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Abstract. Let F0 be an absolutely algebraic field of characteristic p > 0

and κ an infinite cardinal. It is shown that there exists a field F such that

F ∗ ∼= F ∗
0 ⊕(⊕κQ) with Br(F ) = {0}. Let L be an algebraic closure of F . Then

for any finite subextension K of L/F , we have K∗ ∼= T (K∗) ⊕ (⊕κQ), where

T (K∗) is the group of torsion elements of K∗. In addition, Br(K) = {0} and

[K : F ] = [T (K∗) ∪ {0} : F0].
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1. Introduction

In [5, p.299] L. Fuchs asks which abelian groups can be the multiplicative groups

of fields. R. M. Dicker in [3] gives an answer to this question in terms of the

existence of a certain function on the group with zero adjoined. This question is

largely unsolved, though quite a few partial results have been obtained. We refer

the reader to [1],[2],[3],[9],[10] and [13] for a sampling of what is known on this

question. An abelian group G (written additively) is divisible if for every g ∈ G
and every positive integer n, there exists h ∈ G with nh = g. An abelian group G

is divisible modulo its torsion group if G/T (G) is divisible, where T (G) is the group

of torsion elements of G. The famous example of a divisible abelian group is the

additive group Q of rational numbers, a torsion free divisible abelian group. Also,

C(p∞) is a torsion divisible abelian group, when C(p∞) is the p-Sylow subgroup

of Q/Z. The structure of divisible abelian groups is well-understood by Theorem

4.1.5 of [15] as following:

Theorem A. Let G be an abelian group. Then G is divisible if and only if G is a

direct sum of copies of Q and C(p∞) for various primes p.

Given a field F , denote by F ∗ the multiplicative group of F . For any prime

p, let Fp be its prime subfield, when Char(F ) = p. An absolutely algebraic field,

denoted by aaf, is an algebraic extension of Fp. One may easily check that for any
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aaf F we have F =
⋃
n∈S Fpn , where S is a nonempty subset of the positive integers

such that for any n,m ∈ S we have Fplcm(n,m) ⊆ F . Also, if n ∈ S and x|n, then

Fpx ⊆ F . These conditions are necessary and sufficient conditions for when F is an

absolutely algebraic field (aaf). It is also clear that any aaf is perfect.

Here we investigate the question of when a multiplicative group of a field is

divisible modulo its torsion group. In this direction we have the following results

from [2].

Theorem B. Let G be an abelian group with finite, nonzero torsion free rank. Then

G is not isomorphic to the multiplicative group of any field.

Theorem C. A nontrivial torsion-free divisible abelian group G can be realized as

the multiplicative group of a field if and only if G has infinite rank.

Theorem D. Let G be a torsion-free divisible group of infinite rank and let p be

an arbitrary prime integer. Then there is a field F of characteristic p such that F*

is isomorphic to F∗p ⊕G.

Finally, the latest result in this direction is the following from [13]:

Theorem E. Let G be a divisible abelian group. Then G is the multiplicative group

of a field of positive characteristic if and only if G = H ⊕ (⊕κQ) for some divisible

abelian group H realizable as the multiplicative group of an absolutely algebraic field

of positive characteristic, and either κ = 0 or κ is infinite.

On the other hand, we know that for a field F of characteristic zero such that

F ∗ is a divisible group, Br(F ) = {0}. But we don’t know what happen for the case

Char(F ) > 0. Also, we have the following question:

Question. Let F be a field such that F ∗/T (F ∗) is a divisible group. If F is not

Euclidean or F is Euclidean and
√
−1 ∈ F , do we have Br(F ) = {0}? If F is

Euclidean and
√
−1 /∈ F , is it true that Br(F ) = Z2?

In this paper by combining Oman’s result with having trivial Brauer group, it

is proved that given an absolutely algebraic field F0 of characteristic p > 0 and

κ an infinite cardinal, then there exists a field F such that F ∗ ∼= F ∗0 ⊕ (⊕κQ)

with Br(F ) = {0}. Let L be an algebraic closure of F . Then for any finite

subextension K of L/F , we have K∗ ∼= T (K∗)⊕ (⊕κQ). In addition, Br(K) = {0}
and [K : F ] = [T (K∗) ∪ {0} : F0]. More precisely, it is shown:

Theorem F. Let F0 ⊆ K0 be two absolutely algebraic fields of characteristic p > 0,

and κ an arbitrary infinite cardinal. Then there exist two fields, namely, F and

K such that F ⊆ K, Br(F ) = Br(K) = {0}, F ∗ ∼= F ∗0 ⊕ (⊕κQ) and K∗ ∼=
K∗0 ⊕ (⊕κQ).
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2. Preparatory results

Let F =
⋃
n∈S Fpn be an aaf. For any m /∈ S we denote by FFpm = F (Fpm),

the composition of F and Fpm . It is easily checked that F (Fpm) =
⋃
t∈Q Fpt , where

Q = {t | ∀n ∈ S, t = lcm(m,n)}. From the standard finite field argument, we

obtain the following results.

Lemma 2.1. Assume that q is a prime and F an aaf of characteristic p.

(1) If for any natural number n, Fpqn ⊆ F , there is no extension of degree q

over F .

(2) If n is the largest natural number such that Fpqn ⊆ F , then FFpqn+1 is the

unique extension of degree q over F .

Corollary 2.2. Let F be an absolutely algebraic field. If there exists some field

extension Kn with [Kn : F ] = n for some natural number n, then Kn is unique.

Let F be a perfect field and L be an algebraic closure of F . We shall call F

a quasi absolutely algebraic field or simply qaaf if for each n there is at most one

subextension K of L/F with [K : F ] = n. In addition, given a perfect field F ,

we say that F is a quasi Galois field or qGf if for each n there is one subextension

K of L/F with [K : F ] = n. For example any finite field or any infinite algebraic

extensions of them whose ‘degree” has no infinite part is a qGf. For some results

concerning qGf, we refer the reader to [17]. Further, a field F is called pseudo

absolutely algebraic field or paaf if for any finite field extension K of F with F $ K

one has T (F ∗) $ T (K∗). It is clear that any absolutely algebraic field is a paaf.

To prove our next result we shall need the following:

Abel’s Theorem. [8, p.297] Let K be a field, n > 2 an integer, and a ∈ K with

a 6= 0. Assume that for all prime numbers p such that p|n, we have a /∈ Kp, and if

4|n then a /∈ −4K4. Then Xn − a is irreducible in K[X].

Lemma 2.3. Let F be an aaf of characteristic p > 0 containing a primitive q−root

of unity ωq for some prime q 6= p. Then, for any natural number i, Fpqi ⊆ F if and

only if the polynomial xq
i − ωq has a root in F (or splits over F ) for any natural

number i.

Proof. First, let Fpqi ⊆ F for any natural number i. So, by Lemma 2.1, there

is no field extension of degree q over F . Now, assume on the contrary that there

exists a natural number n such that xq
n−1 − ωq has a root in F but xq

n − ωq has

no root in F . Since every finite subgroup of the multiplicative group of a field is
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cyclic, we conclude that the maximal q-group in F ∗ is a finite cyclic group with qn

elements. Take ωqn , a generator of this group, which is a primitive qn-root of unity

in F . This implies that there is no root in F for the polynomial xq − ωqn . But, by

Abel’s Theorem, F has an extension of degree q, which is a contradiction.

Conversely, assume that xq
i − ωq has a root in F for any natural number i. Let

n be the least natural number such that ωq ∈ Fpn . By Fermat’s Theorem, q - n.

Consider the maximal q-subgroup of F∗pn which is cyclic and take ωqm , a generator

of this group, for some natural number m. Now, if q 6= 2, by Abel’s Theorem,

xq
i − ωqm is irreducible over Fpn for any natural number i. Let ai ∈ F be a root

of this polynomial in some extension. Then, [Fpn(ai) : Fpn ] = qi and Fpn(ai) =

Fpnqi for any natural number i. Thus, Fpqi ⊆ Fpn(ai) ⊆ F , as desired. For the

case q = 2 and
√
−1 ∈ Fp, it is easily checked that a /∈ −4F4

p and hence Abel’s

Theorem may be applied to obtain the result. Finally, if q = 2 and
√
−1 /∈ Fp, then

Fp(
√
−1) = Fp2 ⊆ F . The maximal 2-subgroup of F∗p2 is then cyclic. Now, use the

same argument as above to end the proof. �

Recall from the theory of ordered fields (cf. [16, Ch. 3]) that a field F is said to

be formally real if F admits an ordering, if and only if −1 is not a sum of squares

in F . F is said to be real Pythagorean, if every sum of squares is a square in F

and −1 /∈ F ∗2. F is said to be Euclidean, if F has an ordering with respect to

which every positive element is a square. Clearly, if F is Euclidean, then F is real

Pythagorean and F ∗ = F ∗2 ∪ −F ∗2. Notice that an ordered field necessarily has

characteristic 0. Therefore, any Euclidean field has characteristic 0. In the following

proposition, we obtain some properties of quasi absolutely algebraic fields.

Proposition 2.4. Let F be a qaaf and q a prime number. Then we have:

(1) Every finite extension of F is a qaaf.

(2) Every finite extension K/F is cyclic Galois.

(3) If the maximal q-subgroup of F ∗ is trivial, then F ∗ = F ∗q.

(4) If the maximal q-subgroup of F ∗ is a nontrivial finite group of order qn

for some natural number n and ωqn is the primitive qn-root of unity in F ,

then for any natural number i with 1 ≤ i ≤ n we have |F ∗/F ∗q
i

| = qi and

F ∗ = F ∗q
n

〈ωqn〉, the subgroup of F generated by F ∗q
n

and 〈ωqn〉.
(5) If the maximal q-subgroup of F ∗ is an infinite group, then either F ∗ = F ∗q

or |F ∗/F ∗q
i

| = qi for any natural number i.

(6) If F is not Euclidean or F is Euclidean and
√
−1 ∈ F , then Br(F ) = {0}.

Moreover, for any finite extension K of F we have NK/F (K) = F .

(7) If F is Euclidean and
√
−1 /∈ F , then Br(F ) = Z2.
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Proof. (1) This is clear by the definition of qaaf.

(2) Take the normal closure M of K/F . By our assumption, for each n there

is at most one subextension L of M/F with [L : F ] = n. So, by the Fundamental

Theorem of Galois Theory, any subgroup of G = Gal(M/F ) is normal. Thus,

by Dedekind-Baer Theorem (cf. [15, p.143]) and the uniqueness of the subgroups

involved, we conclude that G is a cyclic group, i.e., K/F is a finite cyclic Galois

extension.

(3) We know that the maximal q-subgroup of F ∗ is trivial. If CharF = q > 0,

then F ∗ = F ∗q since F is perfect. Now, assume that CharF 6= q. On the contrary,

choose a ∈ F ∗\F ∗q. By Abel’s Theorem and the previous case, the splitting field

of xq − a is a cyclic Galois extension of degree q over F . Hence [F (ωq) : F ] = q,

which is a contradiction and therefore F ∗ = F ∗q.

(4) We first take q 6= 2. By Abel’s Theorem, xq
i − ωqn is irreducible over F for

1 ≤ i ≤ n and the splitting field of xq
i −ωqn for any natural number i is the unique

extension of degree qi over F . Now, using Kummer Theory, we conclude that we

have |F ∗/F ∗q
i

| = qi, where 1 ≤ i ≤ n. Finally, since F ∗q
n

∩ 〈ωqn〉 is trivial we

obtain F ∗ = F ∗q
n

〈ωqn〉. Now, consider the case q = 2 and
√
−1 ∈ F . It is easily

checked that ω2n /∈ −4F 4. Hence using Abel’s Theorem and the same argument as

above we obtain the result. If q = 2 and
√
−1 /∈ F , then the splitting field of x2 + 1

is the unique extension of degree 2 over F . Thus, F ∗ = F ∗2〈−1〉.
(5) Assume that F ∗ 6= F ∗q and take a ∈ F ∗\F ∗q. If q 6= 2, then the Abel’s

Theorem shows that the splitting field of xq
i − a for any natural number i is the

unique extension of degree qi over F . Using Kummer Theory, one concludes that

|F ∗/F ∗q
i

| = qi for any natural number i. Now, if q = 2, assume on the contrary

that a = −4k4 for some k ∈ F . Since
√
−1 ∈ F , we conclude that a ∈ F ∗2, which

is a contradiction. Therefore, we may apply the same argument as in the previous

case to obtain the conclusion.

(6) Let, on the contrary, q be a prime and 0 6= [A] ∈ Br(F ) such that q[A] = 0.

We may assume that A is an F -central division algebra. From (2) we conclude that

A is a noncommutative cyclic division algebra. By Lemma 15.1 of (cf. [14, p.278]),

for any maximal subfield L of A, we have NL/F (L∗) 6= F ∗.

If ωq /∈ F , we obtain F ∗ = F ∗q, which in turn implies that F ∗ = F ∗q
n

for

any natural number n. On the other hand, o([A]) = q, the order of [A] in Br(F ).

Thus, by Theorem 11 of (cf. [4, p.66]), i(A) = qi for some natural number i, where

i(A)2 = [A : F ]. For any maximal subfield L of A we have [L : F ] = qi and
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hence F ∗q
i

⊆ NL/F (L∗). This means that F ∗ = NL/F (L∗) which contradicts our

assumption.

Now, if ωq ∈ F , by Merkurjev-Suslin Theorem, (cf. [11, p.2616]), there exists

a noncommutative F -central division algebra D such that [D : F ] = q2. Take a

maximal subfield L of D so that [L : F ] = q. Since L/F is cyclic and ωq ∈ F ,

by Theorem 9.5 of (cf. [12, p.89]), L = F ( q
√
b) for some b ∈ F . By the case (4)

we have |F ∗/F ∗q| = q. Take a ∈ L with aq = b so that bF ∗q is a generator for

F ∗/F ∗q. Now, let q be odd. Since the minimal polynomial of a over F is xq − b,
we obtain NL/F (a) = (−1)q+1b = b. On the other hand, F ∗q ⊆ NL/F (L∗) and

hence F ∗ = 〈b〉F ∗q ⊆ NL/F (L∗). Thus NL/F (L) = F which is a contradiction.

We may therefore assume that q = 2. If
√
−1 ∈ F , then NL/F (

√
−1a) = b and

hence NL/F (L) = F , which is also a contradiction. Thus, we must have
√
−1 /∈ F ,

F = 〈−1〉F ∗2 and L = F (
√
−1). But since F ∗2 ⊆ NL/F (L∗) and NL/F (L∗) 6= F ∗,

we obtain NL/F (L∗) = F ∗2. Therefore, given c, d ∈ F ∗, from L = F (
√
−1) we

obtain c2 + d2 = NL/F (c + d
√
−1) ∈ F ∗2, which means that F is Euclidean, a

contradiction. Finally, since every finite extension K of F is cyclic and Br(F ) =

{0}, by Lemma 15.1 of (cf. [14, p.278]), we have NK/F (K) = F .

(7) Assume that F is Euclidean and
√
−1 /∈ F . By the same argument as used in

the previous case, for any prime q 6= 2 we have qBr(F ) = {0}. Using cases (1) and

(6), we obtain Br(F (
√
−1)) = {0} and NF (

√
−1)/F (F (

√
−1)

∗
) = F ∗2. Therefore,

Br(F ) ⊆ Br(F (
√
−1)/F ). Now, by Theorem 7 of (cf. [4, p.64]), for every F -central

division algebra D there exists an F -central simple algebra A such that [D] = [A]

and F (
√
−1) is a maximal subfield of A. Since NF (

√
−1)/F (F (

√
−1)

∗
) = F ∗2,

A is a division algebra and hence a quaternion division algebra. Because the only

quaternion division algebra over a Euclidean field is the ordinary quaternion division

algebra, we obtain Br(F ) = Z2. �

In the next proposition we present some properties of pseudo absolutely algebraic

fields (paaf) with positive characteristic.

Proposition 2.5. Let F be a pseudo absolutely algebraic field (paaf) of character-

istic p > 0 and f the algebraic closure of Fp in F . Thus, f is absolutely algebraic

with T (F ∗) = f∗ and we have the following:

(1) F is a qaaf.

(2) F has a unique extension of degree n if and only if f has a unique extension

of degree n. If K/F and k/f are the unique extensions of degree n, then

T (K∗) = k∗.
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(3) Any finite extension of F is a paaf.

(4) F ∗/T (F ∗) is a torsion-free divisible group.

(5) If T (F ∗) is a direct product of a divisible and bounded group, then F ∗ ∼=
f∗ ⊕ (⊕κQ). If F is an aaf, then κ = 0. Otherwise, κ = |F |.

Proof. (1) Let F and f be the algebraic closure of F and f , respectively, where

f ⊆ F . First, assume that q is a prime and L/F a finite extension of degree q. We

show that L is unique. Set L ∩ f = N . Since F is paaf we have N 6= f . Now, N/f

is Galois as f/f is abelian Galois and hence by the Natural Irrationalities Theorem,

Gal(N/f) ∼= Gal(NF/F ) and so F 6= NF ⊆ L. This yields [N : f ] = [NF : F ] =

[L : F ] = q. On the other hand, by Lemma 2.1, if n is the largest natural number

such that Fpqn ⊆ f , then fFpqn+1 is the unique extension of degree q over f . This

means that L = F (Fpqn+1 ), as desired.

Next step is to prove that any finite extension L/F is cyclic. Since F is a paaf,

it is easily checked that F is perfect. Thus, we can view L as a finite Galois

extension of F . Set G = Gal(L/F ) and take a maximal subgroup H of G. By the

Fundamental Theorem of Galois Theory, there exists an extension M/F such that

[M : F ] = [G : H]. Since F is a qaaf and H is maximal, we conclude that [G : H] is

a prime number. Using the first step, we conclude that H is normal in G. Hence,

any maximal subgroup of G is normal and by Theorem 5.2.4 of [15], we obtain that

G is nilpotent and therefore is a direct product of its Sylow subgroups. By the

uniqueness of the maximal subgroups corresponding to prime indices dividing |G|,
we conclude that G is a cyclic group. So, any finite extension of F is cyclic Galois.

Now, if L1/F and L2/F are two finite extensions of degree n, then L1L2/F is also

cyclic. Thus, L1 = L2 which means that F is a qaaf.

(2) For the natural number n, let, by Lemma 2.1, k/f be the unique extension

of degree n. By the Natural Irrationalities Theorem, Gal(k/f) ∼= Gal(kF/F ) and

hence [F (k) : F ] = n. Since F is a qaaf F (k)/F is unique of degree n. On the

other hand, we have k ⊆ F (k)∩ f = T (F (k)∗)∪{0}. By the Natural Irrationalities

Theorem and the uniqueness of the extension, we conclude that T (F (k)∗) = k∗.

Now, assume that K/F is finite of degree n for some natural number n. Since K/F

is cyclic for any prime q|n there exists a unique field Kq such that F ⊆ Kq ⊆ K

and [Kq : F ] = q. By the same argument as used in the case (1), we conclude that

there exists some natural number nq such that Fpqnq * f . Now, by Lemma 2.1, we

obtain that f has a unique extension of degree n. Hence, by the same argument as

above the result follows.

(3) This is a consequence of the previous case.
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(4) Assume first that F contains a primitive q-root of unity for some prime q

and the polynomial xq
i − ωq has a root in F for any natural number i. Thus, by

Lemma 2.3, Fpqi ⊆ f for any natural number i. Therefore, by Lemma 2.1, f as

well as F has no extension of degree q. This implies that F ∗ = F ∗q. Since F is a

qaaf, by Proposition 2.4 and the above argument we have F ∗ = F ∗q for any prime

q unless the maximal q-subgroup of F ∗ is a nontrivial finite group of order qn for

some natural number n and ωqn is the primitive qn-root of unity in F . In that case

we have F ∗ = F ∗q
n

〈ωqn〉. Now, setting G = F ∗/T (F ∗), for any prime number q

there exists some natural number nq such that Gq
nq

= G. Hence Gq = G for any

prime number q and therefore F ∗/T (F ∗) is divisible.

(5) If T (F ∗) is a direct product of a divisible and bounded group, then F ∗ splits

over T (F ∗) by Theorem 4.3.9 of [15]. Now, by the structure theorem of divisible

abelian groups and the previous case we obtain F ∗ ∼= f∗⊕ (⊕κQ), where κ is either

zero or infinite by Theorem B. Therefore, by Lemma 4.1.3 of [6], we conclude that

when F is an aaf, then κ = 0 and otherwise κ = |F |. �

Based on the above results, one might propose the following problem.

Question 1. Let F be a pseudo absolutely algebraic field of positive characteristic.

Then F ∗ splits over T (F ∗).

3. Main results

Lemma 3.1. Let p be a prime, f an absolutely algebraic field of characteristic p,

and κ any infinite cardinal. Then, there exists a field F of characteristic p such

that T (F ∗) = f∗, |F | = κ, and F is a pseudo absolutely algebraic field.

Proof. Assume that X is a family of variables of cardinality κ and consider the

rational function field L = f(X). Let L and f be the algebraic closures of L and

f , respectively, so that f ⊆ L. Set

S = {M |L 6M 6 L;M ∩ f = f}.

By Zorn’s Lemma, S has a maximal element F , say. By the maximality of F , it is

clear that F is a paaf and T (F ∗) = f∗. �

This lemma and Proposition 2.5 enable us to obtain the following:

Corollary 3.2. Let p be a prime, f an arbitrary finite field of characteristic p, and

κ an arbitrary infinite cardinal. Then, there exists a field F of characteristic p such

that F ∗ ∼= f∗ ⊕ (⊕κQ). Furthermore, F is a paaf.
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Theorem 3.3. Let f be an absolutely algebraic field of characteristic p > 0, κ

an arbitrary infinite cardinal. Then there exist a field F of characteristic p > 0

with Br(F ) = {0} and F ∗ ∼= f∗ ⊕ (⊕κQ). Furthermore, F is a paaf. Let L be

an algebraic closure of F . Then for any finite subextension K of L/F , we have

K∗ ∼= T (K∗)⊕ (⊕κQ). In addition, Br(K) = {0} and [K : F ] = [T (K∗)∪{0} : f ].

Proof. By Corollary 3.2, there exists a field, namely, F0 of characteristic p such

that F ∗0
∼= F∗p ⊕ (⊕κQ) and further F0 is a paaf. Since Char(F0) > 0, so F0 is not

Euclidean. Thus, by Proposition 2.4, Br(F0) = 0. Take the chain Fp = f0 ⊆ f1 ⊆
· · · ⊆ f of finite fields such that f =

⋃
fi and assume that M is the algebraic closure

of F0. Using the case 2 of Proposition 2.5, we obtain the chain F0 ⊆ F1 ⊆ · · · ⊆M
such that T (Fi

∗) = fi
∗. Moreover, Br(Fi) = {0} and F ∗i

∼= f∗i ⊕ (⊕κQ) with Fi

is a paaf. On the other hand, we have F ∗i = T (Fi
∗) ⊕ Ni where Ni is a torsion-

free divisible group. If a ∈ Ni, then a ∈ Fi+1 and we obtain a = bc for some

b ∈ f∗i+1 and c ∈ Ni+1. Now, since f∗i+1 is a finite group the divisibility of Ni+1

and Ni gives us b = 1 and hence Ni ⊆ Ni+1. Setting N = ∪Ni, we clearly have

f∗ = ∪T (Fi
∗) and N ∩ f∗ = {1}. Thus, N is a torsion free divisible group. It

is then easily checked that ∪Fi = (f∗ ⊕ N) ∪ {0}. Now, we put F = ∪Fi so

that F is a field and F ∗ ∼= f∗ ⊕ (⊕κQ), where T (F ∗) = f∗. If we show that F

is a paaf, then by Proposition 2.4 we have Br(F ) = {0}. To end this, assume

that K/F is a finite extension and take α ∈ K\F with the minimal polynomial

f(x) = xq + a0x
q−1 + · · · + aq over F with q = [F (α) : F ]. So, there exists some

natural number i such that a0, · · · , aq ∈ Fi and hence q = [Fi(α) : Fi]. By the case

2 of Proposition 2.5, Fi(α) = Fi(l), where l is the unique extension of degree q over

fi. This means that F (α) = F (l). Hence l * F and therefore T (F ∗) $ T (K∗), i.e.,

F is a paaf as desired, and the rest follows from Proposition 2.5. �

Using the uniqueness of extensions of absolutely algebraic fields, one may easily

check that for any two absolutely algebraic fields F0 ⊆ K0 of characteristic p > 0,

we can find the chain F0 = f0 ⊆ f1 ⊆ · · · ⊆ K0 of finite dimensional absolutely

algebraic fields over F0 such that K0 =
⋃
fi. Thus, by Propositions 2.4 and 2.5

and using the method of the previous theorem, we obtain

Corollary 3.4. Let F0 ⊆ K0 be two absolutely algebraic fields of characteristic

p > 0, and κ an infinite cardinal. Then there exist two fields, namely, F and K of

characteristic p > 0 such that F ⊆ K, Br(F ) = Br(K) = {0}, F ∗ ∼= F ∗0 ⊕ (⊕κQ),

and K∗ ∼= K∗0 ⊕ (⊕κQ).
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Remark 3.5. Assume that F $ K are two fields of characteristic p > 0. Further-

more, set F ∗ = T (F ∗)⊕N and K∗ = T (K∗)⊕M , where M and N are two groups.

If M = N , then K∗/F ∗ is a torsion group. Now, by Kaplansky’s Theorem (cf. [7,

p.245]), F and K are absolutely algebraic fields.
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