond peak 
and analysis is interrupted, which means it cannot capture snap-back behavior. However, it is worth noting that 
model with control algorithm can capture snap-back behavior like Riks method.  
 

 
Figure 5. Load versus crack tip vertical displacement 

 

4.2. Three-point Bending Beam Test 
 
Three-point bending beam with a predefined notch which is also an example of Mode-I failure is simulated to 
investigate load versus crack mouth opening displacement (CMOD) behavior. Geometrical and loading details of 
the specimen, which are taken from the experimental study performed by Hoover et al. (Hoover, et al., 2013), are 
presented in Figure 6a. The thickness of the beam is t=40mm. Control algorithm implemented in the input file is 
defined using the tip nodes (N1 and N2) at the two sides of the notch, as shown in Figure 6b. Control node (NC) is 
connected to these two tip nodes with two linear elements and to a remote boundary node (NL) with one linear 
element. 
 

 
Figure 6.a) Geometrical details of three-point bending specimen b) control algorithm scheme. 
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Here, horizontal displacements of the crack tip nodes are utilized to calculate CMOD, as ( )1 2N N

x xu u− . The relation 

between the crack mouth nodes and control node is given by a stiffness matrix as follows; 
 

1

1

2

2

0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0

1 0 1 0 0 0

C C

C C

N

x

N

y

N

x

N

y

N N
x x

N N
y y

u

u

u

u

f u

f u

    
    
    
      

=     
     
     
     

−        

 

 
 
 
(10) 

 

In this example, an element with two degree-of-freedom ( ),x yu u is required in order to describe CMOD as a 

function of vertical force applied on the control node. Also, the relation between control node and remote node 
(Loading one) is similar as described in Equation (2). 
 
In the simulation, material properties of the quasi-brittle specimen are selected as follows; modulus of elasticity 
is E=30GPa, Poisson’s ratio is ν=0.2. Tension softening part of the material is characterized with a tensile stress of 
ft=3MPa and a fracture energy of Gf=20Joule/m2. The vertical concentrated force   is subjected to control node NC 
to obtain the load versus the opening displacement of crack. Figure 7 shows a comparison between the models 
with (Imp-cont) and without control (Imp-wo-cont) algorithm as well as experimental results for the beam D=215, 
500 mm. From the Figure 7a, it can be seen that for D=215 mm, analysis without control algorithm stops at the 
peak and cannot find a proper solution path whereas the simulation with control algorithm is able to capture post 
peak successfully. Also, one can easily notice that while explicit simulation gives an oscillatory post-peak behavior, 
model with control algorithm produces a smooth post-peak response which is compatible with experimental 
results. Figure 7b demonstrates results for the beam having depth D=500 mm, simulation under the framework of 
implicit with control algorithm and explicit analysis give similar results as they produce in D=215 mm. On the 
other hand, simulation without control algorithm can find a solution path beyond the peak but behavior exhibit a 
very large jump which doesn’t produce correct post-peak behavior as can be seen from the figure. Overall, control 
algorithm can capture peak values correctly and produce a smooth post-peak behavior.    

 

     
 
 

Figure 4.Load versus crack mouth opening displacement (CMOD) curve of three-point bending test; a) D=215 mm, b) D=500 
mm. 

 
 
 
 
 

(a) (b) 
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4.3. Mixed Mode Specimen 

 
Double Edge Notched (DEN) specimen is considered to simulate the mixed mode fracture, which is a combination 
of Mode-I and Mode-II (Nooru-Mohamed, 1993), where the specimen is subjected to lateral and axial 
displacements simultaneously. Points where vertical and lateral displacement obtained in the experimental study 
are shown in Figure 8. Axial deformation δN of the specimen is calculated by considering average vertical 
displacement between N1N2 and N3N4. On the other hand, lateral deformation δS is taken as the average horizontal 
displacement between S1 and S2. In the experimental research, these specimens are subjected to different loading 
paths like δN/δS =1 or δN/δS=2 and so on. 
It is worth mentioning here that in the simulation it is not easy to keep loading ratio constant during fracturing 
process without control algorithm.  
The dimensions and boundary conditions of DEN specimen are shown in Figure 8. The mechanical properties of 
the material are selected as follows; Elasticity modulus is E=30000MPa, Poisson’s ratio is ν=0.2. Tensile and 
compressive stresses are ft=2.4MPa and fc=33.6MPa, respectively. It is also noted that while out-of-plane thickness 
is 50 mm in experimental research, it is taken as 5 mm in order to decrease the computational cost. 

 
Figure 5.Geometrical details of double edge notched (DEN) specimen (Nooru-Mohamed, 1993) 

 
In order to keep constant ratio between axial and lateral deformation during the loading of the specimen, 
additional stiffness matrices are defined in the input file of Abaqus. Two control algorithms are implemented 
separately, for the axial (δN) and lateral (δS) deformation. The first auxiliary element is defined between a control 
node and the nodes (N1, N2, N3, N4) as well as another element between the same control node and a remote node 

for uaxial.  Here, vertical displacement of specimen is described in terms of  31 2 4, , ,
NN N N

y y y yu u u u , which is assigned as 

the force of auxiliary control node, 
31 2 4

2
c

NN N N

y y y yN

y

u u u u
f

 + − −
=  
 
 

  . The relation between the corresponding nodes 

and control node can be described using following stiffness matrix; 
 

1

2

3

4

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0.5 0.5 0.5 0.5 0C C
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u

u

u

f u

    
    
       

 =   
    
    
 − −       

 

 
 
 
(11) 

 
The second auxiliary element is prescribed for the lateral deformation. Lateral displacement of the specimen is 
defined in terms of the lateral displacement at the nodes (S1, S2) and another element between the same control 
node and a remote node on the boundary. Lateral displacement of the specimen is defined by the horizontal 

displacements at S1 and S2 ( 1 2,
S S

x xu u  ), and it is taken equal as the horizontal force on the control node (Nc) as 



LALE and AYHAN 10.21923/jesd.1143299 

 

640 
 

2

1

2
c

S

N S x

x x

u
f u

 
= − 
 

 . The relation between the crack tip nodes and control node can be given by a following stiffness 

matrix; 

           

1

2

0 0 0 0

0 0 0 0

1 0.5 0C C

S

x

S

x

N N

x x

u

u

f u

    
    

=    
    −     

 

 
(12) 

 
Same relation between the control node and the node on the upper left part of the specimen are defined as shown 
in previous examples. 
 
Obtained result for the test loaded equal vertical and lateral displacement is given in Figure 9. During the all phases 
of the simulation, the ratio between axial and lateral deformation δN/δS =1 is obtained, and given in Figure 9a. Load 
versus axial and lateral displacements are plotted together with the experimental results, as shown in Figure 9b-
c. 
 

 
Figure 6.a) Calculated axial deformation versus lateral deformation δN/δS =1 b) Axial load-displacement curves c) Lateral 

load-displacement curves. 
 
Similarly, Figure 10 shows the curves of the simulation having loading ratio as δN/δS =2. The ratio between axial 
and lateral deformation δN/δS=2 is given in Figure 10a. Load versus axial and lateral displacements as well as 
experimental results are given in Figure 10b-c.  
 

 
Figure 10.a) Calculated axial deformation versus lateral deformation δN/δS =2 b) Axial load-displacement curves c) Lateral 

load-displacement curves. 

 
Models with implemented control algorithm can capture load versus displacement curves for both directions quite 
well and it enables to control loading ratio successfully. 
 
5. Results 
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A control algorithm is implemented to increase loading in a more controlled manner and its performance is 
investigated using three different simulations; one of them uniaxial tension test which exhibit snap-back behavior, 
the other one is three-point bending beam test and last one is mixed mode test which is to be subjected to constant 
ratio of displacement in two directions. The performance of the control algorithm in the finite element model is 
demonstrated that the whole load-displacement curve can be obtained while simulating brittle and quasi-brittle 
failures. Based on this study, the following conclusions can be drawn 
 

i) The employed control algorithm is able to handle snap-back behavior successfully.  
ii) Control algorithm provides a framework which enables increasing load in a more controlled manner 

such as increasing load on remote nodes result a monotonic increase in crack opening.  
iii) When a more sophisticated loading scheme is required, it can be employed as shown in mixed mode 

simulations. 
 
For the future study, same approach will be extended to work under explicit dynamic framework and it will be 
modified for non-monotonic loading pattern. 
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