CONSTRUCTIVE MATHEMATICAL ANALYSIS

5 (2022), No. 3, pp. 134-140 A
http://dergipark.org.tr/en/pub/cma l =‘
ISSN 2651 - 2939 colmemEe A

Research Article

On the Poisson equation in exterior domains

WERNER VARNHORN?*

ABSTRACT. We construct a solution of the Poisson equation in exterior domains Q@ C R™, n > 2, in homogeneous
Lebesgue spaces L29(f2),;1 < g < oo, with methods of potential theory and integral equations. We investigate the
corresponding null spaces and prove that its dimensions are equal to n + 1 independent of q.
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1. INTRODUCTION

Let G C R™ (n > 2) be an exterior domain with a smooth boundary G of class C?. We
consider Poisson’s equation concerning some scalar function w:

(11) — Au = f in G, U\BG = o.

Here f is given in G and @ is the boundary value prescribed on G. As usual, A denotes the
Laplacian in R".

It is well-known that in unbounded domains the treatment of partial differential equations
causes special difficulties, and that the usual Sobolev spaces W"™(G) are not adequate in this
case: Even for the Laplacian in R™ we find [6] that the operator A : W™ 4(R") — W™= 24(R")
is not a Fredholm operator in general, as it is in the case of bounded domains [16]. Thus
in exterior domains, the equations (1.1) have mostly been studied in connection with weight
functions: Either (1.1) has been solved in weighted Sobolev spaces directly [7, 12, 14] or it has
first been multiplied by some weights and then been solved in standard Sobolev spaces [17].

It is the aim of the present note to prove the solvability of (1.1) in homogeneous spaces
L?9(G) (1 < g < o) of the following type [5, 11]: Let L9(G) be the space of functions defined
almost everywhere in G such that the norm

(] f(x)l"dx>1/q

is finite. Then L?7(G) is the space of all functions being locally in L9(G) and having all
second order distributional derivatives in LI(G). We show that for f given in LI(G) and
some boundary value ® € W2~1/99(9G) (see the notations below) there exists always a so-
lution v € L?7(G). Concerning the uniqueness of this solution we prove that the space of all
u € L*9(G) satisfying (1.1) with f = 0 and ® = 0 has the dimension n + 1, independent of g.
This result also holds for the case n = 2.
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Throughout this paper G C R" (n > 2) is an exterior domain, i.e. a domain whose comple-
ment is compact. Let G denote its closure in R” and G its boundary, which we assume to be
of class C? [1, p. 67].

In the following, all function spaces contain real valued functions. Let D C R"™ be any
domain with a compact boundary 9D of class C?, or let D = R"™. Besides the spaces L4(D) we
need the well-known function spaces C*°(D), C§°(D), and the space C§°(D), containing the
restrictions fi5 of functions f € C§°(R™).

We call a function u locally in L?(D) (1 < ¢ < oo) and write v € L (D) if u € L(D N B)
for every ball B C R™. Note that this space does not coincide with the usual space L. (D) in
general (except for D = R").

By W™4(D) (m = 0,1,2; W%9(D) = LY(D)) we mean the usual Sobolev space of functions
u such that D®u € L7(D) for all multiindices o = (a,...,a,) € N§ = {0,1,...}" with ag +
<o+ + ay, < m[1]. Here we use

D%y = D' D3?...Do"u, D; =0/0z; (i=1,...,n; x = (x1,...,2,) € R").

The spaces W,.-(D) and W,-(D) are defined analogously.

We need the fractional order space W?2~1/%49(9D), which contains the trace ujpp of all u €
W24(R™) [1, p. 216]. The norm in W2~1/44(9D) is denoted by || - [la_1/4.4.00-

The term Vu = (Dju)j—1,. ., represents the gradient of v and V?u = (D;Dju); j=1,. n
means the system of all second order derivatives of u. For these terms we define the semi-

norms
1/q

n 1/q n
[Vullg,p = (Z IIDkuIIZ,D> VPullgp = | Y ID;Drulll ;
k=1 j.k=1

and introduce for m = 1,2 and 1 < ¢ < co the homogeneous spaces

(1.2) L™9(D) ={ue LL (D) |[[V"ullqp < oo} .

loc

Finally, concerning the norms and seminorms, we sometimes omit the domain of definition
if it is obvious and use || - || or || - ||2—1/4,q instead of || - [|4,c OF || - [[2—1/4,q,6¢ for example.

2. POTENTIAL THEORY

Besides the Poisson equation (1.1) we also consider the special case of Laplace” equation
with Dirichlet boundary condition

(23) —Au=0in G, u|6G = o.

These equations have mostly been studied with methods of potential theory (see for example
[8, 15]). We collect some well-known facts in this section.
Let E, (n > 2) in the following denote the fundamental solution of the Laplacian such that
—AEFE,(z) = 0(z) where ¢ is Dirac’s distribution in R™. It is well-known that
_ Infz|

T 2—n
(2.4) Ey(x) = (n=2), En(z)= ||

wa (n — 2)wy, (n=3),

where w,, is the area of the (n — 1)-dimensional unit sphere in R™ (n > 2).

Proposition 2.1. Let G C R™ (n > 2) be an exterior domain with boundary OG of class C?, and let
® € W21 99(9G) be given (1 < q < 00). Then there exists a unique function u € L>9(G) satisfying
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(2.3) in G, if we require the following decay conditions as |x| — oo:

25) u() — alnla] = 0(1) (n = 2), u(z) = 0(2[>™) (n > 3),
V™u(z) = O(|z]*~""™) (n > 2; m = 1,2).

Here a € Ris a fixed prescribed constant.

Proof. To prove uniqueness let u = u' — u* be the difference of two solutions u' and u? with

the required decay properties above. Define the bounded domain G, = G N B,(0) where
B,(0) C R™ denotes an open ball with center at zero and radius r such that 90G C B, (0). From
the local regularity theory we find D;u € L (G) (j = 1,...,n). Thus in G, we may apply
Greens first identity, obtaining

(2.6) / |Vul|?dz = /B (Onu)udo,

because the boundary integral over OG vanishes. Here N denotes the outward (with respect to
G) unit normal vector on the boundary 0B, = 0B,(0) and Onu is the normal derivative of u.
Now do to the decay properties of u, the right hand side in (2.6) tends to zero as r — oo. This
is obvious if n > 3. For n = 2, using the expansion theorem for harmonic functions at infinity
[15, p. 523], we find u(z) = 0(1) and Vu(z) = 0(|z|~2) as |z| — oo, which implies the assertion
above, too. It follows Vu = o in G, hence v = 0 in G because u vanishes on the boundary 0G.
This proves the uniqueness.

To show the existence of a solution with the required properties we use the boundary inte-
gral equations method: Let us define the simple layer potential

/ En T — )dOy, (1’ ¢ 8G)7
oG
the double layer potential

(D"€)(w) == | Oy Pl —1)0(1) do, (a ¢ 9G),
and the normal derivative of the simple layer potential

(1"0)(w) = = | on Bula = 1)) do, (v ¢ 06),

Here and in the following, N = N(z) is the outward (with respect to the bounded domain
Gy = R"/G) unit normal vector in z € 9G, and © € W?~1/%49(9G) is the unknown source
density. Then we have the continuity relation

(2.7) (E"0)° = (E"0)' = E"® ondG

and the jump relations

(2.8) D"® — (D"O)° = (D"O)' — D"0 =1/20 on G,
(2.9) H"© — (H"©)° = (H"O)' — H"® = —1/20 on dG.

The index e stands for the limit from outside, and the index ¢ for the limit from inside. Now
let us first assume n > 3. Following [3, 10] (here for the case of Helmholtz’ equation), for the
solution of (2.3) we choose in G the ansatz

u=D"0 —aE"(©) (0<acR).
Then by means of (2.7), (2.8) we obtain the second kind Fredholm boundary integral equation
(2.10) ®=-1/20+4+ D"O —aE"O ondG
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for the unknown source density © € W2~1/94(9G). To see that (2.10) is uniquely solvable for
all boundary values ® € W2~1/99(9G), let 0 # ¥ be a solution of the homogeneous adjoint
integral equation

(2.11) 0=—1/20 + H"U — aE"¥ on dG.

By (2.7) and (2.9), this implies a(E"¥)! = (H"¥)! = —(OyE™¥)?, and Green’s first identity
yields [, [V(E"9)[Pde = [, (E"P)'(ONE"¥)'do = —a [y, |E"¥|* do, hence E"¥ = 0 in
Gy. This implies (E"V)¢ = 0 using (2.7), and the uniqueness statement above yields E"¥ = 0
in G, too. Thus E™¥ = 0 in the whole R", and we obtain ¥ = 0 by (2.9), as asserted. This
proves the existence in the case n > 3.

Now let n = 2. As in [9] (for the case of Stokes” equations) we use in G the ansatz

u = —aws E*1 + D?*© — aE?0* — Bbe (0 < a €R, 0# B €R).

Here a € R is the prescribed constant from (2.5), E?1 is the simple layer potential with constant

density ¥ =1,
b@ = / @(y) dOy
Gl

is some constant, and the source density ©* is defined by
(2.12) 0" (z) = O(z) — be/(meas(9G)),

which implies be- = [, ¥*(y) do, = 0. Note that the decay properties (2.5) are fulfilled in this
case. Here again, (2.7) and (2 8) lead to the second kind Fredholm boundary integral equation

(2.13) ® + awy F*1 = —1/20 + D?*0 — aE?0* — Bbe  on IG.

To see that (2.13) has a unique solution © € W?2~1/%4(9G) for all boundary values ® €
W2=1/24(9G) and all a € R, let 0 # ¥ solve the homogeneous adjoint integral equation

0=—1/2V + H?TU — aE*T* — Bby  on IG.

Because for any constant ¢ € R we have —1/2¢ + D?c = 0 [15, p. 511] and E%¢* = 0 (see (2.12)
for the definition of ¢*), we find

0= {c, —1/2\11 + H?U — aFE*0* — Bby) = —fB(c, by),

where here (¢, ) = [, ¥(y)¢(y) do denotes the corresponding duality. It follows by = 0 and
U* =W, hence ¥is a solutlon of

0=—1/2V + H?*¥ — aE*¥ ondG,

too. Now the same arguments as for (2.11) in the case n > 3 yield the assertion and the propo-
sition is proved. O

3. THE POISSON EQUATION

The first theorem ensures the solvability of Poisson’s equation (1.1) in the space L*9(G),
defined by (1.2).

Theorem 3.1. Let G C R™ (n > 2) be an exterior domain with boundary 8G of class C?, and let
1 < q < oo. Then for every f € LI(G) and ® € W?2~1/49(9G) there exists some u € L>(G)
satisfying the Poisson equation (1.1) in G.
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Proof. Setting f = 0 in R"/G we obtain some function f e Li(R™) with f|G = fin G. Let
fi € C3°(R™) denote a sequence such that f; — f in LI(R") as i — co. Consider now for fixed

i the equation —Ad; = f; in R”. We can solve it by convolution with E,, (see (2.4)), obtaining
x € R™ the representation

i(a) = (Bw F)@) = [ Bulo— ) i) d,

Moreover, by the theorem of Calderon-Zygmund [4], for the second order derivatives we ob-
tain the estimate || V24|, < ¢||fi||, with some constant ¢ independent of i € N, which implies
V2(t@; — ag)|l, — 0as i,k — oo.

Next consider a sequence of open balls (B;); with B; C Bj1 U;2, B; = R". Let us define
the space

(3.14) P={P:z— P(x)=a+b-z|bxeR" acR}

of linear functions P : R™ — R. Then by the generalized Poincaré inequality (compare [11, p.
22] or [13, p. 112]) we obtain for every v € L*9(R") the estimate

(3.15) ||U||Lq(Bj)/[p> = JljrgI.P’ ||U + PHL‘I(B_,») < Cj”VQ’UHLq(B].)nz

with some constants ¢; > 0. Because @; € L?%(R"™) we conclude that (;); is a Cauchy sequence
with respect to the norm || - ||« (5,)/p on the left hand side of (3.15) for fixed j = 1. This implies
the existence of linear functions P; € P such that (4; + F;); is a Cauchy sequence in L7(By).
Repeating this argument now for j = 2, there exist linear functions @; € P such that 4; +Q; is a
Cauchy sequence in L9(B5), hence in L?(By), because B; C Bs. Thus the difference (P, — Q;);
is a Cauchy sequence in L¢(B; ), and using the representation

we obtain that (a; — 7;); and (8; — d;); are Cauchy sequences in R and in R”, respectively.
From this we find that (P, — Q;); is a Cauchy sequence in L?(Bs), and thus also (%; + P;); =
(@; + Qi) + (P; — Qi)i. Repeating this procedure it follows that (%; + P;); is a Cauchy sequence
in L9(B;) for all j = 1,2,.... Thus we can find some @ € L??(R") such that (@; + P;) — @ in
LL (R™) and ||V2(it — 1;)||qre — 0 as i — oo. Moreover, 4 satisfies —Ad = f in R” and the

estimate || V2|, < c||f]|, Since @ € Wli’cq (R™) we conclude from the usual trace theorem [1,

p. 217] that @5 € W2~1/949(9G). Following Proposition 2.1 there is a function w € L*9(G)
satisfying the equations

—Aw =0in G, Woa = ’l~JJ|BG - (I),

where ® € W2~1/249(9G) is the prescribed boundary value. Now setting u = ¢ —w we obtain
the desired solution and the theorem is proved. O

Because functions v € L*9(@G) have no suitable decay properties at infinity, in general we
cannot expect uniqueness for the solution of (1.1) constructed in Theorem 3.1. Thus we consider
in G the homogeneous equations and defined the nullspace of (1.1) by

(3.16) Ny(G)={ue L*(G) | —Au=0in G, ujpc = 0}.

Theorem 3.2. Let G C R™ (n > 2) be an exterior domain with boundary OG of class C?, and let 1 <
g < oo. Then for the dimension dim N,(G) of the nullspace defined in (3.16) we have dim N,(G) =
n + 1 independent of q.
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Proof. Consider the space P of linear functions defined in (3.14). Because for every P € P we
have P(z) = a + b - x with some a € R and some vector b € R" we find dimP = n + 1. Let u”
denote the uniquely determined solution of the equation

—Au =0, ugc = —Poac
with P € P, according to Lemma 2.1. Here in the case n = 2 we require
3.17) u(z) —aln|z] =0(1) as|z| = oo,
where the constant a is choosen from P(z) = a + b - z. Setting
Mq(G) = {u” + P | P € P}

we obtain M,(G) C N,(G), obviously. Furthermore, we have dim M, (G) = dimP = n + 1,
which can be shown as follows: Let p(z) = a + bz and let u” + Pz = 0in G. Then from
the decay properties of u” and Vu?” established in Lemma 2.1 we find a = 0 and b = 0, hence
P = 0. Here in the case n = 2 we obtain a = 0 due to the special choice of the number a in

(3.17). Together with the uniqueness statement in Lemma 2.1 this means that, if B is a basis of
P, then

By(G) ={u" + Pg | P € B}
is a basis of M,(G). Thus it remains to show
(3.18) Ny(G) € My(G).
To do so, let us first determine the null space
N,(R™) = {u | u € L*(R") with — Au=0 inR"}.

From Au = 0, hence AV?u = 0 with D} u € LY(R") (j,k = 1,...,n) we obtain V?u = 0 in R",
which implies v = P for some P € IP. Thus we have shown that

(3.19) N,(R") = P.

Now let u € N,(G). We extend u on the whole space obtaining a function @ € L*4(R™) with
G = u [1, p. 83]. Moreover, this function satisfies on R" the identity —A% = f e LYR™),
where the function f has a compact support in the bounded domain R™ \ G. Consider the
equations

(3.20) —Aw=f inR"

Again, it can be solved by convolution with the fundamental solution E,, of the Laplacian: We
obtain w = E, * f in R" and the Calderon-Zygmund theorem implies D?,w € L"(R") for all

1<r<q(jk=1,...,n). Here weused f € L"(R")" for all 1 < r < q due to its compact
support. Now using a well-known estimate of Hardy-Littlewood-Sobolev-type [2, p. 242] we
find w € L*(R") for some s > ¢, hence w € Lj (R") C L _(R"). Thus we have constructed
some solution w of (3.20) such that w € L%%(R"). Setting W = @& — w we obtain W € N, (R"),
and (3.19) leads to @ = w + P for some P € P. Because u5¢ = 0 and since g = u we find

u € M,(G), which proves (3.18) and thus the theorem. O
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