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Abstract. In this paper, we deal with the compositions of the integers. We

present the decompositions for both the composition sets and the odd compo-

sition sets of the integers. Thus the decompositions provide us to have not only
an alternative proof of some well known identies but also many new identities

for Fibonacci numbers and Lucas numbers. Thus we investigate the generating

functions for the product sum of the odd composition sets of the integers and
attain some functional equations.

1. Introduction

Fibonacci numbers and compositions of a positive integer are simply expressed
concepts but has many important features with many applications. Since these
concepts were defined, these concepts have attracted the attention of many scientists
and the results have made incredible contributions to almost all fields of sciences.
These discoveries further increased the importance of mathematical analysis and
number theory.

The Fibonacci numbers are numbers in which each number is the sum of the two
preceding ones, denoted by fn with the initial conditions, f0 = 0, f1 = 1. That is,
fn = fn−1 +fn−2 for n > 1. Moreover, in literature, there are many generalizations
of Fibonacci numbers and the other special numbers with many applications.

A composition of an integer n is a way of writing n as a sum of positive integers.
The individual summands of a composition called its parts. In the combinatorics,
a classical result about the number of compositions of n with an integer k parts is

given by the coefficient of xn of the polynomial or power series

( ∞∑
i=1

xi

)k

where
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|x| < 1. These coefficients exhibit fascinating mathematical properties, closely
resembling Binomial coefficients and have many useful applications ( [12], [17], [20],
[21], [22]).

By using Binomial properties, Hoggart and Lind ( [22]) showed the relationship
between a composition of an integer and Fibonacci numbers and proved that

(i) fn is the number compositions of an integer n into odd parts
(ii) f2n is the sum of the products of the parts over all compositions of an integer

n, i.e.

f2n =
∑

a1+a2+...+ak=n

a1a2...ak. (1)

Recently, there has been interested n–color compositions of an integer m is
defined as composition of m for which a part of size n can take on n colors
( [1], [2], [27]). Then by the identity 1, it is clear that the number of n–color
compositions of an integer m is f2m the 2mth Fibonacci number. Therefore,
we wonder about the sequence of the sum of the products of the parts over all
compositions whose parts are either odd or even. The main purpose of this paper
is to investigate what the sum of the products of the parts over all compositions
with odd parts is and interpret the relations among the generating functions, the
set theory, compositions of an integer, Fibonacci numbers and Lucas numbers.

At first, we decompose the set of compositions of an integer and so give some
very useful interpretations of the decompositions. Then we obtain an alternative
proof of the above result and well- known identity by using these decompositions
and reconstruct the connections between the composition of an integer and the
Fibonacci numbers. These decompositions also provide us to derive some new
identities and relations including the Fibonacci numbers and Lucas numbers. Next,
we investigate some generating functions for the sequence of the sum of the products
of the parts over all compositions whose parts are odd, the even term of the sequence
and the odd term of the sequence.

Then we acquire the sequence of the sum of the products of the parts over
all compositions whose each part is odd. Therefore, we focus on the generating
functions for the numbers of n–color compositions with odd parts and so we work
out their properties.

2. Decompositions of the Composition Sets of the Integers

In this section, we focus on decomposing the composition sets and the composi-
tion sets whose all parts are either odd or even. Then we find out some recurrence
relations and also obtain an alternative proof for some well know results by using
this decompositions.

We denote the composition set of an integer n as follows

Pn =
{
(a1, a2, ..., at) : a1 + a2 + ...+ at = n, ai, t ∈ Z+

}
.

It is well known that the number of elements of Pn is 2n−1.
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Now we recall the following operations for the element a = (a1, a2, ..., at) ∈ Pn

and an integer j;

(j ⊙ a) = (j, a1, a2, ..., at) ,

(j ⊕ a) = (a1 + j, a2, ..., at) .

Then we use the notations j ⊕ Pn and j ⊙ Pn for the following sets,

j ⊕ Pn = {j ⊕ a : a ∈ Pn},
j ⊙ Pn = {j ⊙ a : a ∈ Pn}.

Theorem 1. [6]Let n, r be positive integers (r ≤ n). Then the set Pn is disjoint
union of the sets (r ⊕ Pn−r) and (i⊙ Pn−i) for all i ∈ {1, . . . , r},

Pn = (r ⊕ Pn−r) ∪ (∪r
i=1(i⊙ Pn−i)) .

Proof. It is sufficient to prove the inclusion Pn ⊆ (r ⊕ Pn−r) ∪ (∪r
i=1(i⊙ Pn−i)).

Let x = (a1, . . . , am) ∈ Pn. If a1 ≤ r then x ∈ ∪r
i=1 (i⊙ Pn−i). Now assume

that r < a1. Then b = a1 − r and so define the element y = (b, a2, a3, . . . , am) ∈
Pn−r. Then it is clear that x = r ⊕ y ∈ (r ⊕ Pn−r).

It is also clear that (r ⊕ Pn−r) ∩ (i⊙ Pn−i) = ∅ for all i ∈ {1, . . . , r}. □

Corollary 1. [3]For a positive integer n, we have

Pn+1 = (1⊕ Pn) ∪ (1⊙ Pn).

Let n be a positive integer. It is clear that the number of the elements of
both (1 ⊕ Pn) and (1 ⊙ Pn) are equal, i.e. |1⊕ Pn| = |1⊙ Pn| and it follows that
|Pn+1| = 2 |1⊙ Pn| since these sets are disjoint. On the other hand, by |P2| = 2,
we have that |Pn| = 2n−1 by induction method. Therefore we have completed an
alternative proof by using the set theory for the well-known result as a result of the
Corollary 1.

Now we point out our attention to the composition sets whose parts are even or
odd. Let us use the notions

On = {(a1, ..., at) : a1 + ...+ at = n and ai is positive odd integer}
E2n = {(2a1, ...2at) : 2a1 + ...+ 2at = 2n and ai is positive integer}

and we call the set as an odd composition set On (even composition set En) of an
integer n. It is clear that the even composition set of an even integer 2n involved
to the composition set of an integer n and so the number of elements of the even
composition set of 2n is 2n−1.

At this moment, we focus on to decompose the odd composition set as union of
subset of odd combinations set of integers.

Theorem 2. For a positive integer n, we decompose the odd composition set of an
integer n as a disjoint union of subset of odd combinations set of integers;

O2n+1 = {(2n+ 1)} ∪
n−1⋃
i=0

(
(2i+ 1)⊙O2(n−i)

)
(2)
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O2n =
n−1⋃
i=0

(
(2i+ 1)⊙O2(n−i)−1

)
. (3)

Proof. Let n be a positive integer. It is enough to show one side inclusion for the
odd number 2n+ 1.

Let x = (2a1 + 1, ..., 2at + 1) and assume that t is different from 1. Then
n− 2a1 − 1 = 2m for an integer even and so the element b = (2a2 + 1, ...2at + 1) is
O2m. Therefore x = (2a1 + 1)⊙O2n−2a2

and this complete the proof. □

With the decomposition in Theorem 2, we prove again a well-known result using
set theory.

Corollary 2. The number of element of the odd composition set of an integer n is
the n.th Fibonacci number.

Proof. Let kn be the number of element of the odd composition set of an integer n.
Since the sets in Theorem 2 are disjoint, it is easy to prove that kn+1 = kn + kn−1

and k1 = 1, k2 = 1. □

As a conclusion of Theorem 2, we can reprove the well known identities [25, page
92]

f2n+1 = 1 +

n∑
i=1

f2i

f2n =
n−1∑
i=0

f2i+1

for both the even and odd Fibonacci number.

3. Product Sum Function

By the motivation of the identity 1, we interested in the sequence of the sum of
the products the parts over all compositions. In this section, we define function from
compositions set to integer to obtain some number sequences and then interpret the
relations among the set theory, the compositions of an integer, Fibonacci numbers
and Lucas numbers. Thus we attain an alternative proof for the identity 1.

3.1. The composition set of the integers. Now we establish the function from
the composition sets to positive integers defined by

Tn := T (Pn) =
∑
a∈Pn

ā.

We call Tn = T (Pn) as the product sum of the composition set Pn (or the
product sum of the integer n). For n = 0, we may assume that T0 = 1.

We give an easy numeric example with the new notions;
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Example 1. Let n = 4. Then it follows that

P4 = {(4), (1, 1, 1, 1), (1, 1, 2), (1, 2, 1), (2, 1, 1), (2, 2), (3, 1), (1, 3)}
and T4 = T (P4) = 21.Moreover, it follows

1⊙P4 = {(1, 4), (1, 1, 1, 1, 1), (1, 1, 1, 2), (1, 1, 2, 1), (1, 2, 1, 1), (1, 2, 2), (1, 3, 1), (1, 1, 3)}

1⊕ P4 = {(5), (2, 1, 1, 1), (2, 1, 2), (2, 2, 1), (2, 3), (3, 1, 1), (3, 2), (4, 1)}
and so P5 = (1⊙ P4) ∪ (1⊕ P4). Then T5 = T (P5) = 55.

By using Theorem 1, we develop a recurrence for the product sum of the com-
position sets.

Theorem 3. For a positive integer n, we have

Tn+1 = Tn +

n∑
i=0

Tn−i. (4)

Proof. For an element a ∈ Pn+1, there is b = (b1, b2, ..., bl) ∈ Pn such that either
a = 1⊙ b = b or a = 1⊕ b and so a = 1⊙ b = b or a = 1⊕ b = (b2....bl) + b. Hence
we have that

T (1⊙ Pn) =
∑

1⊙b∈1⊙Pn

b = Tn.

Moreover, it follows that

T (1⊕ Pn) =
∑
a∈Pn

(1 + a1).a2.a3...at

=
∑
a∈Pn

(a1.a2.a3...at) +

n∑
i=1

∑
(a2.a3...at)∈Pn−i

(a2a3...at)

= Tn +

n∑
i=1

Tn−i =

n∑
i=0

Tn−i.

Therefore, we have that

Tn+1 = T (Pn+1) = T (1⊙ Pn) + T (1⊕ Pn) = Tn +

n∑
i=0

Tn−i.

Hence we have completed the proof. □

By using the recurrence relation Identity 4, we gain the generating function
for the product sum of the positive integers. From [25], we recall the generating
function for even Fibonacci numbers is that

f(x) =
x

1− 3x+ x2
=

∞∑
n=1

f2nx
n

Thus we give an alternative proof of the result of Hoggart and Lind in [22].



COMPOSITIONS OF INTEGERS AND FIBONACCI NUMBERS 183

Theorem 4. The generating function of the product sum of the positive integer is
∞∑

n=1

Tnx
n =

x

1− 3x+ x2
.

i.e. The product sum of the positive integer n is nth even Fibonacci number

Proof. Let h(x) =
∑∞

n=1 Tnx
n. Then

h(x) = x+
∑
n=1

Tn+1x
n+1

= x+ x
∑
n=1

(
Tn +

n∑
i=0

Tn−i

)
xn

= x+ xh(x)− x2h(x) + 2xh(x).

Thus we get the function as

h(x) =
x

1− 3x+ x2
.

□

As a result of Theorem 3 and Theorem 4, we obtain the known identity [25, Page
92- Identity 5.3] for odd Fibonacci numbers and also prove a new identities for
Fibonacci numbers in the following;

Theorem 5. Let n,m be positive integers. Then we have

f2n+1 = 1 +

n∑
i=1

f2i (5)

f2n = n+

n−1∑
i=1

(n− i)f2i. (6)

Proof. By Theorem 3, we have the recurrence

Tn+1 = Tn +

n∑
i=0

Tn−i. (7)

and it follows that Tn+1 = T0 + Tn +

n∑
i=1

Ti. Thus we gain that

f2(n+1) = 1 + f2n +

n∑
i=0

f2(n−i)

Since f2n+1 = f2n+2 − f2n, we have proved the identity 5.
Now we decompose Pn to get some new equations for the Fibonacci numbers.

For an integer i, we define the set

(i⊙ Pn−i) = {(i, a1, a2, ..., at) : a1 + a2 + ...+ at = n− i, ai, t ∈ Z+}.
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Then it is easy to check that

Pn = ∪n
i=1 (i⊙ Pn−i)

and also for all i, j with i ̸= j, it follows that (i⊙ Pn−i)∩(j ⊙ Pn−j) = ∅. Therefore
it follows that

T (i⊙ Pn−i) =
∑

(a1,a3...at)∈Pn−i

i.a1.a3...at = iT (Pn−i) = iTn−i

and so

Tn = T (Pn) =

n∑
i=1

T (i⊙ Pn−i) =

n∑
i=1

iTn−i =

n−1∑
i=0

(n− i)Ti. (8)

Thus the we complete the proof. □

Theorem 6. Let n,m be positive integers (m ≤ n). Then we have

f2n − f2m =

n−m∑
i=1

if2(n−i) + (n−m)

m∑
i=1

f2(n−i) (9)

f2n−1 − f2m−1 =

n−m∑
i=1

f2(n−i). (10)

Proof. For any integers n, r we get that

f2n − f2(n−r) =

r∑
i=1

if2(n−i) + r

n−r∑
i=1

f2(n−i)

and so substituting m = n− r, we acquire the identity 9.
By Theorem 3, we have the recurrence

Tn+1 = Tn +

n∑
i=0

Tn−i. (11)

and it follows that
n−m∑
i=1

Tn−i =

n−1∑
i=m

Tn +

m−1∑
i=1

Tn −
m−1∑
i=1

Tn

=

n−1∑
i=1

Tn −
m−1∑
i=1

Tn = f2n−1 − f2m−1

Thus we achieve the identity 10. □

By by Theorem 5 we have the following equation

f2n+2 = 1 + n+ f2n +

n−1∑
i=1

(n− i+ 1)f2i



COMPOSITIONS OF INTEGERS AND FIBONACCI NUMBERS 185

and we also obtain

f2n+3 = n+ 2 + 2f2n +

n−1∑
i=1

(n− i+ 2)f2i.

For an integer r, we have

f2n+r = (f2n + 1)fr + nfr−1 +

[
fr−1

n−1∑
i=1

(n− i)f2i + fr

n−1∑
i=1

f2i

]
= frf2n+1 + fr−1f2n.

Therefore we just gain the combinatorial proof of the Honsberger’s formula by using
the compositions of an integer.

Corollary 3. For positive integers n,m, we have

f2n+2m = f2mf2n+1 + f2m−1f2n

f2n+2m+1 = f2m+1f2n+1 + f2mf2n.

Corollary 4. Let n be positive integer. Then we have

f4n = f2nf2n−1 + f2nf2n+1 (12)

f4n+1 = f2
2n + f2

2n+1 (13)

f4n+2 = f2nf2n+1 + f2n+1f2n+2

f4n+3 = f2nf2n+2 + f2n+1f2n+3

Proof. It is clear from Corollary 3. □

Let ln be the n th term of Lucas sequence, defined by l0 = 2, l1 = 1, and ln
= ln−1 + ln−2, n > 3. Also, one of the well-known relation between Fibonacci
numbers and Lucas numbers is

ln = fn−1 + fn+1. (14)

Thus by using the identity 13 and Cassini’s formula, we obtain

f4n+1 = f2
2n + 1 + f2nf2n+2

= f2nl2n+1 + 1

and it follows that

f4n+2 = f4n + f4n+1 = f2n(l2n + l2n+1) + 1

= f2nl2n+1 + f2.

Therefore, we just gain the following identity which is the general form of the well
known result ( [25, page 90]).

Corollary 5. For positive integers r, n, we have the equality

f4n+r = f2nl2n+r + fr.
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Theorem 7. For a positive integer n, we have the identities for Lucas numbers

l2n+1 = 2n+ 1 +

n−1∑
i=1

l2i+1(n− i), (15)

l2n = 3n+ 1 + f2n−2 +

n−2∑
i=1

(2f2i + (n− 1− i)l2i+1) . (16)

Proof. By Theorem 5, we get the following result

f2n = n+

n−1∑
i=1

(n− i)f2i.

Thus,

l2n+1 = f2n + f2n+2

=

[
n+

n−1∑
i=1

(n− i)f2i

]
+

[
n+ 1 +

n−1∑
i=0

(n− i)f2(i+1)

]
and so we have proved the identity 15.

For the second the identity, it is known that

f2n−1 = 1 +

n−1∑
i=1

f2i. (17)

and

l2n−2 = f2n−3 + f2n−1 . (18)

Then we gain the equation

l2n−2 = 2

[
1 +

n−2∑
i=1

f2i

]
+ f2n−2.

On the other hand, by the identity 15, we get

l2n = 2n+ 1 + f2n−2 +

n−2∑
i=1

(2f2i + (n− 1− i)l2i+1)

= 3n+ 1 + 2f2n−2 +

(
n−2∑
i=2

(2n+ 1− 2i)f2i

)
.

□

Corollary 6. Let n, r be positive integers. Then we have

l4n+r = f2nl2n+(r−1) + f2n+1l2n+r
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3.2. The odd composition set of the integers. Now we focus on the combi-
nations of an integer whose each part is either odd nor even and we reach to the
main goal of the paper which is to investigate the product sum of both an odd and
even composition of an integer n.

Let us define the number sequence such as

on : =
∑
a∈On

ā (19)

en : =
∑
a∈En

ā. (20)

One may compute the sequence as

o1 = 1, o2 = 1, o3 = 4, o4 = 7, o5 = 15, o6 = 32, o7 = 65, o8 = 137

e2 = 2, e4 = 16, e6 = 48.

By using the decomposition of an odd composition of an integer n, we figure out
a recurrence relations for the product sum of an odd composition of an integer n.

Theorem 8. For a positive integer n ≥ 1, we have the recurrence relations for
both an even and an odd term of the product sum of an odd composition of an
integer

o2n+2 = o2n+1 + 2o2n + o2n−1 − o2n−2 (21)

o2n+3 = 3o2n + 3o2n+1 − o2n−2. (22)

Proof. Let n be an positive integer. Then we apply the the definition of the product
sum function to the decomposition in Theorem 2 and so we get

o2n+1 = 2n+ 1 +

n−1∑
i=0

∑
b∈O2(n−i)

(2i+ 1)b

= 2n+ 1 +

n−1∑
i=0

(2i+ 1)o2(n−i)

and it also follows that

o2n+3 = 2 + o2n+2 +

(
2n+ 1 +

n−1∑
i=0

(2i+ 1)o2(n−i)

)
+ 2

n−1∑
i=0

o2(n−i)

= 2 + o2n+2 + o2n+1 + 2

n∑
i=1

o2i.

When we compute the difference between o2n+3 and o2n+1, we get the recurrence
for the odd term of the product sum of an odd composition of an integer n

o2n+3 = o2n+2 + 2o2n+1 + o2n − o2n−1. (23)
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On the other hand, by the decomposition in Theorem 2, we point out the recurrence
for the even term of the product sum of an odd composition of an integer n as

o2n =

n−1∑
i=0

(2i+ 1)o2(n−i)−1.

Then we compute

o2n+2 = o2n+1 +

n−1∑
i=0

(2i+ 1 + 2)o2(n−i)−1

o2n+2 = o2n+1 + o2n + 2

n∑
i=1

o2i−1.

By the difference between o2n+2 and o2n+2, we obtain the recurrence for the even
terms

o2n+2 = o2n+1 + 2o2n + o2n−1 − o2n−2.

By substituting o2n+2 in the identity 23, we figure out

o2n+3 = 3o2n + 3o2n+1 − o2n−2

This completes the proof. □

Theorem 9. The generating function for the product sum of an odd composition
sets is

U(x) = 1 + x2 (x+ 1)
−2x+ x2 − 1

x+ 2x2 + x3 − x4 − 1
,

where |x| < 1.

Proof. For an integer n, we have the recurrence relations for either an even or an
odd term of the product sum of an odd composition of an integer

o2n+3 = 3o2n + 3o2n+1 − o2n−2

o2n+2 = o2n+1 + 2o2n + o2n−1 − o2n−2.

Let U(x) =
∞∑

n=1
onx

n = 1 +
∞∑

n=1
o2nx

2n +
∞∑

n=1
o2n+1x

2n+1 be the generating

function for the product sum of an odd composition of integers and so it is enough
to investigate

A(x) =
∑
n=1

o2nx
2n

B(x) =
∞∑

n=1
o2n+1x

2n+1.

By using the recurrence identity 22, it is easy to compute that

(1− 3x2)B(x) = x3(3− x2)A(x) + 4x3. (24)
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Similarly it is also easy to compute

A(x) =
x
(
x2 + 1

)
(x2 − 1)

2 B(x) +
x2
(
x2 + 1

)
(x2 − 1)

2 , (25)

due to the recurrence identity 21. Then combining the equations 24 and 25, we
figure out both A and B and so it follows that

B(x) = −x3 5x2 − 6x4 + x6 − 4

(x+ 2x2 + x3 − x4 − 1) (x− 2x2 + x3 + x4 + 1)

A(x) = x2

(
x2 + 1

)2
(x− 2x2 + x3 + x4 + 1) (−x− 2x2 − x3 + x4 + 1)

.

Therefore we investigate the generating function

U(x) = 1 + x2 (x+ 1)
−2x+ x2 − 1

x+ 2x2 + x3 − x4 − 1
.

□

Moreover, we study out the generating function for either an odd or even term
of product sum of an odd composition.

Theorem 10. The generating function for the either an odd or an even term of
product sum of an odd composition sets are

O(x) = −x
5x− 6x2 + x3 − 4

x4 − 5x3 + 4x2 − 5x+ 1
,

E(x) = x
(x+ 1)

2

x4 − 5x3 + 4x2 − 5x+ 1
,

where |x| < 1.

Proof. Let

E = E(x) =
∞∑

n=1
o2nx

n

O = O(x) =
∞∑

n=1
o2n+1x

n.

be the generating function for the either an odd or an even term of product sum
of an odd composition sets. Then by using the recurrence identity 21 and 22, we
compute

(1− 3x)O = x(3− x)E + 4x

and due to the recurrences, we compute

E =
x (x+ 1) (O + 1)

(x− 1)
2 =

(
x2 + x

)
(x− 1)

2 O +

(
x2 + x

)
(x− 1)

2 .

Therefore we figure out the generating function for the either an odd or even term
of product sum of an odd composition and this completes the proof. □
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