
DDS-Based Heterogeneous Robots Communication Middleware

Vol. 3, No 1/Special Issue, February 2011

95

SDU International Journal of Technologic

Sciences

Vol. 3, No 1/Special Issue, February 2011

pp. 95-100

DDS-BASED HETEROGENEOUS ROBOTS COMMUNICATION

MIDDLEWARE

Ekrem AKSOY

, Selçuk CANBEK*, Nihat ADAR*

Abstract

OMG (Object Management Group) DDS (Data Distribution Service for Real-time Systems) is an open

international communication middleware standard for real-time and embedded systems. In this paper, a

communication middleware model based on OMG DDS for multi-robot environments is presented. With the

help of DDS QoS mechanism and Publish/Subscribe paradigm, proposed communication middleware abstracts

different robot implementations sharing same domain (i.e. heterogeneity).

Keywords: DDS, middleware, heterogeneous robots, communication model, QoS

1. Introduction

OMG Data Distribution Service for Real-time Systems (DDS in short) is an open standard for

communication middleware that is mostly used in mission-critical infrastructures [1]. The

main viewpoint of DDS is data-centricity whereby establishing Publish/Subscribe paradigm.

Thus, data-centric communication with the help of Quality-of-Service policies preserves

consistency among Publishers and Subscribers.

Multi-robot systems consisting of robots with different capabilities (i.e. heterogeneous) are

prone to real-world deployments because of synergistically enriched capabilities. Therefore,

many researchers are interested in heterogeneous robot systems like [2] and [3].

On the other hand, heterogeneity conserves many new issues like communications and

computing for different capabilities to be handled as stated in [4]. One of the most important

issue is communication. As stated in [5], many researches focused on ad-hoc communication

technologies for robotics, while some studies focus on middleware like MiRO [6] and HERM

[6]. Moreover, from Multi-Agent viewpoint several studies reveal middleware and

frameworks like JADE [7] and Open Agent Architecture [8].

In this paper, creating a data-centric real-time (or near real-time) communication middleware

independent from robot capabilities is studied. The study offers a new communication model

based on Quality-of-Service policies including and defined for capabilities to handle

heterogeneity whereas extensible metadata and mission definitions are proposed.

2. OMG DDS Model

OMG DDS communication model provides a Global Data Space where data objects are

addressed by Domain, Topic and Key. In this communication model, subscriptions are

decoupled from publications, and contracts are established by means of QoS. In addition,

 Osmangazi University, Computer Engineering Department, Eskisehir, TURKEY, E-mail: eaksoy@ogu.edu.tr, selcuk@ogu.edu.tr,

nadar@ogu.edu.tr ”

Computer Technology

mailto:eaksoy@ogu.edu.tr
mailto:selcuk@ogu.edu.tr
mailto:nadar@ogu.edu.tr

Ekrem AKSOY, Selçuk CANBEK, Nihat ADAR

 SDU International Journal of Technologic Sciences

96

DDS provides automatic discovery and configuration mechanisms [9]. From architectural

viewpoint, DDS provides peer-to-peer un-brokered service model. Unlike other models like

RMI or JMS, this model eliminates brokerage point of failure.

2.1. DDS Communication Model

Communication model is an abstract model of how applications interact. There are several

common characteristics of communication models in use today:

a) Remote Method Invocation

b) Message Queuing

c) Publish/Subscribe Data-centric

d) Replication

e) Distributed Transactions

With all these forms, communicating parties could form one of the following:

a) Point-to-point

b) Client/Server

c) Many-to-many

d) Replication

In RMI communication model, a method on a remote system is abstracted on local system.

RMI on Java, CORBA or Web Services are examples of this communication model. The main

disadvantages of this model are cascading failure nodes and tightly coupling of systems.

On the other hand, Publish/Subscribe model (with Message Queuing or Replication)

constructs a decoupled system and isolated failure nodes.

Although message distribution or replication could be performed within publish/subscribe

model, there are differences among message distribution, replication and publish/subscribe

models. In the case of message queuing, there is only one reader/consumer at a time whereas

publish/subscribe model has multiple deliveries. Likewise, messages include update to data

model in data distribution where there is no concept of “data” but message in

publish/subscribe model.

Thus, in DDS, true publish/subscribe model is used which brings in high performance and

reliability. The DDS communication model consists of publishers and subscribers forming up

a Global Data Space. In system view, one party could both be a publisher and subscriber. The

overall communication is moderated with QoS policies. Thus, publishing and subscribing are

decoupled, and overall system has automatic discovery and configuration.

2.2. DDS Architectural Model

Publish/Subscribe system architectural models are either categorized as brokered or peer-to-

peer. Brokered pub/sub models are also classified as centralized or segmented or federated.

The centralized broker pub/sub model consists of a single central moderator where all

messages are going through it. Therefore, any party publishing or subscribing a message

should access this server.

The segmented broker pub/sub model has a grid of moderators where some publishers and

subscribers are assigned to at least one of these moderators. In this model, a publisher should

communicate with as many as needed moderators to transmit messages meanwhile a

subscriber should do the same for receiving messages.

DDS-Based Heterogeneous Robots Communication Middleware

Vol. 3, No 1/Special Issue, February 2011

97

In federated broker pub/sub model, moderators are interconnected with a software bus where

publishers and subscribers are connected to their counterpart moderators. The software bus

among moderators has its own communication model (e.g. peer-to-peer, multicast, etc.)

independent of pub/sub communication model.

DDS has a peer-to-peer architecture where there is no moderator among publishers and

subscribers. Thus, DDS eliminates single point of failure. Each participant has a local queue

and communicates peer-to-peer.

Using peer-to-peer architecture has the advantage of using only one protocol over other

brokered services models where they require two protocols in use: a client protocol and a

service protocol.

2.2. DDS Object Model

As explained previously, DDS system forms a Global Data Space which is accessible to all

participants. This Global Data Space is named a Domain and there could be several domains

in a system. The participant named as Domain Participant and allows an application to access

the domain.

The domain participant either publishes or subscribes to a group of objects called a Topic.

The topic addresses that group of objects in a Global Data Space where each object is

identified by a key.

The domain participant provides a Data Writer if it intends to publish topic or a Data Reader

if it intends to subscribe a topic. These classes, in turn, provide type safe operations either to

write or to read message objects.

Overall object interaction, or simply, communication is moderated with QoS policies. This

QoS policies help on reliability, performance, durability and defines the characteristics of a

system. The QoS policy also provides a mechanism to couple publishers and subscribers.

Thus, a subscriber could subscribe to a publisher on a topic if it complies with QoS policy

requested.

3. DDS-based Heterogeneous Robots Communication Middleware

In this proposed DDS-based middleware, each robot is both publisher and subscriber to

several domains identifying missions. Beside, each robot provides at least two topics, one for

metadata (capabilities and identifiers including published extended topics) and one for overall

mission status (position, local timestamp, mission id and status). Each participant establishes

communication based on offered/requested QoS policies. The architectural model of the

middleware is proposed and implementation details of middleware and preliminary results are

presented.

3.1. Assumptions

Heterogeneous robot environment is assumed in the proposed middleware. Heterogeneity of

robots might occur both in physical capabilities and software framework. On the other hand,

some assumptions are made for sake of practical implementations. First, an embedded

Ekrem AKSOY, Selçuk CANBEK, Nihat ADAR

 SDU International Journal of Technologic Sciences

98

operating system having IP-networking with TCP/UDP support is under assumptions. Second,

robots should have network line-of-sight.

Although there are simpler microcontroller based robotic architectures available today, these

are mostly not capable of handling computing required. Thus, to handle required computing

and to be able to communicate within a networking stack an embedded computer based robot

is required. Indeed, most real-world robots contain at least one embedded computer on-board.

This embedded computer runs an operating system (mostly Linux). An example of these

systems is Pioneer DX-3 robots. In fact, these robots are planned to be used in this study in

conjunction with several other available models.

In real-world applications a robot campaign consisting of robots differing in performance and

capability is working on missions. In order a robot to have a situational awareness; it should

be operated in a networked environment. Thus, network line of sight is under assumption.

3.2. System Configuration

Proposed middleware architecture has two domains: one for system configuration and one for

mission management.

The system configuration domain provides several topics for forming the heterogeneous robot

environment. Any robot intends to participate in a robot campaign or a group of robot to form

a new campaign uses these topics to form the campaign. The topics in this domain are listed

in the table below:

RobotMetadataTopic Robot ID, Local Timestamp, Model/Make, Built-in Topics

CapabilityTopic Capability ID, CapabilityName, CapabilityParameters,

CapabilityResponse

HWStatusTopic Power Status, HW Failure

LocationTopic Coordinates, Baseline, INS, GPS data, Local timestamp

MissionQueueTopic New Missions, Existing Missions, Coordinators, Teams

CommTopic ID of robots in communication

Each robot publishes RobotMetadataTopic which includes the ID, Model/Make, and other

Topics published. This topic is subscribed by every other robot to communicate with the

publisher. The IDs are used in system.

Another important topic for configuration is CapabilityTopic. This is where heterogeneity is

absorbed. Each robot publishes its capabilities, the parameters required to operate the

capability and the response structure of a capability. This data will be used in mission

management later on.

The robot publishes its hardware status with HWStatusTopic. This topic also includes very

important information for mobile robots, the power status.

Many real world applications require location based formations. Thus, LocationTopic

provides these information including global position, INS if exists and local timestamp for

sync.

DDS-Based Heterogeneous Robots Communication Middleware

Vol. 3, No 1/Special Issue, February 2011

99

As stated in DDS architecture, there is no server in DDS model. Every participant provides a

local cache. The mission data therefore is spread all over campaign. MissionQueueTopic

provides the situational awareness of overall campaign.

Each robot publishes its missions, tasks, and its position in teams. When each message

gathered together, the snapshot of campaign status could be taken.

Robots also provide IDs of robots they are in communication through CommTopic. With this

information, a specific task or mission could be assigned to a specific team.

3.3. Mission Management

Missions are submitted through any participant in the environment. Additional interfaces to

the campaign could be defined via extending DDS and implementing new publishers for

mission management topics.

Mission management topics are defined in mission management domain. New missions are

submitted by publishers of these topics. These topics are listed in the table below:

MissionMetadataTopic Mission attributes, values

MissionCapabilityReqTopic Min. capability requirements for mission

MissionStatusTopic Mission completion rate, atomic task results

MissionTasksTopic Atomic tasks and responsibilities.

Missions are defined with MissionMetadataTopic. This topic includes mission attributes and

their values. These attributes are defined by context of the application.

The important part of mission management is forming the team for a mission. In order to

accomplish this task, mission’s minimum capability requirements are needed. As mentioned

in previous section, each robot publishes its capabilities. Each robots decision mechanism,

which is based on implementation, uses these two topics to either participate or form a

mission team.

As a mission is being completed, task results and completion rate could be seen by

MissionStatusTopic. Since DDS has Real-Time capability, this status could be used in further

planning and capacity assignment jobs.

The last topic in mission management domain is MissionTasksTopic which a mission’s

atomic tasks are published through. Each task defined by a capability and other attributes like

easiness rank, estimated completion duration, etc. These attributes could be defined by

application developer or by robot sub-systems like planner with an AI capability like those on

multi-agent systems.

Like many of middleware architectures, the proposed architecture could be extended where a

developer might extend the topics based on the application of purpose.

4. Implementation

Proposed middleware architecture is under development. Development is now simulated on

PC where on-robot tests will be accomplished after development completes.

Ekrem AKSOY, Selçuk CANBEK, Nihat ADAR

 SDU International Journal of Technologic Sciences

100

4.1. Hardware

The proposed middleware mainly has two hardware platforms: a development platform and a

test platform. The development platform is a PC with 1GB RAM and running Linux with 2.6

kernel version with AMD Athlon 3000+ processor. The test platform is a Pioneer DX-3 robot

running ARCOS Linux OS and has Hitachi H8S 32-bit RISC processor. The robot platform

also has Wi-Fi communication module.

On the other hand, DDS platform is available for both Linux and Windows operating systems.

Thus, one could use the proposed middleware on other robotic platforms running these OS’s.

5. Conclusions

This paper presented a communication middleware model based on OMG DDS for multi-

robot environments. With the help of DDS QoS mechanism and Publish/Subscribe paradigm,

proposed communication middleware was shown to abstract different robot implementations

sharing same domain.

References

[1] N.Mohamed, J. Al-Jaroodi, I.Jawhar, "Middleware for Robotics: A Survey", Proc. of The

IEEE Intl. Conf. on Robotics, Automation, and Mechatronics (RAM 2008), pp. 736-

742, Sep. 2008.

[2] R. Simmons et al., “Coordinated Deployment of Multiple, Heterogeneous Robots,” Proc.

2000 IEEE/RSJ Int’l Conf. Intelligent Robots and Systems, IEEE Press, Piscataway,

N.J., 2000.

[3] I.Akyildiz, W.Su, Y.Sankarasubramaniam, and E.Cayirci, “Wireless Sensor Networks: A

Survey”, Computer Networks, 2002.

[4] W.Evan, B.A.MacDonald, F.Trepanier, "Distributed Mobile Robot Application

Infrastructure", IROS 2003. Proc. v2, pp.1474-1480. 2003

[5] A. Gage, D. Murphy, D. Valavanis, and M. Long, “Affective task allocation for

distributed multi-robot teams”, Technical report TR2006-26 for Center for Robot-

Assisted Search and Rescue (CRASAR).

[6] N. Miyata, J. Ota, T. Arai, and H. Asama, “Cooperative transport by multiple mobile

robots in unknown static environments associated with real-time task assignment,”

IEEE transactions on robotics and automation, vol. 18, no. 5, 2002.

[7] Sugawara, K., Mizuguchi, T., "Multi-task allocation and proportion regulation of

homogeneous agents," Advanced Robotics and its Social Impacts, 2005. IEEE

Workshop on, vol., no., pp. 145-148, 12-15 June 2005

[8] P. Gil, I. Maza, A. Ollero, P. Marrón, "Data Centric Middleware for the Integration of

Wireless Sensor Networks and Mobile Robots," in Proc. 7th Conference on Mobile

Robots and Competitions, ROBOTICA 2007. April 2007.

[9] Zhang, T.; Hasanuzzaman, Md.; Ampornaramveth, V.; Ueno, H., "Construction of

heterogeneous multi-robot system based on knowledge model," Robotics and

Biomimetics (ROBIO). 2005 IEEE International Conference on, vol., no., pp.274-279

