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Abstract

In this paper, we study the diffusion equation with conformable derivative. The main goal is to prove the convergence
of the mild solution to our problem when the order of fractional Laplacian tends to 17. The principal techniques of
our paper is based on some useful evaluations for exponential kernels.
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1. Introduction

In this paper, we are interested to study the following problem

Coa

8?\1 + (=A)°v(x,1) = F(x,1), (x,1) € Qx(0,7), (.1

vix,t)=0, xe€0Q, t€(0,T),

with the initial condition
v(x,0) = vp(x), x €, (1.2)

where vy and F are the input data. The symbol (-A)*, s > 0 says that the fractional Laplacian which is defined later.
Here Q c RN (N > 1) is a bounded domain with the smooth boundary dQ, and T > 0 is a given positive number. The
above equation has various applications in areas such as the harmonic oscillator, the damped oscillator and the forced
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oscillator (see [3])), electrical circuits (see [15]), chaotic systems in dynamics (see [6]), projectile motion (see [[7]). Our

paper is one of the braches of directions about fractional PDEs, see [[15} 116} 17, (18 20].
Coa

The symbol o is understood as the conformable derivative. Let us now give a clear definition of conformable

derivative on the Banach space. Let us given B is a Banach space, and f : [0,00) — B. Let 2‘97: be the conformable
derivative of order 0 < @ < 1 which is given by

L) _ ST = )

ot

in B,

e—0 €

for each t > 0. Some more details on conformable derivative can be found in [[1} 2} 8] [14} 9, [18]]. It is easy to see that
@ = s = 1, Problem (I.1)-(1.2) becomes the classical heat equation.

We mention now some previous results for conformable derivative. In [[12], an inverse problem for second bound-
ary with conformable diffusion is shown. In [[13]], Bayrak and his colleagues investigated approximate solution of the
time-fractional Fisher equation with small delay. In [10], the authors studied some nonlinear partial differential equa-
tions with conformable derivative. In [14], the authors focused on a mild solution of conformable fractional abstract
initial value problem.

The well-posedness of Problem (I.1)-(1.2) was established in [11]. Indeed, the paper [11] derived more clearly
the existence and the regularity of the mild solution of Problem (I.1))-(1.2). One of the highlights of our problem is the
occurrence the fractional Laplacian (—A)® for any 0 < s < 1. Our main goal in this paper is to study the limit problem
of the mild solution when s — 17. Up to now, there has not been any literature surveying the mentioned issue.
Our paper is the first result concerned with the limit problem for the fractional diffusion equation with conformable
derivatives. In order to overcome some complicated evaluations, we use some new techniques for the computations
for exponential functions.

2. Initial value problem

2.1. Premilinaries

Let us recall that the spectral problem

( - A)Sen(x) = /lf;en(x)’ xeD,
en(x) =0, x € 0D,

admits the eigenvalues 0 < 1} < Ap <--- < A, <... with 4, - oo as n — oo. The corresponding eigenfunctions are

en € H)(Q).
Next, Let a given positive number o > 0. Let us also define the Hilbert scale space as follows

H7(Q) = {a,z/ e L*(Q): Z 270, e,) < +oo}, 2.1

n=1

with the following norm [|y/[,;, ¢, = (2o, 27y, en>2)% :

2.2. The linear case

In this section, we focus the following initial value problem (I.T)) under the linear case with the initial condition
(T.2). Here v( and source function F are defined later.
In order to find a precise formulation for solutions, we consider the spectral decomposition

(o8]

ve(x, 1) = Z (L ve(x, t)en(x)dx)en(x).

n=1
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Thanks for the work [[11], we get the following equality
f ve(x, e, (x)dx = exp( - a_lt"/lf,) f vo(x)e, (x)dx
Q Q
f
+ f 0" exp (- a7 - M)A f F(x,0)eq(x)dx)do (2.2)
0 Q
Then the mild solution to problem (I.1)—(1.2) is defined by
ve(x, 1) Z ‘)(f vo(x)en(x)dx)en(x)
pr Q
Z (f g1 exp ( @ _ 90)/1;)([ F(x, Q)en(x)dx)de)en(x). 2.3)
=1 Q
Here 0 < s < 1.
Lemma 1. Let 0 < s < 1. Then we have the following inequality
A= <Cm)A ™1 -9)", A, <1 2.4)
and
=, < Com)AL™1 = 5", 2, > 1. (2.5
Proof. If A4, < 1 then we get that the following bound
1
= = 25 = 25 (1= exp (= 1 =y 10g()
n
. 1
< Cm)A,(1 — )" logm(/l—) < Cm)A ™1 —s)", (2.6)
n
where we have used the inequality 1 — e™* < C(m)Z".
If A, > 1 then we get that the following bound
1
/151 —An| = Ay _/l}i = /ln(l _eXp(_ (1- S)log(/l_)))
n
< Cm)Au(1 = )" log'"( ) < C(m)A, ™" (1 = s)™. 2.7)
O
Theorem 1. Let vy € H'™"*P(Q) and F € L®(0, T; H*P7™(Q)) for any p > 0. Then we get
[vs = v eoraEr@) = CmT,a)d - s)m ||V0||H17m+p(g> + ”F'|L°°(O,T;H1+P""(Q))) (2:8)
forany p > 0.
Proof. The mild solution of Problem (I.1)-(1.2)) with s = 1 is given by
V¥, 1) = Z exp( —a! t“/ln)( f vo(x)en(x)dx)en(x)
n=1 Q
o0 !
+ Z ( f 0" exp (- a7 (" - 074, )( f F(x, H)en(x)dx)de)en(x). (2.9)
0 Q

3
Il
—_
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By subtracting both sides of the two expressions above, we get the following difference

vs(x, 1) = v (x, 1)

= i [exp ( - a/_lt“/lfl) - exp( - a/_lta/ln)](f vo(x)en(x)dx)en(x)

Q

+ Z ( f 0" [exp (= (¢ = M5 —exp (- a7 - M)A |( fQ F(x, G)en(x)dx)dﬁ)en(x)
= Bi(x,1) + By(x, ). (2.10)

Let us first treat the quantity B;. Using Parseval’s equality and the inequality [e™ — e~?| < |a — b| for any a, b > 0, we
find that

1B1C Dl = Z Allexp(— a1 ay) —exp (- M,,)]z( fg vo(¥)en(¥)d)

a2 Z /12p ( f vo(x)e,,(x)dx)2
— o)

/lS

P Z /12p Ay - f vo(x)e,,(x)dx)2
A,<1

a2 Z 2P - f vo(x)e,,(x)dx)z. @2.11)
A,>1

In view of Lemmal/I] we derive that

” B(., t)”HP(Q) < Cma227(1 — 5> Z /lis—zmﬂp( L o (x)dx)2

1=l
+ Cm)a 221 — s)" Z e f vo(x)e,,(x)dx)z
>l Q
< Clma2(1 - 7 g ;P_W(Q) + HVOH;_W(Q)). 2.12)
Since the fact that
”vo ’Hs -mp(Q) < Cls,m, p)”vOHHmeg)
we know that the following estimate
181Dl < Clms. pra 0= "o, (2.13)

Let us to study the second term “Bz(., t)||H,, Indeed, we get that

(D)

B2, t)“]lz-]IP(Q)

[e0)

t 2
2p v—1 _ ol paygys e pa
S r( [[ o oo =g -esp(=o e - [ resosya

n=1

Ms

i [ e (~a e - e ( - )[( [ Fsoaian e
0 Q

1l
—_

n

By applying the inequality [e™ — e™?| < |a — b|, a,b > 0 we derive that

exp( —a (- g - exp( —a N - 0“)/1,1) <o l(1® - 0%

4 -

2.15)
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Hence, we get that
Bao Py < e [ (o1~ S e~ 0 f([ F dx) d 2.16
B2 Dl < —5—| ] €70 -6 Zl W= Al (] P 0enxdx) do (2.16)
By looking at Lemmal(I] we know that
00 2l s 9 2
Z/l,, = (| Fx.0)en(x)dx)
n=1 Q
2p|ys 2 2
- Z AN = | (| Fx.0)en(x)dx)
1<l Q
) 2 2
+ Z A=l ( f F(x,0)en(x)dx)
A1 £
- 2
< Cm)(1 — )" Z e f F(x, 0)en(x)dx)
1<l Q
_ 2
+ C(m)(1 — s)*" Z e f F(x,0)e,(x)dx) . (2.17)
A>1 Q
Since the fact that s < 1, we follows from the latter estimate that
s 2 2 2
Dol -l ( f F(x, 0)ea(x)dx) < Clm)(1 = 57" F(.,0) . (2.18)
n=1 Q
Combining (2.16)), (2.18)), we obtain that the following bound
B 2 <C T 1 2m tga—l 13 9(12 F(.0 2
|| 2("t)||Hp(Q) = (ma ,(Y)( - S) 0 (t - ) (" ) HI+p-m(Q)
t
2 2 -1 2
< Cm, T, )1 = " | Fl 0 psermi fo 0"~ (1" - 67)2do). (2.19)
Set z = @ then dz = a#*~'d#. Then we obtain that
t Y t3a
f 011 - 97)%do = f (1° = 2)%dz = — (2.20)
0 0 3
This implies that
2 2, 2
B2 0[5y < COm T, @)X = || F[ 0 noromccryy (2.21)
which implies that
B2, )|y < COM T, @)X = Y| F| g sy (2.22)
Combining (2.13) and (2:22), we derive that
5oy = v Dy < 1B1C D sy + B2 Do
< C(m’ T’ a/)(l N s)m(||v0“Hl—m+p(Q) + ||F|'LD"(O,T;HHP”"(Q))). (223)
Since the right-hand side of (2.23) is independent of 7, we derive that
s =7 oo gy S Clm. To@)(1 = s)m(HvoHHl_w(Q) T 12/ (2.24)
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3. Conclusion

In this work, the diffusion equation with conformable derivative, and fractional Laplacian tends to 17. We proved
the convergence of the mild solution, while the principle techniques is exponential kernels.
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