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Abstract

In this paper, we propose and study convergence of neutrosophic random variables. Besides, some relations
among these convergences are proved. Besides, we define the notion of neutrosophic weak law of large number
and neutrosophic central limit theorem, also some applications examples are shown.
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1. Introduction and Preliminaries

The notion of neutrosophic logic is an extension of intuitionistic fuzzy logic by putting indeterminacy
item (J) where 32 = J,...,0" = 3,0.3 = 0;n € N and J7! is undefined (see [23], [36]). Neutrosophic
logic has plenty of applications in many areas of sciences including multicriteria decision making [33], [22],
[29], machine learning [6], [31], intelligent disease diagnosis [34], [I1], communication services [8], pattern
recognition [32], social network analysis and e-learning systems [24], physics [38], sequences spaces [15]
and many others. Neutrosophic logic has helped many multicretia decision-making problems efficiently like
finding credit rating, personal selection, among other. [26], [27], [28], [I]. For more concepts associated to
neutrosophic theory, we refer the reader to [15] 17, @, [16, 18, 10].

On the other hand, the idea of neutrosophic probability measure as a function 98 : ) — [0,1]® was
originally defined by F. Smarandache where il is a neutrosophic sample space, and defined the probability
function to take the form MP(S) = (ch(S), ch(neutS), ch(antiS)) = (pu,w, o) where 0 < p,w,p < 1 and
0<pu+w+o0<3[37.

Recently, Bisher and Hatip [41] defined the concept of neutrosophic random variables in which they
showed some basics properties. later on, Granados [13] showed new notions on neutrosophic random variables.
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Also, Granados and Sanabria [14] studied independence neutrosophic random variables. Taking into account
these notions, Granados et al. [19] studied some neutrosophic probability distribution based on neutrosophic
random variables parameters. Also, Granados [20] applied discrete random distribution such as the uniform
discrete distribution, Bernoulli distribution, binomial distribution, geometric distribution, negative binomial
distribution, hypergeometric distribution and Poisson distribution by using neutrosophic random variables.
Additionally, Mustafa [25] introduced the concept of a neutrosophic stable random variable. They presented
both the neutrosophic probability distribution function and the neutrosophic probability density function,
and the convolution with the neutrosophic concept.

In this paper, we procure formulas for convergence neutrosophic random variable Xo and prove some
relations among them.

Throughout this paper, the set of real number will be denoted by R or R, € denotes the set of sample
space and w denotes an event of the sample space, Xy and ) denote neutrosophic random variables.

2. Preliminaries
In this section, we show some definitions which will be useful for the development of this paper.

Definition 2.1. (see [35]) Let X be a non-emply fized set. A neutrosophic set A is an object having the
form {x, (v2A(x), XA(z), pA(x)) : © € X}, where vA(x), \A(z) and pA(z) denote the degree of membership,
the degree of indeterminacy , and the degree of non-membership respectively of each element x € Xto the set
2A.

Definition 2.2. (see [3]) Let 8 be a field, the neutrosophic filed generated by 8 and J is denoted by (RU7J)
under the operations of &, where J is the neutrosophic element with the property 3% = 7.

Definition 2.3. (see [36]]) Classical neutrosophic number has the form q+ gJ where q,g are real or complex
numbers and J is the indeterminacy such that 0.3 = 0 and J% = J which results that 3* = J for all positive
integers n.

Definition 2.4. (see [37]) The neutrosophic probability of event 2 occurrence is P (A) = (ch(A), ch(neut), ch(anti
(T,73,F) where T,7,F are standard or non-standard subsets of the non-standard unitary interval |70, 17].

The following results were introduced by [41].

Definition 2.5. Let us assume a real valued crisp random variable X which is given by:

X: Q=R
where Q) is the events space. By this, [{1] gave a neutrosophic random variable Xy as:
Xn: Q= R()
and
Xp=X4+7

where J represents the indeterminacy.

Theorem 2.6. Let us assume the neutrosophic random variable Xo = X + J where cumulative distribution
function of X is given by Fx(x) = P(X < z). Then, the following conditions are satisfied:

1. Fxm(x) == Fx(l‘ - j),
2. frxn(@) = fx(z—7).
Where Fx,, and fx,, are cumulative distribution function and probability density function of X&, respectively.

Theorem 2.7. Let us assume the neutrosophic random variable Xoy = X + J, expected value can be deter-
mined by:

E(Xq) = E(X) +7.
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3. Main Results

In this section, we study results that provide formulas for convergence neutrosophic random variables
Xq,. Besides, we find relations among them.

Definition 3.1. Let Xy, ,Xn,,... be a sequence of neutrosophic random wvariables, X, ,Xm,,... converges
point-wise to Xy if for each w € €,

lim Xg, (w) = Xn(w).

n—oo

. N.p.s
We denote this convergence as Xy, —L% Xy

Definition 3.2. Let Xo,,Xn,,... be a sequence of neutrosophic random wvariables, X, ,Xm,,... converges
almost sure to X if,

Py {w eN: nli_}ngofmn(w) = %m(w)} =1.

. N.a.
We denote this convergence as Xq, ——— X

Following results follow from Definition [3.2] therefore their proofs are omitted.

Proposition 3.3. If Xy, Nas, X, then aXqm, +0 Neas aXym + b where a,b € R.

Proposition 3.4. If Xy, Nas, X and Y, Nas , Yy, then

1. Xy, + D, Nas Xor + Do,

N.a.s
2. X, D, —— XnYm-

Proposition 3.5. Xo, Nas , Xy if and only if for any € > 0,

P(|Xm, — Xn| >¢) =0,

for any valued of n.

oo
Proposition 3.6. If for any ¢ > 0, Z‘p(\f{‘nn — Xqm| > €) < 00, then X, N.a.s Xor.

n=1

Definition 3.7. Let Xy, Xy,, ... be a sequence of neutrosophic random variables, Xy, , Xm,, ... converges in
probability to X if,

lim P{we Q: [Xy, (w) — Xn(w)| >} =0.
n—oo
We denote this convergence as Xop, % Xon.
Following results follow from Definition [3.7], therefore their proofs are omitted.
Proposition 3.8. If Xy, BEAC AN X, then aXo;, + b BEACAN aXym + b where a,b € R.
oy N.p N.p
Proposition 3.9. If Xpn, —— Xq and Y, —— Y, then

1. X, + D, % Xor + Do,
N.
2. Xq, Do, —— XD

Proposition 3.10. If Xy, — " Xy, then X2 —2 X2 .
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Definition 3.11. Let Xy, ,Xm,, ... be a sequence of neutrosophic random variables, Xy , Xm,, ... converges
in mean to Xy if,

lim F|Xq, — Xm| = 0.

n—o0

‘ N. N.E
We denote this convergence as Xo, — s Xy or X, — Xnm.

Following results follow from Definition therefore their proofs are omitted.
Proposition 3.12. If Xy, EEALLN Xy, then aXy, + b Nm aXym + b where a,b € R,

Proposition 3.13. If Xn, —~"™ Xy and Vo, —2s Doy, then X, + Do, —"s Xy + Doy

Definition 3.14. Let Xy, ,Xm,,... be a sequence of neutrosophic random variables, Xy ,Xn,,... converges
in mean-square to Xy if,

lim E|Xn, — Xn| =0.
n—oo

. N.m.s
We denote this convergence as Xoq, ——— Xor.

Following results follow from Definition therefore their proofs are omitted.

N.m.s

Proposition 3.15. If Xon, ——— Xy, then aXy, +0 Nms aXg + b where a,b € R.

N.m.s N.m.s

Proposition 3.16. If Xy, BELL N X and Yo, ——— D, then Xy, + Yo, ——— X + Y.

Definition 3.17. Let Xy, Xm,,... be a sequence of neutrosophic random variables, Xy , Xm,, ... converges
in distribution to X if for every x in which Fxy(x) is continuous,

lim Fy, () = Fxy(z).

n—oo

. N.d
We denote this convergence as Xoq, ——— Xm

The following result follows from Definition therefore its proof is omitted.

Proposition 3.18. If X5 —%5 X and Vo, — s Yoy, then

- f X, N4, cXy, where c € R,

: If%mn—i-c%%m—i-c, where ¢ € R,

N.d
Xy D, —— X+ D,

1

2

3. If X, —245 0, then Xor, — 2 0,

4
N.d

5. an@m“ —_— %mﬁ)m

Next, we show some relations among convergences defined above.

Proposition 3.19. Let d € R. If Xy, —%s d, then Xy, —2 d.

Proof. Neutrosophic distribution function of ¢ is defined as follows

0 ifr<c+17,
Fxm(x):
1 ifz>c+7,
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which has one point of discontinuity in x = d where d = ¢+ I € R. Consider Fx, () — Fy(z) for z # d.
For any £ > 0 we have

P(|:fmn—d| ZS)ZP(%m“ Sd—&)-}-P(%mn Zd-f—é‘)
< P(Xn, <d—¢)+ P(Xq, >d+§)

= Py, (d—2) + 1= Fr,, (c+2).

Therefore, ILm PB(|Xm, —d| >¢)=0. O

Theorem 3.20. If Xy, —V% Xy, then Xy, — 2 Xor.

Proof. Let € and for any n € N, define

oo

A= (1 Zn, — Xn| > 2).

Since (|Xm, — Xm| > ¢) C A, then PB(|Xn, — Xn| > ) < P(A,). Hence,
lim P(|Xyn, — Xm| >¢) < lim P(A,)
n—oo n—o0

=% (Jim 4,)

(0

=PB(| XN, — Xn| >¢€), for eachn>1
— g ( lim Xy, # XN>

n—oo
=0.

Remark 3.21. It is easy to check that converse of Theorem [3.20] need not be true.

Proposition 3.22. If Xy, M) Xy, then X, N_m> X

Proof. 1t follows from E?|Xq, — Xq| < E|Xm, — X|? by using Jensen’s inequality and Cauchy-Schwarz’s
inequality. O

Remark 3.23. [t is easy to check that converse of Proposition|3.29 need not be true.
Theorem 3.24. If Xy, —~" Xy, then Xy, — 2 Xar.
Proof. For each € > 0, define A, = (|Xn, — Xm| > ¢). Then,

E|Xy, — Xn| = E(|Xn, — Xn[la,) + E(|Xn, — Xnl14,)
> E(|Xn, — Xn|la,)
> eP(|Xm, — Xo| > €).

By hypothesis, lim E|Xqn, — Xn| = 0, therefore P(| Xy, — Xn| > ) — . O
n—oo

Remark 3.25. It is easy to check that converse of Theorem |3.24) need not be true.
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Theorem 3.26. If Xy, — 2 X, then Xy, —V s Xoy.

_ N. . : o
Proof. Consider Xy, —=— X and let 2 one point of discontinuity of Fxy (x). For any € > 0,

Fx‘nn (‘77)

P(Xm, < 7, |Xo, — X <) + P(Xor, < 7, |X;,, — Xm| > €)
<PEXn <7 +e) +P(| X, — Xm| > ¢).

Then, for any € > 0,

limsup Fx, (z) < Fy,,(z +¢).

n—oo
This implies,

limsup Fx, (z) < Fy,, (). (1)

n—oo

Now, we will show the another implication. For any € > 0,

Fro(a—¢) = P < 7 — )
=PEn<z—¢c,|Xn, —Xn| <e)+PEn <z —c¢, ‘%mn — Xm| > ¢)
<P(Xaor, <) +P(| X, — X| > €).
Then,
Fyy(x—¢) < hnrr_lgéf Fxy (7).
This implies,
Fy,(z) < lini}inf Fyy (7). (2)
By and , we have
Fx,,(z) < liminf Fyy () <limsup Fx, (z) < Fxy,(x).

n—00 n—o00

Remark 3.27. It is easy to check that converse of Theorem [3.26 need not be true.

The following diagram shows relations of convergence of neutrosophic random variables proved above:

N.m. N. N. N.d
%mn e X = .}:m“ —, X i%m“ ———Ii—> X = %mn —— Xq
fr

N.a.s
3691" _— fm

Theorem 3.28 (Skorokhod’s Neutrosophic Representation Theorem). Let {Xqm,,n > 1} and Xy be neu-

trosophic random wvariables on (0, F,P) such that Xy in neutrosophic distribution. Th_en,_ there exists a
probability space (Q, FPB), and neutrosophic random variables {YPm,,n > 1} and Yy on (Q, FP) such that,

L. {Yn,,n > 1} and Yn has the same neutrosophic distributions as {Xy,,n > 1} and Xy, respectively,

N.a.
2. Var, ——25 Yoy as n — 0.
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Proof. Tt proves similarly to random variables {X,,n > 1} and X. O

Theorem 3.29. If X, N %y and g : R — R is continuous, then g(Xy,) SELEIN 9(Xm).

Proof. By Skorokhod’s Neutrosophic Representation Theorem, there exists a probability space (€2, FB),

and {Ym,,n > 1}, Dor on (2, FP) such that Y, Neas VDm. Besides, form continuity of g, we have

{weQ: gV, () = gDn(w)} 2 {w € Q: Doy, (W) = Vm(w)}, thus
P({w € 2 [gDm, (@) = gDon(@)}) = B{w € 2 D, (w) = Vn(w))),
= P({w € Q: [gDar, (W) = gDn(w))}) > 1,
= g(Dm,) 5 g( Do),
= g(Vm,) — 9(Day).
]

Theorem 3.30. X, SELEIN X if and only if every bounded continuous function g : R — R, E(g(Xmn,) —
E(g(Xn)).

Proof. Consider X, Nd, Xyn. From Skorokhod’s Neutrosophic Representation Theorem, there exist
neutrosophic random variables {Q)m,,n > 1} and Yy such that P, Nas, Yy. From continuous mapping

theorem, it follows that g(Qm,) Nas , 9(Ym), since g is given to be continuous. Since g is bounded,
E(gDn,) — E(g(Yn)). Since, g(Ym,) has the same distribution as g(Xs,), and g(Ymn has the same
distribution as g(Xy), this implies that E(g(Xn,) = E(9(Xn)). O

Theorem 3.31. If X, SELEUIN X, then Cxy (1) — Cxy(t)-

Proof. If X, Nd, X, From Skorokhod’s Neutrosophic Representation Theorem, there exist neutrosophic
random variables {Q)m,,n > 1} and Yy such that P, Nas, Y. Thus,

cos(Ym,t) — cos(Pmt),

and
cos(Xm,t) — cos(Xmt).
As cos(+) and sin(-) are bounded functions, we have

E(cos(Ym,t)) + iE(sin(Ym,t)) — E(cos(Pmt)) + iE(sin(Ynt)),

then Oy, (t) — Cyy(t). So, we obtain Cxy (t) — Cxy(t). This follows from Skorokhod’s Neutrosophic
Representation Theorem since {Xgq, } and Xy have the same distribution as {9, } and Y, respectively. O

Next, we show a couple of theorems which lie from convergence of neutrosophic random variables, there-
fore their proofs are omitted.

Theorem 3.32. Let 0 < Xy, < X, < ... be a sequence of neutrosophic random variables which converges
almost sure to Xor. Then,

lim E(Xy,) = E(Xn).

n—oo

Theorem 3.33. Let Xor,, Xm,,... be a sequence of neutrosophic random wvariables in which ezists another
neutrosophic random variable Yy which is integrable such that |Xm,| < Ym, for n > 1. If lim Xy, = Xn
n—oo

a.s., then Xy and X, are integrable and

n—oo
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4. Applications

The first application comes to a crowning achievement in neutrosphic probability theory, the neutrosophic
weak law of large numbers. This theorem says that, in some sense, the neutrosophic mean of a large sample

is close to the neutrosophic mean of the neutrosophic distribution. Before to present the theorem, we first
2

mention that Chebyshev’s neutrosophic inequality is satisfied, i.e. P(|Xn —pn| >¢) < 0—2, where pum—p+7.
€
This can be verified as follows:

B[ Xoe — p]) = PIX+T — p = T[) = P(IX — pl),

by Chebyshev’s inequality, we have

[\

g

m(’:{_lﬂ >¢) < 2

Theorem 4.1 (Neutrosophic Weak Law of Large Numbers). If Xo,, ..., Xm, are i.i.d, then Xo, BEACN o,

where pm = pw+7J.

n

Proof. Assume that o < co. This is not necessary but it simplies the proof. Using Chebyshev’s neutrosophic
inequality,
- Var(Xy,) o2

P&, — pml > €) < =5 = T

which tends to 0 as n — oo. O

Example 4.2. Consider flipping a coin for which the probability of heads is p. Let X, denote the outcome
of a single toss (0 or 1) with an indeterminacy of [0.1,0.3]. Hence, p = P(Xm, = 1) = E(Xw,). The fraction
of heads after n tosses is Xym,. According to the neutrosophic law of large numbers, X, converges to p in
neutrosophic probability. This does not mean that Xo, will numerically equal p. It means that, when n is
large, the neutrosophic distribution of Xy, is tightly concentrated around p. Let us try to quantify this more.
Suppose the coin is fair, i.e. p = 1/2. How large should n be so that PB(0.4 < Xy, < 0.6) > 0.7? First,
E(Xn,) =p+3=1/2+[0.1,0.3] = [0.6,0.8] and Var(Xmn,) = [0.12,0.32]/n. Now, by using Chebyshev’s
neutrosophic inequality:

P04 < Xy, < 0.6) = P(| X, — pl <0.1)
— 1 (X, — ul > 0.1)

L, 12082 | p2.s)
n(0.1)2 n

The last expression will be larger than 0.7, if 1 — (12/n); n > 40 but, if 1 — (32/n); n > 106.7 .
If we make this exercise in a classical way, we will obtain that n = 84 and 84 € (106.7,00) € (40, c0)
which was the results obtained in neutrosophic way.

For the following application, we shall show that the sum (or average) of neutrosophic random variables
has a neutrosophic distribution which is approximately Normal.

Theorem 4.3 (Neutrosophic Central Limit Theorem). Let Xoy, for n € N be i.i.d with mean um (pn = p+73)
and variance o*. Then,

3 = Vn(Xn — pm)  Nd 300

o

where 3y ~ N(0,1).
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Proof. There are several ways to denote the fact that the neutrosophic distribution of 3, can be approxi-
mated be a normal. They all mean the same thing. Here they are:

3mn ~ N(j7 1)
2
— o
xmn ~ N(,U,sn, 7)
n
— 0‘2
xmn - /,Lfﬁ ~ N(07 Z)
Vn(Xg, — pm) = N(0,0%)

m ~ N(0,1).

(2

O

Example 4.4. Suppose that the number of errors per computer program has a neutrosophic Poisson distribu-
tion with mean [5.5,5.8]. We get 125 programs. Let Xy, ..., Xo,,, be the neutrosophic number of errors in the
programs. Let X be the neutrosophic average number of errors. We want to approzimate P(Xyn < [6.5,6.8]).
Let p = E(X,) = [5.5,5.8] and 0? = 5. Thus,

30— V125(%q, — [5.5,5.8]
Ny = J5
=5(Xm, — [5.5,5.8]) ~ N(0,1).

Where indeterminacy is [0.5,0.8]. Hence,
P(Xm, < [6.5,6.8]) = P(3n < [2,3.5]) = [0.94,0.98].

If we make this exercise in a classical way, we will obtain that P(3) = 0.96 € P(3m).

5. Conclusion

In this paper, we have defined and studied convergence neutrosophic random variable, some examples
were shown to support the results. For future work, it can be defined more formulas for neutrosophic laws of
large numbers (weak) and define the neutrosophic strong law of large numbers and more results for central
limit theorem for neutrosophic random variables can be obtained.

Funding

This research received no external funding.

Conflicts of Interest

The authors declare no conflict of interest.

Data availability statement

This manuscript has no associated data.

Acknowledgements

The authors are very grateful to the referees for their careful reading with corrections and useful com-
ments, which improved this work very much.



C. Granados, Adv. Theory Nonlinear Anal. Appl. 7 (2023), 178188 187

References

1]
2]
[3]
[4]
[5]
[6]
;
[9]
[10]
[11]
[12]

[13]
[14]

[15]
[16]
[17]
18]
[19]
[20]
[21]
[22]

23]
[24]

[25]
[26]

27]

[28]
[29]
[30]

31]

M. Abdel-Basset, N.A. Nabeeh, H.A. El-Ghareeb and A. Aboelfetouh, Utilizing Neutrosophic Theory to Solve Transition
Difficulties of IoT-Based Enterprises, Enterprise Information Systems, 14(9-10)(2019), 1304-1324.

R. Alhabib, M.M. Ranna, H. Farah and A. Salama, Some Neutrosophic Probability Distributions, Neutrosophic Sets and
Systems, 22(2018), 30-38.

R. Alhabib and A.A. Salama, The Neutrosophic Time Series-Study Its Models (Linear-Logarithmic) and test the Coefficients
Significance of Its linear model, Neutrosophic Sets and Systems, 33(2020), 105-115.

R. Alhabib and A.A. Salama, Using Moving Averages To Pave The Neutrosophic Time Series, International Journal of
Neutrosophic Science, 3(1)(2020), 14-20.

M. Ali, F. Smarandache, M. Shabir and L. Vladareanu, Generalization of Neutrosophic Rings and Neutrosophic Fields,
Neutrosophic Sets and Systems, 5(2014), 9-14.

J. Anuradha and V.S., Neutrosophic Fuzzy Hierarchical Clustering for Dengue Analysis in Sri Lanka, Neutrosophic Sets
and Systems, 31(2020), 179-199.

M. Bisher and A. Hatip, Neutrosophic Random variables, Neutrosophic Sets and Systems, 39(2021), 45-52.

A. Chakraborty, B. Banik, S.P. Mondal and S. Alam, Arithmetic and Geometric Operators of Pentagonal Neutrosophic
Number and its Application in Mobile Communication Service Based MCGDM Problem, Neutrosophic Sets and Systems,
32(2020), 61-79.

S. Das, R. Das, C. Granados, A. Mukherjee, Pentapartitioned neutrosophic Q-ideals of Q-algebra, Neutrosophic Sets and
Systems 41(2021), 53-63.

S. Das, R. Das, C. Granados, Topology on quadripartitioned neutrosophic sets, Neutrosophic Sets and Systems 45(2021),
54-61.

O. A. Ejaita and P. Asagba, An Improved Framework for Diagnosing Confusable Diseases Using Neutrosophic Based Neural
Network, Neutrosophic Sets and Systems, 16(2017), 28-34.

L. Esther Valencia Cruzaty, M. Reyes Tomald and C. Manuel Castillo Gallo, A Neutrosophic Statistic Method to Predict
Tax Time Series in Ecuador, Neutrosophic Sets and Systems, 34(2020), 33-39.

C. Granados, New results on neutrosophic random variables. Neutrosophic Sets and Systems, 47(2021), 286-297.

C. Granados and J. Sanabria, On independence neutrosophic random variables, Neutrosophic Sets and Systems, 47(2021),
541-557.

C. Granados and A. Dhital, Statistical Convergence of Double Sequences in Neutrosophic Normed Spaces, Neutrosophic
Sets and Systems, 42(2021), 333-344.

C. Granados, A. Dhital, New results on Pythagorean neutrosophic open sets in Pythagorean neutrosophic topological
spaces, Neutrosophic Sets and Systems 43(2021), 12-23.

C. Granados, Una nueva nociéon de conjuntos neutrosoficos a través de los conjuntos *b-abiertos en espacios topologicos
neutrosoficos, Eco Matematico 12(2)(2021), 1-12.

C. Granados, Un nuevo estudio de los conjuntos supra neutrosophic crisp, Revista Facultad de Ciencias Basicas 16(2)(2020),
65-75.

C. Granados, A.K. Das, B. Das, Some continuous neutrosophic distributions with neutrosophic parameters based on
neutrosophic random variables, Advances in the Theory of Nonlinear Analysis and its Applications 6(3)(2022), 380-389.
C. Granados, Some discrete neutrosophic distributions with neutrosophic parameters based on neutrosophic random vari-
ables, Hacettepe Journal of Mathematics & Statistics 51(5)(2022), 1442-1457.

K. Hamza Alhasan and F. Smarandache, Neutrosophic Weibull distribution and Neutrosophic Family Weibull Distribution,
Neutrosophic Sets and Systems, 28(2019), 191-199.

H. Kamaci, Neutrosophic Cubic Hamacher Aggregation Operators and Their Applications in Decision Making, Neutrosophic
Sets and Systems, 33(2020), 234-255.

W.B.V. Kandasamy and F. Smarandache, Neutrosophic Rings, Hexis, Phoenix, Arizona: Infinite Study, 2006.

M.M. Lotfy, S. ELhafeez, M. Eisa and A.A. Salama, Review of Recommender Systems Algorithms Utilized in Social
Networks based e-Learning Systems & Neutrosophic System, Neutrosophic Sets and Systems, 8(2015), 32-41.

A. Mustafa, O. Zeitouny, S. Alabdallah, Neutrosophic stable random variables, Neutrosophic Sets and Systems 50(2022),
420-430.

N.A. Nabeeh, M. Abdel-Basset and G. Soliman, A model for evaluating green credit rating and its impact on sustainability
performance, Journal of Cleaner Production, 280(1)(2021), 124-299.

N.A. Nabeeh, F. Smarandache, M. Abdel-Basset, H.A. El-Ghareeb and A. Aboelfetouh, An Integrated Neutrosophic-
TOPSIS Approach and its Application to Personnel Selection: A New Trend in Brain Processing and Analysis, IEEE
Access, 29734-29744, 2017.

N.A. Nabeeh, M. Abdel-Basset, H.A. El-Ghareeb and A. Aboelfetouh , Neutrosophic Multi-Criteria Decision Making
Approach for IoT-Based Enterprises, IEEE Access, 2019.

N. Olgun and A. Hatip, The Effect Of The Neutrosophic Logic On The Decision Making, in Quadruple Neutrosophic
Theory And Applications, Belgium, EU, Pons Editions Brussels, 2020, 238-253.

S.K. Patro and F. Smarandache, The neutrosophic statistical distribution, more problems, more solutions, Neutrosophic
Sets and Systems, 12(2016), 73-79.

R. Sahin, Neutrosophic Hierarchical Clustering Algoritms, Neutrosophic Sets and Systems, 2(2014), 19-24.



C. Granados, Adv. Theory Nonlinear Anal. Appl. 7 (2023), 178188 188

[32]

[33]
[34]
[35]

[36]
37]

[38]
[39]
[40]

[41]

M. Sahin, N. Olgun, V. Ulugay, A. Kargin and F. Smarandache, A New Similarity Measure Based on Falsity Value between
Single Valued Neutrosophic Sets Based on the Centroid Points of Transformed Single Valued Neutrosophic Numbers with
Applications to Pattern Recognition, Neutrosophic Sets and Systems, 15(2017), 31-48.

A. Salama, A. Sharaf Al-Din, I. Abu Al-Qasim, R. Alhabib and M. Badran, Introduction to Decision Making for Neutro-
sophic Environment Study on the Suez Canal Port, Neutrosophic Sets and Systems, 35(2020), 22—44.

G. Shahzadi, M. Akram and A.B. Saeid, An Application of Single-Valued Neutrosophic Sets in Medical Diagnosis, Neu-
trosophic Sets and Systems, 18(2017), 80-88.

F. Smarandache, Neutrosophic Set a Generalization of the Intuitionistic Fuzzy Sets, Inter. J. Pure Appl. Math., 2005,
287-297.

F. Smarandache, Introduction to Neutrosophic Statistics, USA: Sitech & Education Publishing, 2014.

F. Smarandache, Introduction to Neutrosophic Measure, Neutrosophic Integral and Neutrosophic Probability, Craiova,
Romania: Sitech - Education, 2013.

F. Yuhua, Neutrosophic Examples in Physics, Neutrosophic Sets and Systems, 1(2013), 26-33.

M.B. Zeina, Neutrosophic Event-Based Queueing Model, International Journal of Neutrosophic Science ,6(1)(2020), 48-55.
M.B. Zeina, Erlang Service Queueing Model with Neutrosophic Parameters, International Journal of Neutrosophic Science,
6(2)(2020), 106-112.

M.B. Zeina and A. Hatip, Neutrosophic random variables. Neutrosophic Sets and Systems, 39(2021), 44-52.



	1 Introduction and Preliminaries
	2 Preliminaries
	3 Main Results
	4 Applications
	5 Conclusion

