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Abstract − Multivariate Adaptive Regression Splines (MARS) is a supervised learning model in 

machine learning, not obtained by an ensemble learning method. Ensemble learning methods are 

gathered from samples comprising hundreds or thousands of learners that serve the common purpose 

of improving the stability and accuracy of machine learning algorithms. This study presented 

REMARS (Random Ensemble MARS), a new MARS model selection approach obtained using the 

Random Forest (RF) algorithm. 200 training and test data set generated via the Bagging method were 

analysed in the MARS analysis engine. At the end of the analysis, two different MARS model sets 

were created, one yielding the smallest Mean Square Error for the test data (Test MSE) and the other 

yielding the smallest Generalised Cross-Validation (GCV) value. The best model was estimated for 

both Test MSE and GCV criteria by examining the error of measurement criteria, variable importance 

averages, and frequencies of the knot values for each model. Eventually, a new model was obtained 

via the ensemble learning method, i.e., REMARS, that yields result as good as the MARS model 

obtained from the original data set. The MARS model, which works better in the larger data set, 

provides more reliable results with smaller data sets utilising the proposed method. 

Keywords − Multivariate adaptive regression splines, random forest, model selection, machine learning, ensemble learning 

Mathematics Subject Classification (2020) – 62G09, 62P99 

1. Introduction 

Machine learning is concerned with designing and analysing models learned from data and developing 

practical algorithms for prediction [1]. In other words, it suggests using a machine or computer to learn 

similarly to how the brain learns and predicts [2]. Ensemble learning, another definition of machine learning, 

refers to a collection of basic models assembled to create a new prediction or classification using the same 

learning technique. Bagging and Boosting are among the most widely used methods. These methods were 

designed to improve the stability and accuracy of machine learning algorithms [3]. Random Forest (RF) is an 

ensemble learning method for classification and regression, representing a significant advancement in machine 

learning. The method of RF is used to create many individual Classification and Regression Tree (CART) 

decision trees during the training phase. It aims to find new ways to combine the information from the 

individual CART trees (the class modes for classification, averaging the predictions of each regression model) 

[4, 5]. Contrary to the linear and non-linear regression models widely used in practice, Multivariate Adaptive 
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Regression Spline (MARS) is defined as a nonparametric technique that generates different coefficients for 

different range values of the independent variable and reflects the actual structure better by also adding 

interaction terms to the model [6]. The model is obtained using the regression models’ forward selection and 

backward elimination algorithms and the essential piecewise functions and combinations [7]. 

Many studies are conducted in different disciplines using the MARS algorithm. The MARS model was 

used by [8] in the field of medicine for disease diagnosis, [9] in the field of computer sciences for the quality 

assessment of web services, by [10] in the field of civil and environmental engineering to estimate pile 

drivability, by [11] in the field of mechanical engineering to model heat transfer properties and by [12] in the 

field of accounting and information systems to make financial predictions.  

On the other hand, there are other studies in the literature where improvements were made in the model 

selection of the MARS algorithm. [13] used a genetic algorithm to interfere with knot selection. [14] suggested 

a new approach to the MARS as CMARS and used a penalised residual sum of squares for the MARS as a 

Tikhonov regularisation problem. [15] presented the new robust CMARS (RCMARS) in theory and by a robust 

optimisation technique. [16] proposed a new method for knot selection based on a mapping approach like self-

organising maps. [17] applied information measure of complexity (ICOMP) as a powerful model selection 

criterion for the MARS modelling. [18] used Bootstrapping to obtain the empirical distributions of the 

parameters and to determine whether they were statistically significant or not in a special case of nonparametric 

regression.  

There were many studies in which Ensemble Learning, Bagging, and Random Forest methods were used 

together in the literature. We can give the most up to date of these as follows. [19] showed the working 

mechanism of stacking and bagging on spoof fingerprint detection, which were widely used ensemble learning 

approaches. [20] offered a quantified way for the standard case when classifiers were aggregated by the 

majority (“algorithmic variance”, i.e., the prediction error variance due only to the randomised training 

algorithm). A new method was proposed as a multi-objective optimisation approach with the two objectives 

of accuracy and diversity based on two main challenges in the bagging method provided in [21]. [22] proposed 

a new classification method for sparse functional data based on functional principal component analysis 

(FPCA) and bootstrap aggregating. 

The present study aims to convert the MARS technique into ensemble learning using the RF algorithm. 

Moreover, we suggested a new method for selecting the model with superior performance and generalisation 

from the ensemble of the MARS models. Although there are studies in the literature where the MARS model 

was used as an ensemble [23-25], there is no method for selecting the best MARS model by creating the MARS 

models over a random ensemble. Correcting this deficiency in the literature will be attempted with the 

suggested new method. This study is derived from the first author's PhD dissertation conducted under the 

supervision of the second author. 

2. Method 

2.1. Random Forest Algorithm 

The article on the RF model published by Leo Breiman in 2001 took its final shape by referring to the studies 

conducted by [4, 5, 26-31]. The algorithm of the RF method is built by following the steps presented below 

[8, 32-36]: 

i. 𝑘 sampling is created by the Bagging method so that the number of observations in the original data set 

has the same number of observations as 𝑛. Also, each sampling represents a CART decision tree. 

ii. While 2/3 of the observations in the original data set are included in the sample as InBag data, 1/3 of 

them are excluded from the sample as OOB data to test the established internal error rate of the model. 
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iii. The widest CART decision tree is created with the InBag data. While creating this tree, instead of selecting 

the best variables out of all existing prediction variables in each node, 𝑝 out of a total of 𝑚 independent 

variables are randomly selected in a split of each node (𝑝 < 𝑚). That is because the tree is not expected 

to demonstrate excessive growth and overfitting.  

iv. The previous steps are repeated until the 𝑘 number of trees that will form the forest is obtained. Afterwards, 

a new prediction is made by combining the separate class predictions with 𝑘 trees. It counts how often an 

examined observation is classified and in which categories. Each observation is assigned a class with a 

majority of votes determined through the tree sets. 

v. The predictions made with the OOB observations that are not used in individual trees are used to estimate 

the internal error rate of the forest. The OOB error rate of each decision tree making up the forest is 

calculated. The percentage of misclassification is determined as the classification error rate of RF. 

2.2. Multivariate Adaptive Regression Splines 

The MARS technique was developed by the physician and statistician Jerome Harold Friedman in 1991 [37]. 

According to [38], the MARS is a good innovation in finding suitable conversions to convert the non-linear 

relationships between dependent and independent variables into a linear structure and determine the 

interactions between independent variables. 

The MARS uses a pair of functions in the form of [±(𝑥 − 𝑡)]+One is the mirror reflection of the other, 

as the basis function in linear and non-linear expansions that predict the relationship between dependent and 

independent variables. These function pairs are also called mirror basis functions. The sign [. ]+ states that 

only the positive results of the related functions will be considered. Otherwise, the related functions are 

considered zero. The basis function pair representing the variable 𝑥 and the knot value 𝑡 is defined as follows 

[3,6,39]: 

(𝑥 − 𝑡)+ = {
𝑥 − 𝑡, 𝑥 > 𝑡 
0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 and (𝑡 − 𝑥)+ = {
𝑡 − 𝑥, 𝑥 < 𝑡 
0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 (1) 

To find the desired model, the MARS uses a two-step process. Forward selection, the first phase of 

creating the MARS model, resembles forward stepwise regression. Unlike this method, the MARS uses basis 

function pairs instead of original inputs [6]. Each step finds the main basis function pair (meaning that both 

functions of a knot are included in the model) that leads to the most decrease in the SSE (Sum of Squares 

Error) value using the Greddy algorithm. In forward selection, the process of adding terms continues until the 

maximum number of terms included in the model is reached. The over fitted MARS model that is established 

by adding certain basis functions under the conditions and is much bigger than the optimum model is 

formulated as follows [37]: 

 𝑓(𝑥) = 𝑎0 + ∑ 𝑎𝑚𝐵𝑚(𝑥)𝑀
𝑚=1 = 𝑎0 + ∑ 𝑎𝑚

𝑀
𝑚=1 ∏ [𝑠𝑘𝑚(𝑥𝑣(𝑘,𝑚) − 𝑡𝑘𝑚)]

+

𝐾𝑚
𝑚=1   (2) 

In Equation (2), M is the number of basis functions defined as 𝑚 = 1,2, … , 𝑀. While the quantity 𝐾𝑚 

represents the number of interactions, the quantity 𝑠𝑘𝑚 takes the value ±1. The constant term in the model is 

denoted by 𝑎0 while the regression coefficients are denoted by 𝑎𝑚. 𝐵𝑚(𝑥) is the m-th basis function. The 

𝑣(𝑘, 𝑚) label the independent variables and the 𝑡𝑘𝑚 present knot value on the corresponding variables [37]. 

Backward elimination constitutes the second phase of the creation of the MARS model. The main reason 

this stage is required is the inability to compare the models with the SSE value. That is because when SSE is 

used to compare the models, backward elimination always selects the biggest model. However, the biggest 

model does not possess the best generalisation performance; on the contrary, it is over fitted and does not 

produce good results on new data [6, 40]. The model that became over fitted with forwarding selection is 

subjected to the elimination process to turn it into a model capable of generalising. The GCV (Generalized 

Cross Validation) criterion, a goodness of fit index, is used to compare the performance of model subsets and 
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choose the best subset. GCV considers both the error of residuals and model complexity [3,6,41]. For this 

reason, lower GCV values are accepted much better. The GCV formula, introduced by [42], is calculated as 

follows [37]: 

𝐺𝐶𝑉 =
1

𝑛
∑[𝑦𝑖 − 𝑓𝑀(𝑥𝑖)]

2
𝑛

𝑖=1

[1 −
𝐶(𝑀)

𝑛
]

2

⁄  (3) 

In Equation (3), the value 𝑛 gives the number of observations in the data set, 𝑦𝑖 gives the observed value 

of the dependent variable and 𝑓(𝑥𝑖) provides the estimated value of the dependent variable. When the 

numerator of the formula is examined, it can be observed that the mean of the SSE value, i.e., MSE (Mean 

Square Error), was used. Therefore, the denominator of the formula renders the GCV criterion both different 

and essential compared to the SSE value. Cost complexity function 𝐶(𝑀) is calculated with the formula as 

follows [37]: 

𝐶(𝑀) = 𝑡𝑟𝑎𝑐𝑒(𝐵(𝐵𝑇𝐵)−1𝐵𝑇) + 1 (4) 

In Equation (4), 𝐵 represents the 𝑀𝑥𝑛 dimensional data matrix of unconstant M basis functions. The cost 

complexity function was readapted for the MARS model by [43, 44] and took the form as follows [37]: 

�̃�(𝑀) = 𝐶(𝑀) + 𝑑𝑀 (5) 

Here, 𝑑 denotes the penalty value used to determine the best knot value. 𝑑 is also known as Degrees of 

Freedom (DOF). The most suitable penalty value is in the 2 ≤ 𝑑 ≤ 4 range [37].  

2.3. REMARS: Random Ensemble MARS  

2.3.1. Difference Between MARS and REMARS  

Contrary to linear regression models, in the MARS models, parameter confidence intervals and other controls 

in the model cannot be directly calculated, as in any nonparametric regression. Techniques related to GCV are 

used to validate the model. In the model selection of these techniques, the model that gives the lowest value 

related to the criterion is always selected. Generating hundreds or thousands of the MARS models from an 

original dataset, selecting the model with the lowest GCV criterion among these models and making 

predictions with the selected model may appear to be a highly reliable course of action. However, it cannot be 

deduced that the model with the lowest GCV value, etc., selected from a collection of models will always be 

the model with the best generalisation ability and performance. This is due to the presence of error 

measurement criteria such as SSE, MSE, Root Mean Square Error (RMSE), Mean Absolute Error (MAE), 

Mean Absolute Percent Error (MAPE) and R2 (Coefficient of Determination), which affect the generalisation 

ability and performance of the model. Although SSE forms the basis of all error measurement criteria and 

serves as a subset, the main differences in the formulas make the criteria different from each other. Selecting 

a model where these differences are not in effect impacts the model’s generalisation ability. When choosing 

the best model, preferring the model with the lowest error measurement criteria, such as RMSE, MSE and 

SSE, generally increase the R2 value. Reaching the highest R2 value with this method causes the error variance 

of the model to increase in new data. Therefore, when selecting the best model from the MARS models 

ensemble, a better course of action is observed progressing by considering the confidence interval of the means 

of different error measurement criteria. This route is not enough on its own. That is because the mean of each 

error measurement criterion does not correspond to the same model in the MARS models ensemble. Therefore, 

choosing a model in which knot values and variable importance are not enabled will also affect the validity of 

the selected model. 
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2.3.2.  REMARS Algorithm 

 REMARS, a new MARS model selection approach that is obtained using the Random Forest algorithm, 95% 

confidence interval for the mean of error measurement criteria, knot values and contribution percentages of 

variables to the model, is created with the following steps. 

i. Sampling: N samples (SAMPLE 1, SAMPLE 2, …, SAMPLE N) are created by the Bagging method so 

that the number of observations in the original data set has the same number of observations as n. Due to 

the bagging method, each sample differs in terms of the observations they contain, although they have the 

same number of observations. 

ii. InBag - Train: Each sample contains approximately 2𝑛/3 of the observations in the original data set, and 

this part is named InBag (InBag 1, InBag 2, …, InBag N). With 𝑛/3 observation repeated from 2𝑛/3 

observation in InBag, the number of observations of each training dataset (Train 1, Train 2, …, Train N) 

will be 𝑛(𝑛1 = 𝑛2 = ⋯ = 𝑛𝑁 = 𝑛). 

iii. OOB - Test: The number of observations in the original data set but non-existent in the samples is 

approximately 𝑛/3 and is named OOB (OOB 1, OOB 2, …, OOB N). The remaining 2𝑛/3 of the test data 

(Test 1, Test 2, …, Test N) with the number of observations 𝑛 is made up of repeated observations from 

the data separated as OOB. 

iv. Analysis: After the training and test data sets are created, each training data is analysed with its test data 

in the MARS program. N models (Y1 = Model 1, Y2 = Model 2, …, YN = Model N) are obtained at the 

end of the analysis. The results of these models were examined using two different selection criteria (Test 

MSE and GCV). 

v. Results: After obtaining a total of N models according to Test MSE and GCV criteria, mean – standard 

deviation – 95% confidence interval for the mean of error measurement criteria (RMSE, MSE, GCV, 

MAE, MAPE, SSE and R2) are firstly calculated. Secondly, the number of times each variable’s knot is 

repeated in the models, i.e., their frequency, is determined. Thirdly, each variable’s minimum, mean and 

maximum contribution percentages to the model are obtained. 

Fig. 1 shows the flowchart for the REMARS algorithm, which is a new approach for model selection from 

the randomly generated MARS models ensemble. 

 

Fig. 1. The flowchart of the REMARS (Random Ensemble MARS) algorithm 
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2.3.3.  REMARS Model Selection 

The information obtained from the results is respectively used for model selection. The first model elimination 

is performed by selecting the models that fall within the lower and upper bound values of the 95% confidence 

interval for the mean of each error measurement criterion among Test MSE and GCV models, respectively. 

Afterwards, the models with the highest frequency in the 95% confidence interval for the mean of each error 

measurement criterion are determined. Determined models are examined separately by considering the 

frequency of the knot values obtained from all models (the ensemble) and the descriptive statistics of the 

contribution percentages of the variables to the model. The model that best predicts the dependent variable is 

selected among the N models. The model set with REMARS will be as good as the MARS model to be obtained 

from the original data. That is, because the MARS models obtained from randomly generated samples, 

combined in 95% confidence limits of the mean of all error measurement criteria of these models, the knot 

values obtained from all of the models in the ensemble, and the use of the contribution percentages to models 

of the variables will ensure that the selected model is highly consistent. 

3. Application 

In this section, the application for the selection of the most suitable MARS model using the REMARS method 

is presented. The MARS analysis engine in the Salford Predictive Modeller version 8.3 by the company Salford 

System was used in these analyses. the MARS analysis engine, instead of presenting a single MARS model at 

the end of the analysis, provides a tab including MARS models with several numbers of basis functions. The 

tab also separately indicates two different models with different selection criteria. The first of these models is 

the training model that gives the lowest MSE value based on the test data in the backward elimination phase, 

while the second model is the training model that offers the lowest GCV value in the backward elimination 

phase. In the application, Test MSE and GCV models were examined separately, and the results were 

combined. 

3.1. Data Set 

The research of the data set used in the application was conducted in 1970 in East Boston–Massachusetts. The 

FEV (Forced Expiratory Volume) values of children of different ages, heights and sexes in smoking and non-

smoking environments were measured. [45, 46], who conducted the aforesaid research, examined the effects 

of parents smoking habits on the respiratory functions of children in East Boston–Massachusetts. [47] 

presented a section of the data from the study, conducted with Tager, for another analysis. This data set used 

by [48] was published on the website of [49] and used in the application section of the present study. In the 

FEV data set, there are measurements of 654 children in smoking/non-smoking environments, aged between 

3–19 and height vary between 46–74 inches. Their age means is ten and their height mean 61.1 inches. The 

FEV measurement values of the children range from 0.791–5.793 litres, and the mean FEV value was 

calculated as 2.637 litres. 

3.2. Analysis Results 

At the end of the analysis, the Salford Predictive Modeller 8.3 MARS program presents various criteria for 

each model obtained by Test MSE and GCV criteria. These criteria, which will be used to determine the best 

model, can be listed as RMSE, MSE, GCV, SSE, MAE, MAPE, SSE and R2. Each criterion was obtained 

separately from the 200 different MARS models created by Test MSE and GCV criteria. Table 1 shows the 

descriptive statistical findings of each criterion’s mean values, standard deviation and 95% confidence interval 

for the mean (lower limit - upper limit) obtained from 200 models. 
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Table 1. Descriptive statistics of error measurements of GCV and Test MSE models 

Model 

Selection 

Criteria 

Descriptive Statistics of 

Measurements 

Model Error Measurements 

RMSE MSE GCV MAD MAPE SSE R2 

Test MSE 

Mean 0.388 0.151 0.157 0.293 0.116 98.555 0.798 

Standard Deviation 0.018 0.014 0.013 0.012 0.005 9.017 0.018 

95% 

Confidence 

Interval for 

Mean 

Lower 

Bound 
0.385 0.149 0.156 0.291 0.115 97.555 0.796 

Upper 

Bound 
0.390 0.153 0.159 0.294 0.117 99.812 0.801 

GCV 

Mean 0.373 0.139 0.150 0.284 0.1128 90.974 0.814 

Standard Deviation 0.014 0.010 0.011 0.010 0.004 6.624 0.015 

95% 

Confidence 

Interval for 

Mean 

Lower 

Bound 
0.371 0.138 0.149 0.282 0.112 90.050 0.811 

Upper 

Bound 
0.375 0.141 0.152 0.285 0.1134 91.898 0.816 

When Table 1 is examined, it is clearly observed that the descriptive statistics values of each error criterion 

of the Test MSE models are higher than the descriptive statistics values of each error criterion of the GCV 

models. This situation is due to the fact that the number of basis functions in the Test MSE models is generally 

lower than the number of basis functions in GCV models. On the other hand, while GCV is based on a formula 

that considers both residuals and model complexity, the formula of the Test MSE is based only on residuals. 

For this reason, GCV selects the models with more complex structures in the backward elimination phase. In 

the results, the GCV values obtained from the Test MSE models are generally higher than those in GCV 

models.  

The knot values accompanying the basis functions that constitute each of the 200 Test MSE and GCV 

models are also included in determining the best model using REMARS method. As a result, the number of 

each knot belonging to a variable in the 200 models was determined. Frequencies of the top ten knot values 

most commonly observed in the models were determined for the height and age variables. Also, frequencies 

of knot values for the sex and smoker variables in the models were found. All of these results for the Test MSE 

and GCV models are shown in Table 2. When Table 2 was examined for the height variable, it was observed 

that the top five most commonly observed knot values are the same for the Test MSE and GCV models; 

however, their existence percentages in the models differ. Knot 66 was ranked first in both model ensembles 

by being present with a rate of 51% in the Test MSE models and 53% in the GCV models. In the Test MSE 

models, knots 65; 65.5; 57.5; 69 are present with rates of 34.5%, 27%, 25.5% and 19.5%, respectively. In the 

GCV models, knots 69; 65; 65.5; 57.5 are present with rates of 48.5%, 39.5%, 31% and 29.5%, respectively. 

Knot 67.5 is present in both model ensembles in different percentages.  

The age variable’s most common knot value in the Test MSE and GCV models is 8. This value is 

presented in the Test MSE and GCV models at approximately the same rates. The presence rates of knots other 

than 8 in both model ensembles were lower than 25%. Knots 1 and 2 for the sex variable are observed in the 

Test MSE models with rates of 10% and 8%, respectively, and the GCV models with rates of 28.5% and 29%, 

respectively. From this, it can be concluded that while each knot value of the sex variable is present in both 

Test MSE and GCV models with approximately the same rates, they were more effective in the GCV models 

compared to the Test MSE models. When Table 2 was examined for the smoker variable, it was observed that 

the knot value 1 had little effect in both model ensembles. The knot value 0 was much more effective in the 
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GCV models with a rate of 54.5% compared to the Test MSE models (16.5%). This is because observation 0 

outnumbers observation 1 in the data set. That is because the MARS models are affected by the quantitative 

amount of any observation of a variable in the data set to include it in the model. It is observed that the GCV 

values are higher than those of the Test MSE, when the knot values of a variable in the Test MSE and GCV 

models are the same, as shown in Table 2. Again, this is because fewer basis functions, therefore fewer knot 

values, are included in the Test MSE models compared to the GCV models.  

Table 2. Frequencies of knot values of GCV and Test MSE models 

Model 

Selection 

Criteria 

Variables 

Height Age Sex Smoker 

Knot 

Values 
Frequency 

Knot 

Values 
Frequency 

Knot 

Values 
Frequency 

Knot 

Values 
Frequency 

Test MSE 

66 102 8 112 

1 20 0 33 

65 69 9 34 

65.5 54 10 27 

57.5 51 7 8 

69 39 13 8 

58.5 31 6 6 

2 16 1 2 

64.5 27 3 5 

64 27 11 4 

67.5 25 14 4 

67 23 16 3 

GCV 

66 106 8 113 

1 57 0 109 

69 97 13 49 

65 79 9 37 

65.5 62 14 29 

57.5 59 10 26 

70 59 17 21 

2 58 1 13 

67.5 58 15 19 

67 47 12 16 

68.5 44 16 15 

71 41 11 13 

The MARS analysis engine includes a tab that ranks the predictors based on their contribution percentage 

to the model at the end of the analysis. In this tab, which is calculated at a 100% scale, variables are ranked 

according to their importance percentage in a way that the most important variable always scores 100%. Table 

3 shows the minimum, mean and maximum value findings of the importance percentages obtained for each 

variable in the Test MSE and GCV models.  

 

 

 

 

 



35 

 

Journal of New Theory 40 (2022) 27-45 / Random Ensemble MARS: Model Selection in Multivariate Adaptive … 

Table 3. Importance percentage of variables of GCV and Test MSE models 

Model Selection Criteria Variables 
Variable Importance 

Minimum Mean Maximum 

Test MSE 

Height 100.00 100.00 100.00 

Age 8.35 23.87 43.59 

Sex 1.25 9.48 18.50 

Smoker 3.15 10.20 22.48 

GCV 

Height 100.00 100.00 100.00 

Age 14.03 27.20 52.71 

Sex 1.28 8.48 22.57 

Smoker 0.50 8.98 22.53 

Table 3 shows that height is the most important variable in the Test MSE and GCV models. It was found 

to have an importance percentage of 100% in all models. It is followed by the age variable as the variable with 

the most significant contribution to the models. However, while the age variable is present in all of the GCV 

models, it was absent in 8 of the Test MSE models. In comparison, the sex and smoker variables had 

percentages of contribution in the Test MSE models that were calculated as 15.5% and 17%, respectively, and 

their percentages in the GCV models are 58% and 60.5%. Therefore, while the sex and smoker variables had 

almost no contribution to the Test MSE models, the situation was the opposite in the GCV models. Thus, the 

GCV criterion considers model complexity and tends to establish models with too many variables and knots. 

3.3. Model Selection 

The results obtained from Test MSE and GCV models ensemble using the REMARS approach constitute the 

building block of the model selection. In addition to being an approach that converts the classical MARS 

method into an ensemble, REMARS also uses a different technique in model selection. Instead of selecting 

the models with the lowest Test MSE and GCV values among Test MSE and GCV ensembles, it considers 

each model’s error criteria, knot values, and variable importance. 

3.3.1. Test MSE Criteria 

To determine the MARS model with the best performance among the 200 models determined by the Test MSE, 

the analysis results obtained for the Test MSE in Table 1 are used. The first model elimination is performed 

by selecting the models that fall within the lower and upper bound values of the 95% confidence interval for 

the mean of each error measurement criterion among the Test MSE models. That is because progressing by 

determining a value according to the mean of each error criterion prevents us from selecting over fitted or 

under fitted models. According to their model number order, the models selected under these conditions are 

shown in Table 4 for the Test MSE error measurement criteria. When Table 4 is examined, it is seen that some 

error criteria have common models, and some do not. At this stage, it is important that a particular model 

number is commonly entering in several error measurement criteria. For this reason, in order to determine the 

best model, the second model elimination was performed by determining which model number is found in the 

error measurement criteria in Table 4, and how many times at the most. When Table 4 is examined, it is 

observed that Model 185 is commonly present in six error measurement criteria other than the MAD error 

measurement criterion, and Model 3, Model 24, Model 90 and Model 140 are commonly present in five 

different error measurement criteria. Other Test MSE models are present in fewer numbers in different error 

measurement criteria. 
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Table 4. Model numbers entering 95% confidence interval for error criterion mean from Test MSE models 
M

o
d

el
 N

u
m

b
er

 

Error Measurements of Test MSE Models 

RMSE MSE GCV MAE MAPE SSE R2 

2 2 3 1 1 3 1 

3 3 7 3 16 6 3 

6 6 17 21 46 24 17 

21 24 21 22 53 36 65 

24 36 24 24 58 56 70 

25 56 25 25 90 59 103 

36 59 36 48 92 64 110 

56 64 39 59 98 83 135 

59 83 51 83 122 90 147 

64 90 62 91 125 97 166 

90 97 83 103 134 127 180 

97 103 90 106 137 133 181 

103 108 92 108 140 140 185 

108 127 97 117 149 150 191 

127 133 108 127 153 152 194 

130 140 109 129 157 185  

133 150 136 130 166 187  

138 152 140 137 178 194  

140 174 144 144 185   

150 185 152 177    

152 187 171 180    

174 190 176 193    

185 194 180     

187  183     

190  185     

194  187     

    188         

According to these results, the five most common models in the error measurement criteria among the 

200 Test MSE models were determined. Table 5 shows the knot values and variable importance percentages 

of these models. 

In the third model elimination to determine the best out of the five models selected from the Test MSE 

models, the results in Table 2 are used. When Table 2 is examined, it is observed that in the Test MSE models, 

knot 66 is essential for the height variable while knot 8 is essential for the age variable. These values are not 

present in Model 3, Model 24, Model 90 and Model 185. The absence of these knots may cause significant 

problems in the performance of the error measurement criteria of the models for new data. According to Table 

3, the importance percentages of the height and age variables in the models indicate that these variables are 

required to be present in the models while also serving as moderator variables. It is also observed that the 

smoker variable contributes to the models. However, the smoker variable is not present in any of the models. 

That is because knot 0 of the smoker variable was found in 33 models while knot 1 was found in 2 models. 
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Their percentages of contribution to the models they are included in were found to be high. This shows that 

the knots contribute to the models, however, this contribution is not sufficient to be included in the selected 

models. The same situation applies to the sex variable. Model 24 includes the sex variable; however, it cannot 

be selected as the significant knots of the height variable are not included in this model. When all of these 

results are combined, Model 140 represents the best model among the Test MSE models. That is because 

Model 140 has produced the most consistent results in terms of the error measurement criteria, knot values and 

contribution percentages of variables to the model. 

Table 5. Knot values and variable importance percentages of selected Test MSE models 

Model Number Particulars 
Variables 

Height Age Sex 

3 
Knot Values 

52 6   

65.5   

66   

69   

Variable Importance (%) 100 25.81   

24 
Knot Values 

57.5 8 1 

58.5   

59.5   

65   

Variable Importance (%) 100 25.05 7.51 

90 
Knot Values 

65 11   

 13  

Variable Importance (%) 100 20.10   

140 
Knot Values 

65.5 8   

66   

69   

Variable Importance (%) 100 18.65   

185 
Knot Values 

65 7   

66   

67   

Variable Importance (%) 100 33.88   

65: Knot value entering the model with the mirror basis function 

3.3.2. GCV Criteria 

To determine the MARS model with the best performance among the 200 models determined in accordance 

with GCV firstly the analysis results obtained for GCV in Table 1 are used. The first model elimination is 

performed by selecting the models that fall within the lower and upper bound values of the 95% confidence 

interval for the mean of each error measurement criterion among the GCV models. That is because progressing 

by determining a value according to the mean of each error criterion prevents us from selecting over fitted or 

under fitted models. The models selected under these conditions are, according to their model number order, 

shown in Table 6 for the GCV error measurement criteria. According to Table 6, Model 59, Model 116 and 

Model 130 are commonly present in five different error measurement criteria. Other GCV models are present 

in fewer numbers in different error measurement criteria.  
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Table 6. Model numbers entering 95% confidence interval for error criterion mean from GCV models 
M

o
d

el
 N

u
m

b
er

 

Error Measurements of GCV Models 

RMSE MSE GCV MAD MAPE SSE R2 

23 23 9 7 5 23 6 

34 34 21 21 6 34 8 

46 59 34 52 9 59 12 

59 82 46 61 14 82 14 

79 104 52 79 28 104 18 

82 105 91 98 30 105 25 

104 106 92 108 43 106 27 

105 108 103 115 46 108 28 

106 116 105 127 53 116 30 

108 130 116 130 58 130 35 

116 146 117 144 59 146 48 

130 174 118 151 61 174 57 

146 182 130 171 62 182 59 

174 190 144 174 70 190 63 

190 198 146 183 75 198 69 

198  182 191 79  82 

  190 196 91  83 

  191 198 94  94 

  196  101  99 

    119  103 

    122  107 

    123  116 

    128  117 

    138  136 

    139  138 

    160  141 

    166  151 

    168  191 

    172   

    188   

    189   

    193   

    194   

        196     

According to these results, the three most common models in the error measurement criteria among the 

200 GCV models were determined. Table 7 shows the knot values and variable importance percentages of 

these models. The results in Table 2 and Table 3 are used to determine the best out of the three models selected 

from the GCV models. According to Table 2, knots 66 and 69 for the height variable and knots 8 and 13 for 
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the age variable repeat a lot in the GCV models. Knot value 69 from the height variable was not included in 

Model 130 while knot value 8 from the age variable was not included in Model 116. According to the 

importance percentages of the height and age variables in Table 3, they should be included in the model to be 

selected. The sex and smoker variables are seen to have similar contributions to the models. However, as knot 

0 of the smoker variable has a significantly higher number of repetitions in the models compared to the knot 

values of the sex variable, knot 0 of the smoker variable should be included in the model. Based on these 

observations, Model 59 represents the best model among the GCV models. 

Table 7. Knot values and variable importance percentages of selected GCV models 

Model Number Particulars 
Variables 

Height Age Sex Smoker 

59 
Knot Values 

58 8 2 0 

62 11   

66 13   

69 15   

Variable Importance (%) 100 34.53 15.62 6.60 

116 
Knot Values 

65 9 1  

66    

67    

67.5    

69    

70.5    

Variable Importance (%) 100 31.08 14.71   

130 
Knot Values 

56.5 8 2  

60    

66    

67.5    

68.5    

71    

Variable Importance (%) 100 25.06 7.13   

58: Knot value entering the model with mirror basis function 

4. Discussion 

The results related to the error measurement criteria what presented incidental to Model 140 selected from the 

Test MSE models using the REMARS method, Model 59 selected from the GCV models using the REMARS 

method and the MARS model obtained from the original data set are shown in Table 8. 

Table 8. Error measurement criteria of the MARS models obtained from original data and REMARS  

Data Sets 
Error Measurement Criteria 

RMSE MSE GCV MAD MAPE SSE R2 

Original Data Set 0.385 0.149 0.160 0.291 0.115 97.173 0.802 

GCV-Model 59 0.372 0.138 0.152 0.277 0.113 90.349 0.813 

Test MSE-Model 140 0.389 0.151 0.157 0.298 0.116 98.938 0.788 
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When each of the values of the error measurement criteria shown in Table 8 is compared individually for 

both the Test MSE-Model 140 and GCV-Model 59, it is observed that GCV-Model 59 produces more 

consistent and reliable results compared to the Test MSE-Model 140. That is because the GCV criterion is 

calculated with a formula that considers both error and the number of effective parameters. For this reason, it 

tends to create models with a more complex structure and higher variable efficiency compared to the Test MSE 

criterion. This situation causes the error measurement criteria of the Test MSE models, which have simpler 

structures, to deteriorate. Therefore, the model created based on the GCV criterion has a better ability to 

generalise compared to the model created based on the Test MSE criterion. This is clearly observed when the 

knot values and importance percentages of the variables in the Test MSE-Model 140 and GCV-Model 59 are 

examined. 

When the values of the error measurement criteria of the MARS model obtained from the original data 

set are compared with the error measurement criteria of GCV-Model 59, it is observed that GCV-Model 59 

produces better results. On the other hand, the knot values in the MARS model obtained from the original data 

set were obtained as 58.5; 59.5; 65; 66; 69 for the height variable, 8 for the age variable, 2 for the sex variable 

and 0 for the smoker variable. When these knot values are compared with the knot values of GCV-Model 59, 

it is observed that knots 66 and 69, which are important for the height variable, are present in both models. 

The age variable entered the model with a higher knot value in GCV-Model 59. This can be an advantage or 

disadvantage for the model. However, [48] proved that the abundance in age knots is an advantage for the 

model. That is because it was shown diagrammatically that the FEV distribution of the children in the smoking 

environment changed direction in knots 11, 13 and 15. The number of smoker parents is very low in the FEV 

data and when the number of smoker parents is increased in a different sample, these knots in the age variable 

take on an important role for the model. Both models have the same knot values for the sex and smoker 

variables. The contribution percentages of the height, age, sex and smoker variables in the MARS model were 

obtained as 100%, 27.4%, 4.88% and 2.91%, respectively. When these values are compared with GCV-Model 

59, it is understood that the age, sex and smoker variables contribute more to GCV-Model 59. In conclusion, 

Model 59, which was obtained with REMARS method based on the GCV criterion, produced better results 

than any other model. 

All prediction curves for the actual and predicted FEV values shown in Fig. 2 appear to be overlapped. 

Here, it can be understood that MSE-Model 140 and GCV-Model 59, which were obtained with REMARS 

method, produce results that are as consistent and reliable as the ones produced by the MARS model obtained 

from the original data. On the other hand, the Pearson Correlation between the actual and predicted FEV values 

was calculated as 𝑟 =  0.902 (𝑝 =  0.001) for the GCV-Model 59, 𝑟 =  0.888 (𝑝 =  0.001) for the Test 

MSE-Model 140 and 𝑟 =  0.896 (𝑝 =  0.001) for the MARS model obtained from the original data set. The 

fact that the best correlation between the actual and predicted FEV values are produced by GCV-Model 59 is 

understood from both the Pearson Correlation Coefficient Value and the scattering of the observation values 

in Fig. 2. 
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Fig. 2. Distribution of actual and predicted values of the MARS model obtained original data and REMARS  

Based on the results obtained, Table 9 shows the basis functions and knot values for Model 59, which was 

selected with REMARS method based on the GCV criterion, and information on the prediction model. 

Table 9. Basis functions and corresponding equations of the MARS model for GCV-Model 59 

Basis Functions  Equation Model 

BF1 Max (0, Height-57.5) 

FEV = 1.71963 +0.14058*BF1 -

0.0692608*BF2+0.0754913*BF3 

+0.145284*BF5+0.260453*BF7 -

0.280703*BF9-0.106875*BF11 

+0.172786*BF13-0.315717*BF23 

+0.295305*BF25+0.127262*BF27 

BF2 Max (0, 57.5- Height) 

BF3 Max (0, Age-8) 

BF5 (Sex (2)) 

BF7 Max (0, Height -66) 

BF9 Max (0, Height -69) 

BF11 Max (0, Height -62) 

BF13 (Sex (0)) 

BF23 Max (0,Age-13) 

BF25 Max (0, Age -15) 

BF27 Max (0, Age -11) 
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5. Conclusion 

Model 59, selected from GCV models, produces results more consistent than MARS model created by taking 

the original data set as training data. It is more suitable to be used for model selection particularly in data set 

where observations such as FEV data do not demonstrate homogeneity. The MARS model obtained from the 

original data set was created without being tested with separate test data. Therefore, it is not known whether it 

is the most useful model for new data. For this reason, the use of the model obtained through ensemble learning 

instead of the model obtained with a single learner produces more valid and reliable results. The MARS model 

obtained based on the REMARS method is suggested for this reason. The MARS model works better in big 

data set. The MARS model obtained using the REMARS method can produce reliable results with smaller data 

set due to the different samples generated with the Bagging Method. In data set with too many parameters, the 

procedure of independent variable selection can be carried out, as in the RF method.  
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