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Abstract

In this paper, we propose and study convergence of neutrosophic random variables. Besides, some relations
among these convergences are proved. Besides, we de�ne the notion of neutrosophic weak law of large number
and neutrosophic central limit theorem, also some applications examples are shown.
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1. Introduction and Preliminaries

The notion of neutrosophic logic is an extension of intuitionistic fuzzy logic by putting indeterminacy
item (I) where I2 = I, ...,In = I, 0.I = 0;n ∈ N and I−1 is unde�ned (see [23], [36]). Neutrosophic
logic has plenty of applications in many areas of sciences including multicriteria decision making [33], [22],
[29], machine learning [6], [31], intelligent disease diagnosis [34], [11], communication services [8], pattern
recognition [32], social network analysis and e-learning systems [24], physics [38], sequences spaces [15]
and many others. Neutrosophic logic has helped many multicretia decision-making problems e�ciently like
�nding credit rating, personal selection, among other. [26], [27], [28], [1]. For more concepts associated to
neutrosophic theory, we refer the reader to [15, 17, 9, 16, 18, 10].

On the other hand, the idea of neutrosophic probability measure as a function NP : Y → [0, 1]3 was
originally de�ned by F. Smarandache where U is a neutrosophic sample space, and de�ned the probability
function to take the form NP(S) = (ch(S), ch(neutS), ch(antiS)) = (µ,ϖ, ϱ) where 0 ≤ µ,ϖ, ϱ ≤ 1 and
0 ≤ µ+ϖ + ϱ ≤ 3 [37].

Recently, Bisher and Hatip [41] de�ned the concept of neutrosophic random variables in which they
showed some basics properties. later on, Granados [13] showed new notions on neutrosophic random variables.
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Also, Granados and Sanabria [14] studied independence neutrosophic random variables. Taking into account
these notions, Granados et al. [19] studied some neutrosophic probability distribution based on neutrosophic
random variables parameters. Also, Granados [20] applied discrete random distribution such as the uniform
discrete distribution, Bernoulli distribution, binomial distribution, geometric distribution, negative binomial
distribution, hypergeometric distribution and Poisson distribution by using neutrosophic random variables.
Additionally, Mustafa [25] introduced the concept of a neutrosophic stable random variable. They presented
both the neutrosophic probability distribution function and the neutrosophic probability density function,
and the convolution with the neutrosophic concept.

In this paper, we procure formulas for convergence neutrosophic random variable XN and prove some
relations among them.

Throughout this paper, the set of real number will be denoted by R or R, Ω denotes the set of sample
space and ω denotes an event of the sample space, XN and YN denote neutrosophic random variables.

2. Preliminaries

In this section, we show some de�nitions which will be useful for the development of this paper.

De�nition 2.1. (see [35]) Let X be a non-empty �xed set. A neutrosophic set A is an object having the
form {x, (νA(x), λA(x), φA(x)) : x ∈ X}, where νA(x), λA(x) and φA(x) denote the degree of membership,
the degree of indeterminacy , and the degree of non-membership respectively of each element x ∈ Xto the set
A.

De�nition 2.2. (see [5]) Let K be a �eld, the neutrosophic �led generated by K and I is denoted by ⟨K ∪ I⟩
under the operations of K, where I is the neutrosophic element with the property I2 = I.

De�nition 2.3. (see [36]) Classical neutrosophic number has the form q+ gI where q, g are real or complex
numbers and I is the indeterminacy such that 0.I = 0 and I2 = I which results that In = I for all positive
integers n.

De�nition 2.4. (see [37]) The neutrosophic probability of event A occurrence is NP(A) = (ch(A), ch(neutA), ch(antiA)) =
(T, I,F) where T, I,F are standard or non-standard subsets of the non-standard unitary interval ]−0, 1+[.

The following results were introduced by [41].

De�nition 2.5. Let us assume a real valued crisp random variable X which is given by:

X : Ω → R

where Ω is the events space. By this, [41] gave a neutrosophic random variable XN as:

XN : Ω → R(I)

and

XN = X+ I

where I represents the indeterminacy.

Theorem 2.6. Let us assume the neutrosophic random variable XN = X+ I where cumulative distribution
function of X is given by FX(x) = P(X ≤ x). Then, the following conditions are satis�ed:

1. FXN
(x) = FX(x− I),

2. fXN
(x) = fX(x− I).

Where FXN
and fXN

are cumulative distribution function and probability density function of XN, respectively.

Theorem 2.7. Let us assume the neutrosophic random variable XN = X+ I, expected value can be deter-
mined by:

E(XN) = E(X) + I.
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3. Main Results

In this section, we study results that provide formulas for convergence neutrosophic random variables
XNn . Besides, we �nd relations among them.

De�nition 3.1. Let XN1 ,XN2 , ... be a sequence of neutrosophic random variables, XN1 ,XN2 , ... converges
point-wise to XN if for each ω ∈ Ω,

lim
n→∞

XNn(ω) = XN(ω).

We denote this convergence as XNn

N.p.s−−−−−→ XN.

De�nition 3.2. Let XN1 ,XN2 , ... be a sequence of neutrosophic random variables, XN1 ,XN2 , ... converges
almost sure to XN if,

P
{
ω ∈ Ω : lim

n→∞
XNn(ω) = XN(ω)

}
= 1.

We denote this convergence as XNn

N.a.s−−−−−→ XN.

Following results follow from De�nition 3.2, therefore their proofs are omitted.

Proposition 3.3. If XNn

N.a.s−−−−−→ XN, then aXNn + b
N.a.s−−−−−→ aXN + b where a, b ∈ R.

Proposition 3.4. If XNn

N.a.s−−−−−→ XN and YNn

N.a.s−−−−−→ YN , then

1. XNn +YNn

N.a.s−−−−−→ XN +YN,

2. XNnYNn

N.a.s−−−−−→ XNYN.

Proposition 3.5. XNn

N.a.s−−−−−→ XN if and only if for any ε > 0,

P(|XNn − XN| > ε) = 0,

for any valued of n.

Proposition 3.6. If for any ε > 0,
∞∑
n=1

P(|XNn − XN| > ε) < ∞, then XNn

N.a.s−−−−−→ XN.

De�nition 3.7. Let XN1 ,XN2 , ... be a sequence of neutrosophic random variables, XN1 ,XN2 , ... converges in
probability to XN if,

lim
n→∞

P {ω ∈ Ω : |XNn(ω)− XN(ω)| > ε} = 0.

We denote this convergence as XNn

N.p−−−−→ XN.

Following results follow from De�nition 3.7, therefore their proofs are omitted.

Proposition 3.8. If XNn

N.p−−−−→ XN, then aXNn + b
N.p−−−−→ aXN + b where a, b ∈ R.

Proposition 3.9. If XNn

N.p−−−−→ XN and YNn

N.p−−−−→ YN, then

1. XNn +YNn

N.p−−−−→ XN +YN,

2. XNnYNn

N.p−−−−→ XNYN.

Proposition 3.10. If XNn

N.p−−−−→ XN, then XNn
2 N.p−−−−→ XN

2 .
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De�nition 3.11. Let XN1 ,XN2 , ... be a sequence of neutrosophic random variables, XN1 ,XN2 , ... converges
in mean to XN if,

lim
n→∞

E|XNn − XN| = 0.

We denote this convergence as XNn

N.m−−−−→ XN or XNn

N.E−−−−→ XN.

Following results follow from De�nition 3.11, therefore their proofs are omitted.

Proposition 3.12. If XNn

N.m−−−−→ XN, then aXNn + b
N.m−−−−→ aXN + b where a, b ∈ R.

Proposition 3.13. If XNn

N.m−−−−→ XN and YNn

N.p−−−−→ YN, then XNn +YNn

N.m−−−−→ XN +YN.

De�nition 3.14. Let XN1 ,XN2 , ... be a sequence of neutrosophic random variables, XN1 ,XN2 , ... converges
in mean-square to XN if,

lim
n→∞

E|XNn − XN| = 0.

We denote this convergence as XNn

N.m.s−−−−−→ XN.

Following results follow from De�nition 3.14, therefore their proofs are omitted.

Proposition 3.15. If XNn

N.m.s−−−−−→ XN, then aXNn + b
N.m.s−−−−−→ aXN + b where a, b ∈ R.

Proposition 3.16. If XNn

N.p−−−−→ XN and YNn

N.m.s−−−−−→ YN, then XNn +YNn

N.m.s−−−−−→ XN +YN.

De�nition 3.17. Let XN1 ,XN2 , ... be a sequence of neutrosophic random variables, XN1 ,XN2 , ... converges
in distribution to XN if for every x in which FXN

(x) is continuous,

lim
n→∞

FXNn
(x) = FXN

(x).

We denote this convergence as XNn

N.d−−−−→ XN

The following result follows from De�nition 3.17, therefore its proof is omitted.

Proposition 3.18. If XNn

N.d−−−−→ XN and YNn

N.d−−−−→ YN, then

1. If cXNn

N.d−−−−→ cXN, where c ∈ R,
2. If XNn + c

N.d−−−−→ XN + c, where c ∈ R,

3. If XNn

N.d−−−−→ 0, then XNn

N.p−−−−→ 0,

4. XNn +YNn

N.d−−−−→ XN +YN,

5. XNnYNn

N.d−−−−→ XNYN.

Next, we show some relations among convergences de�ned above.

Proposition 3.19. Let d ∈ R. If XNn

N.d−−−−→ d, then XNn

N.p−−−−→ d.

Proof. Neutrosophic distribution function of c is de�ned as follows

FXN
(x) =


0 if x < c+ I,

1 if x ≥ c+ I,
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which has one point of discontinuity in x = d where d = c + I ∈ R. Consider FXNn
(x) → FN (x) for x ̸= d.

For any ε > 0 we have

P (|XNn − d| ≥ ε) = P (XNn ≤ d− ε) + P (XNn ≥ d+ ε)

≤ P (XNn ≤ d− ε) + P (XNn > d+
ε

2
)

= FXNn
(d− ε) + 1− FXNn

(c+
ε

2
).

Therefore, lim
n→∞

P(|XNn − d| ≥ ε) = 0.

Theorem 3.20. If XNn

N.a.s−−−−−→ XN, then XNn

N.p−−−−→ XN.

Proof. Let ε and for any n ∈ N, de�ne

An =
∞⋃
i=n

(|XNi
− XN| > ε).

Since (|XNn − XN| > ε) ⊂ An, then P(|XNn − XN| > ε) ≤ P(An). Hence,

lim
n→∞

P(|XNn − XN| > ε) ≤ lim
n→∞

P(An)

= P
(
lim
n→∞

An

)
= P

( ∞⋂
n=1

An

)
= P(|XNn −XN | > ε), for each n ≥ 1

= P
(
lim
n→∞

XNn ̸= XN

)
= 0.

Remark 3.21. It is easy to check that converse of Theorem 3.20 need not be true.

Proposition 3.22. If XNn

N.m.s−−−−−→ XN, then XNn

N.m−−−−→ XN.

Proof. It follows from E2|XNn − XN| ≤ E|XNn − X|2 by using Jensen's inequality and Cauchy-Schwarz's
inequality.

Remark 3.23. It is easy to check that converse of Proposition 3.22 need not be true.

Theorem 3.24. If XNn

N.m−−−−→ XN, then XNn

N.p−−−−→ XN.

Proof. For each ε > 0, de�ne An = (|XNn − XN| > ε). Then,

E|XNn − XN| = E(|XNn − XN|1An) + E(|XNn − XN|1cAn
)

≥ E(|XNn − XN|1An)

≥ εP (|XNn − XN| > ε).

By hypothesis, lim
n→∞

E|XNn − XN| = 0, therefore P(|XNn − XN| > ε) → ε.

Remark 3.25. It is easy to check that converse of Theorem 3.24 need not be true.
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Theorem 3.26. If XNn

N.p−−−−→ XN, then XNn

N.d−−−−→ XN.

Proof. Consider XNn

N.p−−−−→ XN and let x one point of discontinuity of FXN
(x). For any ε > 0,

FXNn
(x) = P (XNn ≤ x)

= P(XNn ≤ x, |XNn − XN ≤ ε) +P(XNn ≤ x, |XNn − XN| > ε)

≤ P(XN ≤ x+ ε) +P(|XNn − XN| > ε).

Then, for any ε > 0,

lim sup
n→∞

FXn(x) ≤ FXN
(x+ ε).

This implies,

lim sup
n→∞

FXn(x) ≤ FXN
(x). (1)

Now, we will show the another implication. For any ε > 0,

FXN
(x− ε) = P(XN ≤ x− ε)

= P(XN ≤ x− ε, |XNn − XN| ≤ ε) +P(XN ≤ x− ε, |XNn − XN| > ε)

≤ P(XNn ≤ x) +P(|XNn − XN| > ε).

Then,

FXN
(x− ε) ≤ lim inf

n→∞
FXNn

(x).

This implies,

FXN
(x) ≤ lim inf

n→∞
FXNn

(x). (2)

By (1) and (2), we have

FXN
(x) ≤ lim inf

n→∞
FXNn

(x) ≤ lim sup
n→∞

FXn(x) ≤ FXN
(x).

Remark 3.27. It is easy to check that converse of Theorem 3.26 need not be true.

The following diagram shows relations of convergence of neutrosophic random variables proved above:

XNn

N.m.c−−−−−→ XN ⇒ XNn

N.m−−−−→ XN ⇒XNn

N.p−−−−→ XN ⇒ XNn

N.d−−−−→ XN

⇑

XNn

N.a.s−−−−−→ XN

Theorem 3.28 (Skorokhod's Neutrosophic Representation Theorem). Let {XNn , n ≥ 1} and XN be neu-
trosophic random variables on (Ω,F ,P) such that XN in neutrosophic distribution. Then, there exists a
probability space (Ω̄, F̄P̄), and neutrosophic random variables {YNn , n ≥ 1} and YN on (Ω̄, F̄P̄) such that,

1. {YNn , n ≥ 1} and YN has the same neutrosophic distributions as {XNn , n ≥ 1} and XN, respectively,

2. YNn

N.a.s−−−−−→ YN as n → ∞.
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Proof. It proves similarly to random variables {Xn, n ≥ 1} and X.

Theorem 3.29. If XNn

N.d−−−−→ XN and g : R → R is continuous, then g(XNn)
N.d−−−−→ g(XN).

Proof. By Skorokhod's Neutrosophic Representation Theorem, there exists a probability space (Ω̄, F̄P̄),

and {YNn , n ≥ 1}, YN on (Ω̄, F̄P̄) such that YNn

N.a.s−−−−−→ YN. Besides, form continuity of g, we have
{ω ∈ Ω̄ : |g(YNn(ω) → g(YN(ω))} ⊇ {ω ∈ Ω̄ : |YNn(ω) → YN(ω)}, thus

P({ω ∈ Ω̄ : |g(YNn(ω) → g(YN(ω))}) ≥ P({ω ∈ Ω̄ : |YNn(ω) → YN(ω)}),
⇒ P({ω ∈ Ω̄ : |g(YNn(ω) → g(YN(ω))}) ≥ 1,

⇒ g(YNn)
N.a.s−−−−−→ g(YN),

⇒ g(YNn)
N.d−−−−→ g(YN).

Theorem 3.30. XNn

N.d−−−−→ XN if and only if every bounded continuous function g : R → R, E(g(XNn) →
E(g(XN)).

Proof. Consider XNn

N.d−−−−→ XN. From Skorokhod's Neutrosophic Representation Theorem, there exist

neutrosophic random variables {YNn , n ≥ 1} and YN such that YNn

N.a.s−−−−−→ YN. From continuous mapping

theorem, it follows that g(YNn)
N.a.s−−−−−→ g(YN), since g is given to be continuous. Since g is bounded,

E(g(YNn) → E(g(YN)). Since, g(YNn) has the same distribution as g(XNn), and g(YN has the same
distribution as g(XN), this implies that E(g(XNn) → E(g(XN)).

Theorem 3.31. If XNn

N.d−−−−→ XN, then CXNn
(t) → CXN

(t).

Proof. If XNn

N.d−−−−→ XN, From Skorokhod's Neutrosophic Representation Theorem, there exist neutrosophic

random variables {YNn , n ≥ 1} and YN such that YNn

N.a.s−−−−−→ YN. Thus,

cos(YNnt) → cos(YNt),

and

cos(XNnt) → cos(XNt).

As cos(·) and sin(·) are bounded functions, we have

E(cos(YNnt)) + iE(sin(YNnt)) → E(cos(YNt)) + iE(sin(YNt)),

then CYNn
(t) → CYN

(t). So, we obtain CXNn
(t) → CXN

(t). This follows from Skorokhod's Neutrosophic
Representation Theorem since {XNn} and XN have the same distribution as {YNn} and YN, respectively.

Next, we show a couple of theorems which lie from convergence of neutrosophic random variables, there-
fore their proofs are omitted.

Theorem 3.32. Let 0 ≤ XN1 ≤ XN2 ≤ ... be a sequence of neutrosophic random variables which converges
almost sure to XN. Then,

lim
n→∞

E(XNn) = E(XN).

Theorem 3.33. Let XN1 ,XN2 , ... be a sequence of neutrosophic random variables in which exists another
neutrosophic random variable YN which is integrable such that |XNn | ≤ YN, for n ≥ 1. If lim

n→∞
XNn = XN

a.s., then XN and XNn are integrable and

lim
n→∞

E(XNn) = E(XN).
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4. Applications

The �rst application comes to a crowning achievement in neutrosphic probability theory, the neutrosophic
weak law of large numbers. This theorem says that, in some sense, the neutrosophic mean of a large sample
is close to the neutrosophic mean of the neutrosophic distribution. Before to present the theorem, we �rst

mention that Chebyshev's neutrosophic inequality is satis�ed, i.e. P(|XN−µN| ≥ ε) ≤ σ2

ε2
, where µN=µ+I.

This can be veri�ed as follows:

P(|XN − µN|) = P(|X+ I− µ− I|) = P(|X− µ|),

by Chebyshev's inequality, we have

P(|X− µ| ≥ ε) ≤ σ2

ε2
.

Theorem 4.1 (Neutrosophic Weak Law of Large Numbers). If XN1 , ...,XNn are i.i.d, then ¯XNn

N.p−−−−→ µN,
where µN = µ+ I.

Proof. Assume that σ < ∞. This is not necessary but it simplies the proof. Using Chebyshev's neutrosophic
inequality,

P(| ¯XNn − µN| > ε) ≤ V ar( ¯XNn)

ε2
=

σ2

nε2

which tends to 0 as n → ∞.

Example 4.2. Consider �ipping a coin for which the probability of heads is p. Let XNi
denote the outcome

of a single toss (0 or 1) with an indeterminacy of [0.1,0.3]. Hence, p = P(XNi
= 1) = E(XNi

). The fraction
of heads after n tosses is XNn. According to the neutrosophic law of large numbers, XNn converges to p in
neutrosophic probability. This does not mean that XNn will numerically equal p. It means that, when n is
large, the neutrosophic distribution of XNn is tightly concentrated around p. Let us try to quantify this more.
Suppose the coin is fair, i.e. p = 1/2. How large should n be so that P(0.4 ≤ XNn ≤ 0.6) ≥ 0.7? First,
E(XNn) = p + I = 1/2 + [0.1, 0.3] = [0.6, 0.8] and V ar(XNn) = [0.12, 0.32]/n. Now, by using Chebyshev's
neutrosophic inequality:

P(0.4 ≤ XNn ≤ 0.6) = P(|XNn − µ| ≤ 0.1)

= 1−P(|XNn − µ| > 0.1)

≥ 1− [0.12, 0.32]

n(0.1)2
= 1− [12, 32]

n
.

The last expression will be larger than 0.7, if 1− (12/n); n > 40 but, if 1− (32/n); n > 106.7 .
If we make this exercise in a classical way, we will obtain that n = 84 and 84 ∈ (106.7,∞) ∈ (40,∞)

which was the results obtained in neutrosophic way.

For the following application, we shall show that the sum (or average) of neutrosophic random variables
has a neutrosophic distribution which is approximately Normal.

Theorem 4.3 (Neutrosophic Central Limit Theorem). Let XNn for n ∈ N be i.i.d with mean µN (µN = µ+I)
and variance σ2. Then,

ZNn ≡
√
n(X̄N − µN)

σ

N.d−−−−→ ZN

where ZN ∼ N(0, 1).
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Proof. There are several ways to denote the fact that the neutrosophic distribution of ZNn can be approxi-
mated be a normal. They all mean the same thing. Here they are:

ZNn ≈ N(I, 1)

¯XNn ≈ N(µN,
σ2

n
)

¯XNn − µN ≈ N(0,
σ2

n
)

√
n( ¯XNn − µN) ≈ N(0, σ2)

√
n(X̄N − µN)

σ
≈ N(0, 1).

Example 4.4. Suppose that the number of errors per computer program has a neutrosophic Poisson distribu-
tion with mean [5.5, 5.8]. We get 125 programs. Let XN1 , ...,XN125 be the neutrosophic number of errors in the
programs. Let X̄N be the neutrosophic average number of errors. We want to approximate P (X̄N < [6.5, 6.8]).
Let µ = E(X1) = [5.5, 5.8] and σ2 = 5. Thus,

ZNn =

√
125( ¯XNn − [5.5, 5.8]√

5

= 5( ¯XNn − [5.5, 5.8]) ≃ N(0, 1).

Where indeterminacy is [0.5, 0.8]. Hence,

P( ¯XNn < [6.5, 6.8]) = P(ZN < [2, 3.5]) = [0.94, 0.98].

If we make this exercise in a classical way, we will obtain that P(Z) = 0.96 ∈ P(ZN).

5. Conclusion

In this paper, we have de�ned and studied convergence neutrosophic random variable, some examples
were shown to support the results. For future work, it can be de�ned more formulas for neutrosophic laws of
large numbers (weak) and de�ne the neutrosophic strong law of large numbers and more results for central
limit theorem for neutrosophic random variables can be obtained.
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