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Abstract:  The  structures  and  energy  of  alkali  halide  salt  (MX)  complexes  with  ethanol  have  been
investigated in this work. The core of this study is to explore the effect of ion size on the interactions
between solvent and solute. LiF and KBr as monovalent salts with different sizes of inion and cation have
been chosen to explore this difference in addition to various physical properties. Three complexes of each
LiF and KBr with ethanol taking the formula MX(CH3CH2OH)n (n=1-3), were studied. Ab-initio calculations
have been performed to optimize the chemical structures of these complexes and explore the possible
structures, isomers, and their corresponding IR spectra using Density functional theory (DFT/ B3LYP). 6-
311G** were chosen as basis sets for these calculations. The geometry evaluations, energy searches,
vibrational frequency calculations, and each complex's binding energy were also theoretically extracted in
this  study.  The  minimum energy  structures  were  calculated,  and  different  isomers  were  found.  The
presence of Ionic hydrogen bonds (IHBs) was observed and proposed to be the main binding between the
MX salt and ethanol. Also, the infrared vibrational bands in the OH stretching region were recorded for the
minimum structures, and the determined red-shift was at about 400 cm -1. In addition, the binding energy
calculations found a gradual rise in the BE value with every additional ethanol molecule added to MX salt.
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1. INTRODUCTION

The interaction between the salt and solute in polar
solutions has been in the spotlight of many studies
to understand the behavior of anions and cations in
this medium due to their essential t role in chemical
reactions. In addition to many applications of union
and  cation  behavior  in  specific  fields  such  as
electrochemistry  and  environmental  chemistry (1-
3). 

The interaction between the salt and polar solvent is
usually  expressed  as  kosmotropic or  chaotropic.
Kosmotropic are  called  (order-makers),  which
increase  the  stability  of  the  hydrogen  bonding
network,  while  chaotropic  ions  (disorder-makers)
reduce the stability  of  the  hydrogen bonding grid

and  thus  reduce  the  stability  of  the  salt-solvent
structures (4, 5). 

It  is  well  known  that  alkaline  halides  behave  as
monovalent salts. These salts are dissolved in polar
solvents  (water,  ethanol,  etc.)  to  form  separated
ions in dilute solutions. The size and charge density
of the cation and anion plays a critical role in giving
the  ability  of  a  single  alkaline  halide  molecule  to
dissolve  in  a  numerical  number  of  solvent
molecules. LiF and KBr were chosen for this study
as  an  example  of  salt  with  different  sizes  and
charges of cation and anion. 

Lithium  fluoride  is  widely  used  in  industry  as  an
ingredient  in  lithium-ion  battery  electrolytes  (6).
Also,  LiF  is  used  as  specialized  optics  for  the
vacuum  ultraviolet  spectrum  (7)  and  in  light-
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emitting diodes production (LED) as a coupling layer
to  enhance  electron  injection  (8).  In  addition  to
many applications in manufacturing nuclear reactors
and radiation detectors (9).

Potassium  bromide  is  most  commonly  used  in
medical  drugs  as  an  anticonvulsant  drug  to
phenobarbital and as an antiepileptic medication for
dogs(10),  in  addition  to  many  other  medical  and
veterinary  applications.  For  industrial  applications,
KBr  plays  a  significant  role  in  Optics  as  infrared
optical windows and is used widely in components
for general spectroscopy (11) and photography as a
restrainer  by  improving  differentiation  between
exposed and unexposed crystals of silver halide to
reduce fog(12).

Early  studies  concentrated  on  the  structure  of
Alkaline halide (MX) complexes with water (13-16).
These  studies  focused  on  MX-water  complexes
geometry  structures,  infrared  (IR),  and  Mass
spectrum using Helium nanodroplet apparatus. The
outcome  data  show  the  critical  role  of  ionic
hydrogen bonds (IHBs) between MX salt and water. 

No  research  has  studied  the  structure  of  LiF  and
KBr- ethanol clusters. Only a few studies focused on
studying  LiF  and  ethanol's  structure  separately  in
the  gas  phase.  LiF  as  a  salt  vapor  was  studied
theoretically  to  investigate  the  landscape  of  a
numerical  number of (LiF)n (n=1-8) (17).  Ethanol
clusters have also been investigated using ab-initio
calculations (18), and the thermodynamic properties
were recorded in this study.

The theoretical calculation of chemical reactions was
widely used in many recent studies, (19-23) due to
the unique environment and the ability to study the
reactions that cannot be easily prepared in standard
lab  conditions.  The  formation  of  MX-solvent
complexes is usually prepared and studied in bulk
solutions  (19,  20).  Even  in  the  diluted  solutions,
separating MX-(solvent)n complexes, where n has a
numerical  value,  is  difficult  because of  the  strong
ionic  hydrogen  network  (21).  Unfortunately,  an
accurate simulation of the properties is still difficult
to record, even in simple electrolytic solutions (22).
Considering this limited experimental evidence, the
ab-initio calculations study of these complexes looks
useful  and  provides  a  unique  tool  to  explore  the
chemistry  of  these complexes.  So,  this  study  will
concentrate on studying the interaction of Alkaline
halides (MX) with ethanol in gas phase theoretically
using ab-initio calculations.

2. EXPERIMENTAL 

2.1. MX(CH3OH)n formation 
LiF  and  KBr  complexes  with  ethanol  (CH3OH)n,
(n=1-3) were shaped using the Chemcraft software
package (23). The premier structures were created
with different positions and randomly rotated for MX
and ethanol molecules to examine a wide range of
potential  geometries  and  isomers  of  MX(CH3OH)n
complexes.  The  structure  geometries  were  then
optimized to find the minimum structures  of  each
complex using ab-initio calculations. 

2.1.1. Ab-initio calculations
Ab-initio  calculations  were  applied  using  Density
functional theory (DFT) with Becke three-parameter
exchange  and  Lee–Yang–Parr  correlation  (B3LYP)
within the Gaussian 03 software package (24). The
basis set (6-311G**) obtained from the EMSL basis
set exchange library (25) was then used to optimize
the formatted structures. Each complex's minimum
energy  isomer  structure  was  used  to  extract  the
data of geometry, energy, and infrared (IR) spectra
(vibrational  frequency values).  In  order  to  reduce
the calculation time, the Hartree-Fock (HF) level of
theory was first used with (6-311G**) bases set to
evaluate  the  optimized  structures.  The  optimized
structures  at  the HF level  were then re-optimized
using the DFT(b3lyp)  level  of  theory at  the  same
basis  set.  A  scaling  factor  of  0.967  was  used  to
correct the values of vibrational frequencies of the
final optimized structures. This factor is advised by
the National Institute of Standards and Technology
(NIST) for the DFT/B3LYP level of theory (26).

2.1.2. Geometry and structure
The final optimized structures of each complex were
utilized to extract the information on the minimum
energy of isomers, frequencies in the region of OH
stretching  bands,  bond  length,  angles,  dihedral
angle, and the Binding Energy (BE). These results
were obtained using Chemcraft software.

3. RESULTS AND DISCUSSION 

3.1. MX(CH3CH2OH)n structures
3.1.1. LiF(CH3CH2OH)n structures
Several isomers were applied in DFT calculations for
LiF(CH3CH2OH)n  complexes.  For  LiF(CH3CH2OH)
complex,  two optimized structures  were found for
this  complex  among  many  tested  isomers,  see
Figure 1. The global minimum structure shows that
the LiF salt takes the position so that the hydrogen
ion of  the  hydroxyl  group can form IHB with  the
fluoride  atom. The higher  energy  structure  shows
that the methyl group in ethanol forms an IHB with
a fluoride atom. The length of IHB in the minimum
structure is about 1.68 Å while 2.203 Å in the higher
energy isomer. Additional stabilization comes from
the Li+ ion to the O- atom. 
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0.00 kJ/mol +0.00165 kJ/mol

Figure 1: The minima structures for LiF(CH3CH2OH) with their energies in kJ/mol using DFT/B3LYP level of 
theory and 6-311G** as basis set

Three  minima  structures  were  recorded  for
LiF(CH3CH2OH)2,  as can be seen in Figure  2.  The
global  minimum structure  is  similar  to the  n = 1
complex but now has two IHBs bonding the fluoride
ion and  the  H atoms of  the  hydroxyl  group.  The
following minimum structure has an energy of 23.31
kJ/mol,  higher than the global  minimum structure
energy,  and  also  has  two  IHBs  between  the
hydrogen of each ethanol methyl group and fluoride
ion. The bond length of these two structures were
1.744 and 1.654 Å, respectively. The last structure

had energy above the global minimum structure at
about 38.33 kJ/mol. Two ethanol molecules of this
structure  interacted with  each other  via  one IHB.
Another  IHB  seen  in  this  structure  bonded  the
hydrogen atom of the ethanol methyl group with the
fluoride  ion.  The  significant  point  seen  in  this
complex, compared with LiF(CH3CH2OH) complex, is
the difference in LiF  bond length in the minimum
structures that increased from 1.641 Å to 1.744 Å.
This difference may be related to the reduction of
fluoride ion charge bonded to a couple of IHBs.

0.0 kJ/mol +23.31 kJ/mol

+38.88 kJ/mol

Figure 2: The minima structures for LiF(CH3CH2OH)2 with their energies in kJ/mol using DFT/B3LYP level of
theory and 6-311G** as basis set
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For n = 3, Three minima structures were found; see
Figure 3. The global minimum for LiF(CH3CH2OH)3 is
similar  to  those  found  for  LiF(CH3CH2OH)  and
LiF(CH3CH2OH)2.  Three  ethanol  molecules  were
bonded  to  fluoride  ion  by  3  IHBs  between the  F
atom and the hydrogen of the hydroxyl group. The
other  isomer  has  higher  energy  from  the  global

minimum  structure  of  about  9.74  kJ/mol.  This
isomer  takes  the  formula  where  three  ethanol
bonded together via two IHBs and with one IHB with
fluoride ion. The last isomer bonded to LiF salt via
three IHBs similar to  LiF(CH3CH2OH)2. LiF bonds in
the three structures  were about 1.91,  1.644,  and
1.695 Å, respectively.

0.0 kJ/mol 9.74 kJ/mol

+41.039 kJ/mol

Figure 3: The minima structures for LiF(CH3CH2OH)3 with their energies in kJ/mol 
using DFT/B3LYP level of theory and 6-311G** as basis set.

3.1.2. KBr(CH3CH2OH)n structures
The ab-initio calculations for KBr(CH3CH2OH)n (n=1-
3)  were  found  and  seen  in  Figures  4,5,  and  6,
respectively. No significant changes were observed
in these structures  for these complexes compared
with  LiF(CH3CH2OH)n  calculations.  A  significant
difference in KBr(CH3CH2OH)n complexes was seen

in the IHBs, which were longer than the IHBs in the
LiF(CH3CH2OH)n  structures,   due  to  the  low
electronegativity of Br atom compared with Li atom
electronegativity. For KBr bond length, it increased
gradually  with  every  additional  ethanol  molecule
and gave 2.95, 3.09, and 3.29 Å, respectively, for
the KBr(CH3CH2OH)n (n=1-3) minimum structures. 

0.0 kJ/mol +20.478 kJ/mol

Figure 4: The calculated structures for MgCl2(H2O) with their energies in kJ/mol using DFT/B3LYP level of
theory and 6-311G** as basis set.
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1.0 kJ/mol

+ 43.215 kJ/mol

+86.6415 kJ/mol

Figure 5: The calculated structures for MgCl2(H2O)2 with their energies in kJ/mol using DFT/B3LYP level of
theory and 6-311G** as basis set.

1.0 kJ/mol + 9.45 kJ/mol

+ 57.49 kJ/mol

Figure 6: The calculated structures for MgCl2(H2O)3 with their energies in kJ/mol using DFT/B3LYP level of
theory and 6-311G** as basis set.
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3.2.  Infrared  Spectra  of  MX(CH3CH2OH)n
Complexes
Infrared  spectra  of  LiF(CH3CH2OH)n,  n=1-3,  were
assigned theoretically using the DFT/B3LYP level of
theory on the OH stretching region to evaluate the
effect of IHBs on the OH symmetric stretching band.
The  stretching  frequency  values  were  corrected
using  a  scaling  factor  of  0.967.  Only  global
minimum structures were chosen for IR analysis. 

The  prediction  of  DFT  calculations  at  the  OH
symmetric stretching frequencies is summarized in
Table 1. In general, the absorption of OH bands of
LiF(CH3CH2OH)n complexes are red-shifted from the
OH  stretching  band  of  the  free  ethanol  molecule
that  is  seen  at  3721  cm-1.  This  trend  of  OH
stretching red-shift has been recorded previously in
several studies(13, 27, 28). The OH band frequency
of the LiF(CH3CH2OH) complex was found in 3149
cm-1 and  then  raised  to  3208  cm-1 for
LiF(CH3CH2OH)2 and 3263 cm-1 for LiF(CH3CH2OH)3.
This  red  shift  can  be  attributed  to  the  OH band,

which  bonded  to  the  fluoride  ion  via  an  ionic
hydrogen  bond  (IHB).  This  behavior  of  OH
frequency fluctuation can be assigned to the high
electronegativity  of  the  Fluoride  atom in  the  n=1
complex.  This  electronegativity  has  decreased
gradually  with  every  additional  ethanol  molecule.
Therefore, OH frequency has increased again in n=2
and 3 complexes.

The same trend of OH stretching frequency behavior
in  LiF(CH3CH2OH)n  complexes  was  seen  for  the
minimum  structures  of  KBr(CH3CH2OH)n,  n=1-3,
complexes. Red shifts of OH stretching bands were
recorded in these complexes due to IHBs effect on
bromide electronegativity reduced more with every
additional  ethanol  molecule.  The  ab-initio
calculations recorded the OH symmetric  stretching
frequency  of  KBr(CH3CH2OH)  at  3318  cm-1.  For
KBr(CH3CH2OH)n  where  n=2  and  3,  the  OH
symmetric  stretching  band was  observed  at  3346
cm-1 and 3382 cm-1, respectively; see Table 2. 

Table 1: Infrared spectra for the minimum structures of LiF(CH3CH2OH)n (n=1-3) complexes for the OH
stretching region using DFT/B3LYP level of theory.

OH frequency band/
cm-1

Vibration frequency
assignment

Complex

3149 symmetric stretching LiF(CH3CH2OH)

3208 symmetric stretching
LiF(CH3CH2OH)2

3266 asymmetric stretching

3263 symmetric stretching

LiF(CH3CH2OH)3265 asymmetric stretching

3336 asymmetric stretching

Table 2: Infrared spectra for the minimum structures of KBr(CH3CH2OH)n (n=1-3) complexes for the OH
stretching region using DFT/B3LYP level of theory.

OH frequency band/
cm-1

Vibration frequency
assignment

Complex

3318 symmetric stretching KBr(CH3CH2OH)

3346 symmetric stretching
KBr(CH3CH2OH)2

3370 asymmetric stretching

3382 symmetric stretching

KBr(CH3CH2OH)33384 asymmetric stretching

3414 asymmetric stretching

3.3.  Binding  energy  calculations  for
MX(CH3CH2OH)n (n = 1-3) complexes
The  Binding  energy  (BE)  of  the  global  minimum
structure  of  MX(CH3CH2OH)n  complexes  was
calculated  from  the  DFT/B3LYP  calculations  and
summarized in Table 3 for LiF(CH3CH2OH)n and in
Table 4 for KBr(CH3CH2OH)n complexes. The BE was
calculated using the following equation:

BE = ∆E = E (MX(CH3CH2OH)n) – (E (MX) + E
(CH3CH2OH)n)

In general, a gradual increase in the values of BE
was  seen  in  both  MX(CH3CH2OH)n  complexes,
where (n=1-3),  with increasing n value of ethanol.
Also,  the  BE  of   LiF(CH3CH2OH)n  complexes  were
higher than the BE of KBr(CH3CH2OH)3 complexes.
This  difference  may  relate  to  the  high
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electronegativity  of  F- ion in contrast  with Br- ion
electronegativity.  The  BE  of  LiF(CH3CH2OH)n  and
KBr(CH3CH2OH)n complexes can be seen in Tables 3
and 4, respectively.

The  BE  of  the  minimum  structures  of
LiF(CH3CH2OH)n, n=1-3, were (102, 197, and 282)

kJ/mol respectively. On the other hand, The BE of
the minimum structure of  KBr(CH3CH2OH)n, n=1-3,
complexes  were  (75,  146,  and  212)  kJ/mol,
respectively.  This  increase  may  come  from  the
additional  IHBs and the proximity  of  M+ ion to  O
atom  of  the  hydroxyl  group  that  increased  with
every additional ethanol molecule.

Table 3: The binding energy of LiF(CH3CH2OH)n (n = 1−3) complexes using DFT/B3LYP level of theory.

Binding Energy
kJ/mol

Complex

102.37 LiF(CH3CH2OH)

197.90 LiF(CH3CH2OH)2

282.24 LiF(CH3CH2OH)3

Table 4: The binding energy of KBr(CH3CH2OH)n (n = 1−3) complexes using DFT/B3LYP level of theory.

Binding Energy
kJ/mol

Complex

75.04 KBr(CH3CH2OH)

146.23 KBr(CH3CH2OH)2

212.82 KBr(CH3CH2OH)3

4. CONCLUSION

Structure parameters, Infrared spectra (IR), and the
Binding  Energy  of  MX(CH3CH2OH)n  complexes,
where n = 1−3 and MX =LiF and KBr, have been
performed in this work using  Ab-initio calculations.
Several  isomers  of  these  complexes  have  been
recorded.  A  significant  observation  was  seen  for
MX(CH3CH2OH)n complexes that show a significant
increase  in  the  M-X  bond  length.  This  increment
comes from the effect of the ethanol hydroxyl group
that inserts between M and X ions and reduces their
interaction  by  forming  IHBs.  The  global  minimum
structures of complexes were then used to extract
the information on the  Vibrational frequency bands
in  OH stretching  regions  and  the  binding  energy.
The formation of IHBs was observed between the
hydrogen  of  the  ethanol  hydroxyl  group.  For  IR
spectra,  a  Red-shift  in  the  positions  of  the  OH
stretching bands was seen, which is consistent with
the presence of the IHBs. Also, a significant increase
in  the  Binding  energy  (BE)  was  seen  with  the
increasing  n  value  of  ethanol.  This  increase
indicated that the IHB and the proximity of the M+

ion  to  the  O  atom  play  a  critical  role  in
MX(CH3CH2OH)n complexes. 
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