
INTERNATIONAL JOURNAL OF INFORMATION SECURITY SCIENCE
Ö. Öksüz, Vol. 11, No. 4, pp. 14-27

Privacy Preserving Multi-Proxy Based Encrypted
Keyword Search

Özgür Öksüz

Department of Software Engineering, Konya Technical University, Konya, Turkey
Corresponding Author: ooksuz@ktun.edu.tr

Research Paper Received: 23.07.2022 Revised: 30.10.2022 Accepted: 05.12.2022

Abstract—This paper presents a multi-proxy (2 proxies) based encrypted keyword search scheme that enjoys the following
properties: This scheme provides data confidentially that encrypted data does not leak any keywords and documents to the
attackers (data server and a proxy). Moreover, the proposed scheme provides trapdoor privacy. In other words, the attackers
do not learn any information about searched keywords. Furthermore, even if a proxy is controlled by an attacker, the attacker does
not learn any information about the queries (keywords that the user searches over the database) and database results. Different
from other studies, this scheme provides lightweight user-side query and data processing. In other words, most of the job (query
processing) is done by the proxies on behalf of the user. Finally, the proposed scheme relaxes the trust assumption that eliminates
a single point of failure by introducing multi-proxy architecture.

Keywords—data privacy, multi-proxies, keyword search.

1. Introduction

Disclosing private information is a very crucial
problem [1]. Databases keep very critical informa-
tion about users and are managed by the database
servers. Since the database servers keep users’ sen-
sitive information, an untrusted or compromised
database server can read/view users’ private in-
formation. The adversary simply exploits software
vulnerabilities to get into the server to retrieve the
users’ private information. What an adversary does
is to exploit software vulnerabilities to get into the
servers [2] to steal the users’ sensitive information.
To hide the users’ sensitive/private information from
an untrusted server data should be encrypted. In this

case, even if the attacker compromises the database
server, it can not learn any useful information about
plaintexts of the data. Encrypting the data is good
for hiding sensitive information. However, it might
be very inefficient. If the user needs to retrieve
a specific document from the database, the user
needs to download all the encrypted data. Then, the
user locally decrypts all the encrypted documents to
figure out which document it looks for. This requires
very high bandwidth and computation costs. To
eliminate these problems above, the user encrypts
its data and put the data into the database server.
When the user needs specific documents, instead
of downloading all its data, the user gives a token
(encrypted keyword or trapdoor) to the database

14

https://orcid.org/0000-0001-5568-6116

INTERNATIONAL JOURNAL OF INFORMATION SECURITY SCIENCE
Ö. Öksüz, Vol. 11, No. 4, pp. 14-27

server, and the database server responds with the
encrypted documents that contain the keyword.
In this way, the database server does not know
anything about the keyword since it is encrypted.
Moreover, this solution lowers the computational
and communication costs.

There are bunch of encryption schemes that can be
used to encrypt the database and keywords to obtain
privacy preserving keyword search system. Fully
homomorphic encryption, [3], allows servers to
compute any functions over encrypted database but
this encryption scheme is prohibitively expensive.
Order-preserving encryption, [4], [5], [6], [7] and
[8], allows servers to compare ciphertexts based on
their orders. In other words, if the relation between
plaintext messages are m1 > m2, then the cipher-
texts of these messages have the same relation,
c1 > c2. The order-preserving encryption leaks the
orders of the data. Public key encryption such as
Elliptic curve cryptosystem, Pallier encryption [9]
and RSA [10] require much more computational
cost than symmetric key encryption such as AES.
Thus, using a symmetric key encryption scheme is
more computationally efficient than using a public
key encryption scheme to encrypt data [11].

The user encrypts sensitive data before it sends
to the database server. This solution provides data
confidentiality. However, encrypting every keyword
and decrypting all the results set for each query can
be computationally expensive with resource-limited
devices like mobile devices. To eliminate this prob-
lem, a fully trusted proxy based systems can be used
[7], [12], [13], [14], [15]. These systems provide
lightweight user side data processing (encryption
and decryption). In this systems, the proxy has en-
cryption and decryption keys that is located interme-
diary between user application (usually application
server runs it) and the database server. However, this
kind of architecture has a single point of failure.

When a fully trusted proxy is compromised, the
keys are leaked to the attacker. This results that
the adversary uses decryption key to decrypt all
encrypted data. Moreover, it obtains the plaintexts
of all the data. Moreover, the adversary learns what
the user wants to search.

In order to address the problems above, we in-
troduce a multi-proxy (2 proxies) based encrypted
keyword search system that has the following prop-
erties:

• Our scheme eliminates single point of failure.
We relax the trust assumption by introducing
multi-proxy (two) based system. Even if one
of the proxies is compromised, the adversary
can not learn any useful information about the
queries and the query results.

• Our scheme provides lightweight user side
query and data processing. Since the encryp-
tion/decryption keys are given to the proxies,
the proxies do the encryption and decryption
computation on behalf of the user.

• We use symmetric key encryption scheme to
have very fast encryption and decryption com-
putations.

2. Related Work

There have been several studies that allow a
database server to search on encrypted database.
The study in [7] developed CryptDB that exe-
cutes SQL queries over encrypted database using
collection of operations such as equality check,
order computations. [12] proposed a bucketization
techniques that divide the domain of a column into
partitions, randomly map the partitions, and then
store the partition number for each data item. The
studies in [13], [14] introduce a secure and efficient
range search schemes over encrypted database. The
work in [15] introduces a privacy-preserving queries

15

INTERNATIONAL JOURNAL OF INFORMATION SECURITY SCIENCE
Ö. Öksüz, Vol. 11, No. 4, pp. 14-27

on encrypted database protocol. These studies have
the same weakness that their protocols have a fully
trusted proxy. Therefore, these schemes have a
single point of failure.

There have been some studies about search and
query over encrypted data. Some of these studies
use symmetric key encryption to encrypt data and
queries, [16], [17], [18], [19], [20]. The others use
public key encryption to encrypt data and queries
[21], [22], [23], and [24]. These studies require
significant user side query and data processing.

A comparison between our work and other sym-
metric searchable encryption schemes is shown in
Table 1. The comparison is based on the data
owner’s computational cost when it generates a
trapdoor and decrypts a file in a result set. Moreover,
we also compare the storage size of the data owner.
In the table, some studies do not include decryption
phase in their original schemes [17], [19], [20]. We
assume that they use AES encryption scheme for
the decryption process. Thus, we use ∗ symbol for
these studies’ corresponding decryption columns. In
study [20], the authors use a block cipher to generate
trapdoor but they do not mention a specific block
cipher. We assume that their scheme uses AES

block cipher. Thus, we use ∗∗ symbol for study
[20]’s corresponding trapdoor generation column.
Moreover, in the table PRF is a pseudo random
function operation. PRP is a pseudo random per-
mutation operation. In [16], the data owner needs to
do one PRF and one PRP operation to generate
a trapdoor. In studies [17] and [19], the data owner
needs to use PRF r times. In our work, the data
owner needs to use one PRF operation. In studies
[16], [17], [19], [20], the data owner needs to do
one AES decryption. However, in our work the
data owner needs to do only one XOR operation.
In studies [16] and [19], the data owner needs
to store O(r) items (secret keys). In studies [16],

[20] and this work, the data owner needs to store
O(1) elements. The work in [18] uses bucketization
technique and maps each bucket to a random value.
The authors encrypts the values and stores in the
database server. In their scheme, they figure out
optimal bucket size with preserving privacy. When
the bucket size is large, their scheme results better
privacy but introduces a large number of false
positive results. Thus the database server needs to
send a large number of result set. When the bucket
size is small, they have weak privacy but small
false positive result set. In our scheme we do not
have such privacy-efficiency tradeoff. Moreover, our
scheme does not introduce any false positive results.

A note that example of secure PRP s are
AES, 3DES, which are block ciphers. Thus, PRP

is also AES in the table. In a 10 round en-
cryption/decryption algorithm of AES, there are
164 XOR, 120 RIGHT/LEFT SHIFT , and
136 AND operations [25]. Moreover, in practice,
HMAC−SHA1 can be used to implement a secure
pseudo random function (PRF). To implement a
HMAC−SHA1, one needs 2XOR operations and
to apply H (hash) 2 times.

Table 1.
Comparison between the Proposed Work and

Other Studies.

Reference Trapdoor Gen. Decryption Storage
[16] PRF + PRP (AES) AES O(1)

[17] rPRF AES∗ O(r)

[19] rPRF AES∗ O(r)

[20] AES∗∗ AES∗ O(1)

This work PRF XOR O(1)

16

INTERNATIONAL JOURNAL OF INFORMATION SECURITY SCIENCE
Ö. Öksüz, Vol. 11, No. 4, pp. 14-27

Figure 1. Sytem Architecture

3. System Architecture and Threat
Model

3.1. System Architecture

Our proposed architecture is shown in Fig. 1. Our
architecture has 4 entities: a data owner/user, (DO)
two proxies (Proxy1 and Proxy2), and a database
server (DB). The data owner encrypts its data and
stores it in the database server, the proxies have
encryption and decryption keys that are sent by the
data owner via a secure channel. For simplicity, we
assume the unencrypted data (Tunenc) is of the form
depicted in Tab. 2.

The workflow of the system is as follows:

1. the user sends its keyword query to the proxies,
2. each proxy uses its encryption key to encrypt

the keyword query and sends it to the database
server,

3. the database server combines the received en-
crypted keyword queries from the proxies, re-
trieves the encrypted data (documents) from the
database. Then, the database server sends the
encrypted documents to the proxies,

Table 2.
An Illustration of An Unencrypted Table (Tunenc)

(∥ is the concatenation operation).

Keywords Documents
w1,1∥w1,2∥w1,3∥ . . . ∥w1,m D1

w2,1∥w2,2∥w2,3∥ . . . ∥w2,m D2

w3,1∥w3,2∥w3,3∥ . . . ∥w3,m D3

...
...

...
. . .

...
wn,1∥wn,2∥wn,3∥ . . . ∥wn,m Dn

4. each proxy decrypts the documents and sends
the results to the user. At last, the user recovers
the documents.

3.2. Threat Model

In our system, there are two honest-but-curious
adversaries. One adversary is the database server
that controls the database. The another adversary
controls only one proxy. These two adversaries can
not collude. The other proxy is trusted. Data owner/
user also trusted.

A honest but curious adversary follows the pro-
tocol specification: it does not change database
values, query results but it can try to learn plaintext
of the data and plaintext of the queries. We also
assume that there are secure channels between user
and the proxies. Furthermore, we assume that there
are secure channels between the proxies and the
database server.

Our security guarantees are two folds: Data pri-
vacy and Trapdoor privacy.

Data privacy: The untrusted database server can
not see the plaintexts of the data and any useful
information about the data (repeating elements in
the data columns, documents in the clear). More-
over, the untrusted proxy is not able to learn query
results (plaintexts of the documents).

17

INTERNATIONAL JOURNAL OF INFORMATION SECURITY SCIENCE
Ö. Öksüz, Vol. 11, No. 4, pp. 14-27

Trapdoor privacy: The untrusted proxy and un-
trusted database server can not learn which keyword
issued by the user.

We assume that the adversary (database server)
observes polynomial number of queries t (a function
of security parameter, λ) (q1, . . . , qt) queries. We
say that once these queries are issued, the protocol
leaks only access patterns (locations of the records
that satisfy each query), search patterns (whether
any two queries/trapdoors are generated from the
same keyword or not) and encrypted table (size of
each record, column and row sizes of the table).
The adversary observes only these leakages. We
are going to use simulation based proof system to
have data privacy in our system. In simulation proof
system, there are two worlds: real and ideal. In the
real world, protocol is executed between the parties
Proxy1, Proxy2, the data server. The adversary,
A, corrupts one entity (Proxy2 or the data server)
at a time. In the ideal world, there is a simulator
(SIM). In the ideal world, each party receives the
same input as that in the real world. The simulator
simulates the all transactions (messages) between
the entities using input and output (leakages) of
the corrupted party in the real world so that the
adversary can not distinguish real world from ideal
world. In other words, the adversary can not know
if it is interacted with ideal world or real world.

A trapdoor is an issued keyword that the data
owner wants to search it over database. In order to
have trapdoor privacy in our protocol, the searched
keyword (trapdoor) should be encrypted. Thus, we
use encryption on searched keywords to achieve
trapdoor privacy.

4. Definitions

In this section we introduce how encrypted key-
word search works. In a symmetric encrypted key-
word search scheme, the data owner/user has a

collection of documents/files D = (D1, . . . , Dn),
and each document Di has set of unique keywords
Wi = {wi,1, . . . , wi,m}. The data owner encrypts
these documents and the keywords with a symmetric
key encryption scheme. Then, the data owner puts
these encrypted values to honest-but-curious server.

The server will not learn any useful information
about the plaintext documents and the keywords. In
the system, the data owner gives an ability to the
server to search the keywords. Then, the database
server returns appropriate results (encrypted docu-
ments) to the user.

Definition 1 (Encrypted Keyword Search) The
definition of an encrypted keyword search scheme
has the following algorithms:

Setup
(
1λ
)
: It is a randomized key generation algo-

rithm that is run by the data owner to generate an
encryption key. It takes security parameter λ as an
input, it outputs a secret key K.

Enc(K,D): This algorithm is run by the data
owner to encrypt the documents and the key-
words. It takes a secret key K and a docu-
ment collection D = (D1, . . . , Dn), and their
keywords W = (W1,W2, . . . ,Wm) as inputs, it
outputs a sequence of ciphertexts (for documents)
CD = (CDi

, . . . , CDn), and (for keywords) CW =

(CW1 , . . . , CWn), where CDi
is the ciphertext of doc-

ument Di, and CWi
is the encrypted keyword set Wi

for document Di. We use the following notations:
CD ← EncK (D) and Cwi,j

← EncK (wi,j), where
Cwi,j

∈ CWi
.

Trpdr(K,w): It is a deterministic algorithm run by
the data owner to generate a trapdoor for a given
keyword. It takes a secret key K and a keyword w as
inputs, and outputs a trapdoor trK,w. We can write
this as trK,w ← Trpdr(K,w).

Search(CW , trK,w): It is a deterministic algorithm
run by the server to search for the documents in D

18

INTERNATIONAL JOURNAL OF INFORMATION SECURITY SCIENCE
Ö. Öksüz, Vol. 11, No. 4, pp. 14-27

that contain keyword w. It takes encrypted keyword
ciphertexts CW , and trapdoor trK,w as inputs, it
outputs a document identifier set id that contains
indexes of the documents that contain w.

Dec
(
K,Cid

D
)
: It is a deterministic algorithm run

by the data owner to recover the plaintexts of
documents. It takes a secret key K, a set of indexes
Cid

D and their corresponding ciphertexts as inputs,
it outputs document Di. We sometimes write this as
Di ← DecK (CDi

), where i ∈ Cid
D .

Definition 2 (Pseudo Random Function)
The property of a pseudo-random function
is computationally indistinguishable from
a totally random function. If given pairs
(x1, H(k, x1)), (x2, H(k, x2)), . . ., (xµ, H(k, xµ)),
an adversary cannot predict H(k, xµ+1) for
any xµ+1. A (t, ϵ, q)-pseudo random function
H : {0, 1}λ × {0, 1}n → {0, 1}n satisfies the
following properties:

• H(k, x) can be computed efficiently from input
x ∈ {0, 1}n and key k ∈ {0, 1}λ.

• for any t time oracle algorithm A that makes
at most q adaptive queries,
|Pr[AH(k,.) = 0|k ← {0, 1}λ] - Pr[AH′

=

0|H ′ ← {F : {0, 1}n → {0, 1}n]| < ϵ.

5. Multi-Proxy Based Encrypted Key-
word Search

In this section, we introduce our encrypted key-
word search scheme that has two proxies. Our
scheme has distributed encryption and decryption.
The data owner does not generate the trapdoor
alone. The data owner encrypts all data using two
different symmetric secret keys and hands them
over to the proxies. The proxies generate the en-
crypted trapdoor on behalf of the user. Then each
proxy sends the partially encrypted trapdoor to the

database server. The database server than returns the
result sets to the proxies. Moreover, the data owner
does not decrypt the documents alone. The proxies
decrypt the ciphertexts of the documents on behalf
of the user/data owner. This process can be thought
as secret sharing for encryption and decryption. An
attacker can not learn any useful information when it
corrupts one proxy. It needs to corrupt both proxies.

Moreover, in the proposed protocol, none of the
proxies does not learn any useful information about
searched keyword. Also, the proxies do not know
any useful information about plaintext documents.
Furthermore, the data owner only combines the
results sent by the proxies. Thus, the data/user
owner does not do much computation. Our scheme
provides lightweight user side query and data pro-
cessing.

Since the data owner needs to combine the results,
we introduce a new algorithm in our scheme. We
call the new algorithm Combine. Combine algo-
rithm takes two parameters as input: the first pa-
rameter comes from Proxy1 (par1) and the second
parameter comes from Proxy2 (par2). The output
of the combine algorithm is (par1 ⊕ par2) where
⊕ is the bitwise XOR operation. We write this as
(par1 ⊕ par2)← Combinepar1,par2 .

To make a secure and efficient encrypted keyword
search scheme, we get the intuition from scheme in
[15].

Our scheme is different than the scheme in [15]
in the following ways:

• The work in [15] has single point of failure.
When the proxy (front end) is compromised,
all the keywords and documents in the clear are
leaked to the adversary. Our scheme eliminates
single point of failure that the proposed scheme
does not depend on only one trusted party
(proxy).

19

INTERNATIONAL JOURNAL OF INFORMATION SECURITY SCIENCE
Ö. Öksüz, Vol. 11, No. 4, pp. 14-27

• The scheme in [15] does not have decryption
and combine algorithms. In our scheme, once
the database server sends the corresponding
encrypted documents to the proxies, the proxies
decrypt the ciphertexts separately. Then, the
proxies send the results to the user. At the end,
the user recovers the documents that contain the
keyword by using combine algorithm.

Note that we assume that each document has
the same number of unique keywords, m, in the
construction. However, each file can have different
number of unique keywords. The data owner needs
to make equal each file’s unique keyword size to m

in the construction. This number is the maximum
number of unique keywords that each file needs to
have. If a file has m′ < m unique keywords, the
data owner adds m −m′ random keywords to that
file before the encryption process. The details of our
scheme is as follows:

Setup
(
1λ
)
: The data owner chooses 4 encryption

keys K = {k1, k2, k3, k4} randomly from set {0, 1}λ
and a pseudo random function H : {0, 1}λ ×
{0, 1}n → {0, 1}a. Moreover, the data owner also
chooses pid1 ← {0, 1}b, pid2 ← {0, 1}b, where
pid1 , pid2 are identities of Proxy1 and Proxy2. The
data owner sends (k2, pid1) to Proxy1 and (k3, pid2)
to Proxy2.

Setup algorithm is given in Fig. 2.

Enc(K,Di,Wi): To encrypt document Di ∈ D and
keyword set Wi ∈ W , the data owner does the fol-
lowings for every wi,j ∈ Wi, where i ∈ {1, . . . , n}
and j ∈ {1, . . . ,m},

1. Computes H(k1, wi,j),
2. Computes xi,j = Enck2(H(k1, wi,j), pid1) and

Computes yi,j = Enck3(H(k1, wi,j), pid2),
3. Computes qi,j = Enck2(H(k1, wi,j), pid1) ⊕

Enck3(H(k1, wi,j), pid2) (xi,j ⊕ yi,j), where ⊕
is the bitwise XOR operation.

Figure 2. Algorithm Setup. (Done by Data
Owner (DO))

Input: (λ, a, b), (λ = a+ b).

Output: (K = {k1, k2, k3, k4}, H, pid1 , pid2).

- k1, k2, k3, k4 ← {0, 1}λ
- pid1 , pid2 ← {0, 1}b
- H : {0, 1}λ × {0, 1}n → {0, 1}a
DO sends (k2, pid1) to Proxy1.

DO sends (k3, pid2) to Proxy2.

4. Chooses random (salt) ri,j ← {0, 1}b and com-
putes Ei,j = Enck4(H(k1, wi,j), ri,j), where
b = λ− a.

5. Computes Fi,j = Encqi,j(Ei,j).
6. Computes Gi = Enck2(Di ⊕ ri) and Hi =

Enck3(ri), where ri is a new random (salt)
element. The lengths of Di and ri are the same,
|Di| = |ri| = λ′, where λ < λ′.

7. Sends Cwi,j
= (Ei,j, Fi,j) and CDi

= (Gi, Hi)

to the database server.
8. The data owner does these steps for each doc-

ument.

Enc algorithm is given in Fig. 3.

Trpdr(K,w): To query keyword w, the data
owner/user

9. Computes H(k1, w) and sends it to Proxy1 and
Proxy2.

10. Proxy1 computes x′ = Enck2(H(k1, w), pid1)

and Proxy2 computes y′ =

Enck3(H(k1, w), pid2). They separately sends
x′ and y′ to the database server. Here we can
say x′ = tr1 (trapdoor one) and y′ = tr2
(trapdoor two).

Trpdr algorithm is given in Fig. 4.

Search(CW , trK,w): Once the server receives trap-

20

INTERNATIONAL JOURNAL OF INFORMATION SECURITY SCIENCE
Ö. Öksüz, Vol. 11, No. 4, pp. 14-27

Figure 3. Algorithm Enc. (Done by Data Owner
(DO))

Input: (H, a, b, λ, λ′, K,Wi, Di)

i = [1 : n], j = [1 : m], |Di| = λ′.

Output: (Ei,j, Fi,j, Gi, Hi).

- for i = 1 to n

- ri ← {0, 1}λ
′

- Gi ← Enck2(Di ⊕ ri)

- Hi ← Enck3(ri)

- for j = 1 to m

- xi,j ← Enck2(H(k1, wi,j), pid1)

- yi,j ← Enck3(H(k1, wi,j), pid2)

- qi,j ← xi,j ⊕ yi,j
- ri,j ← {0, 1}b
- Ei,j ← Enck4(H(k1, wi,j), ri,j)

- Fi,j ← Encqi,j(Ei,j)

- end
- end
DO sends Gi, Hi, Ei,j, Fi,j to

Database Server (DB).

Figure 4. Algorithm Trpdr. (Done by Data
Owner (DO), Proxy1 and Proxy2)

- Input: (H,w,K, pid1 , pid2).

- Output: (x′, y′).

- DO: computes H(k1, w) and sends it to
Proxy1 and Proxy2.

- Proxy1: x′ ← Enck2(H(k1, w), pid1)

- Proxy2: y′ ← Enck3(H(k1, w), pid2)

Proxy1 sends x′ to Database Server (DB).
Proxy2 sends y′ to Database Server (DB).

doors (tr1, tr2), the server

11. Creates and initializes set Cid
D = {}. Then, it

computes tr = q = tr1 ⊕ tr2
12. For document Di, takes the keyword ciphertexts

Cwi,j
= (Fi,j, Ei,j), then computes Encq(Ei,j)

and checks if Fi,j == Encq(Ei,j), where 1 ≤
i ≤ n, 1 ≤ j ≤ m.

13. If the equality holds at step − 12, the server
updates the result set as Cid

D = {i}. If index
i ∈ Cid

D , the server finds CDi
= (Gi, Hi).

Then, the server sends Gi to Proxy1 and Hi to
Proxy2.

14. If the equality does not hold at step − 12,
the server follows the steps − 12, 13, 14 for
each document Di′’s, where 1 ≤ i′ ≤ n each
keyword ciphertext wi′,j′ , where 1 ≤ j′ ≤ m. If
there is no match between the trapdoor and the
keyword ciphertexts, the server outputs 0.

Search algorithm is given in Fig. 5.

Figure 5. Algorithm Search. (Done by Database
Server (DB))

- Input: ((Ei,j, Fi,j), x
′, y′).

- Output: Index set (Cid
D).

- Cid
D = {}

- q ← x′ ⊕ y′

- for i = 1 to n

- for j = 1 to m

- F ′
i,j ← Encq(Ei,j)

- if Fi,j == F ′
i,j

- Cid
D = Cid

D ∪ {i}
-break

- end
- end

- end
DB sends Gi to Proxy1 and Hi to Proxy2,

where i ∈ Cid
D .

21

INTERNATIONAL JOURNAL OF INFORMATION SECURITY SCIENCE
Ö. Öksüz, Vol. 11, No. 4, pp. 14-27

Dec
(
K,Cid

D
)
: Once the server sends to correspond-

ing document ciphertexts to the proxies, each proxy
decrypts and sends the plaintexts to the user. In other
words, assuming that Gi is sent to Proxy1 and Hi

is sent to Proxy2 by the database server,

15. Proxy1 computes Deck2(Gi) = Di ⊕ ri. Then,
it sends par1,i = Di ⊕ ri to the user.

16. Proxy2 computes Deck3(Hi) = ri. Then, it
sends par2,i = ri to the user.

Dec algorithm is given in Fig. 6.

Figure 6. Algorithm Dec. (Done by Proxy1 and
Proxy2)

- Input: (Gi, Hi, C
id
D , k2, k3).

- Output: par1,i, par2,i (i ∈ Cid
D).

- Proxy1: par1,i ← Deck2(Gi),
(par1,i = Di ⊕ ri).

- Proxy2: par2,i ← Deck3(Hi),
(par2,i = ri).

Proxy1 sends par1,i to DO.
Proxy2 sends par2,i to DO.

Combine(par1,i, par2,i): Once the user receives the
results from Proxy1 and Proxy2, the user

17. Computes (par1,i ⊕ par2,i), where
(par1,i ⊕ par2,i) = Di ⊕ ri ⊕ ri = Di.

Combine algorithm is given in Fig. 7.

Figure 7. Algorithm Combine. (Done by DO)

- Input: (par1,i, par2,i) (i ∈ Cid
D)

- Output: Di (i ∈ Cid
D)

- Di ← (par1,i ⊕ par2,i).

A privacy-preserving query process is shown in
Fig. 8. For each query in the figure,

Figure 8. Data Flow in A Query Process

Step1. Data owner sends its initial trapdoor (tr0 =

H(k1, w)) to both proxies.
Step2. Each proxy encrypts tr0 with its own secret key

(k2 for Proxy1 and k3 for Proxy2). Then, each
proxy sends its encrypted trapdoor tr1 (Proxy1)
and tr2 (Proxy2) to the database server.

Step3. The database server returns the ciphertext sets
Gi and Hi that satisfy the query back to Proxy1
and Proxy2, where i ∈ Cid

D .
Step4. Each proxy decrypts the received ciphertexts

from the database using its own secret key
(k2 for Proxy1 and k3 for Proxy2). Then,
each proxy sends the resulting values par1,i and
par2,i to the data owner, where i ∈ Cid

D . At last,
the data owner combines the results.

The encrypted table (Tenc) of Tab. 2 is shown
in Tab. 3. In Table 2, the encryption of keyword
w1,1 ∈ D1 is represented as ⟨E1,1, F1,1⟩. More-
over, the encryption of w3,3 ∈ D3 is represented
as ⟨E3,3, F3,3⟩. In other words, the first index is
for document number, the second index is for the
keyword’s location in the keyword set. Assuming
that even two documents, D1 and D3, have the
same keyword w3,3 = w1,1 = w1, values ⟨E1,1, F1,1⟩
and ⟨E3,3, F3,3⟩ are different from each other. This

22

INTERNATIONAL JOURNAL OF INFORMATION SECURITY SCIENCE
Ö. Öksüz, Vol. 11, No. 4, pp. 14-27

is because the encryption algorithm uses different
random value (salt) ri,j to encrypt keyword w1

each time. In the encryption algorithm in step− 4,
ri,j is randomly chosen from set {0, 1}b which is
also know as salt. Then, ⟨E1,1, F1,1⟩ is computed
in step − 4 and step − 5. The data owner uses
random value r1,1 to encrypt w1 in D1 while it
uses random value r3,3 to encrypt w1 in D3, where
r1,1 ̸= r3,3. Thus, in Tab. 3, we have E1,1 ̸= E3,3

and F1,1 ̸= F3,3. As a result, the ciphertexts of the
same keywords are not the same in Tab. 3. The
database server is not able know if the ciphertexts
contain the same keywords or not. Using different
random (salt) ri,j values eliminates the relations
between the ciphertexts. The adversary can not
see the repeating ciphertexts in Tab. 3. Thus, the
adversary (database server) can not do any statistical
analysis for keywords.

However, some studies have this disadvantage,
[7], [8], and [14]. In these studies, the adversary
(database server) can do statistical attack to the
database since the adversary can see the repeating
ciphertexts on the database. Even the attacker does
not know the content of the ciphertexts, it can do
statistical analysis/frequency analysis. The server
learns the frequency with which keywords appear.

Since the encryption and decryption algorithms
are run by the proxies (this can be thought as secret
sharing for encryption and decryption), the user
does not do heavy computations. This results our
scheme provides lightweight user side query and
data processing different from other studies that
provide heavy user side computations. Moreover,
the proposed protocol eliminates single point of
failure.

5.1. Complexity Analysis

In this subsection, we examine the complexity of
our scheme.

Table 3.
An Illustration of An Encrypted Table (Tenc) (∥ is

the concatenation operation).

CKW CD

⟨E1,1, F1,1⟩∥⟨E1,2, F1,2⟩∥ . . . ∥⟨E1,m, F1,m⟩ ⟨G1, H1⟩
⟨E2,1, F2,1⟩∥⟨E2,2, F2,2⟩∥ . . . ∥⟨E2,m, F2,m⟩ ⟨G2, H2⟩
⟨E3,1, F3,1⟩∥⟨E3,2, F3,2⟩∥ . . . ∥⟨E3,m, F3,m⟩ ⟨G3, H3⟩
...

...
...

. . .
...

⟨En,1, Fn,1⟩∥⟨En,2, Fn,2⟩∥ . . . ∥⟨En,m, Fn,m⟩ ⟨Gn, Hn⟩

The user (data owner) computes one hash function
and |id| XOR operations per query, where id is the
identity set of the documents, |id| is the number of
identities in set id that satisfies the query. An XOR

operation and computing a hash function are very
fast. The encryption and decryption algorithms are
done by the proxies.

The communication cost between the user and
the each proxy is a + λ′|id| bits, where λ′ > λ

(document size is bigger than keyword size). Thus,
the total communication cost is 2a+2λ′|id| bits per
query. AES block cipher can be used to implement
encryption and decryption algorithms. Thus, our
scheme has lightweight user side query and data
computations.

Each proxy does one encryption for trapdoor gen-
eration (λ bits) and |id| decryptions (λ′|id| bits) sent
from the database server. Moreover, the communi-
cation cost between each proxy and the database
server is λ + λ′|id| bits per query. Thus, the total
communication cost between the database server
and each proxy is λ+ λ′|id| bits.

The computation cost of the database server is
one XOR operation (λ bits), mn encryptions (λmn

bits total) and mn equality checks (λmn bits total),
where m is the number of unique keywords in a

23

INTERNATIONAL JOURNAL OF INFORMATION SECURITY SCIENCE
Ö. Öksüz, Vol. 11, No. 4, pp. 14-27

document and n is the number of documents.

5.2. Security Analysis

The proposed scheme’s security is based on se-
curity of pseudorandom permutations [26] since a
block cipher (AES) is modelled as a pseudorandom
permutation. Moreover, the proposed scheme’s se-
curity also depends on the security of pseudoran-
dom function since HMAC-SHA1 is modelled as a
pseudo random function.

Theorem 1 If the block cipher (encryption algo-
rithm) is a pseudorandom permutation and H is
a pseudo random function, our scheme can not leak
any useful information (documents and keywords) to
the adversary 1 (database server) and adversary 2
(Proxy2) other than what the adversaries observe.

Proof: Since there are two adversaries in the
proposed system. Thus, we examine two cases
where each party is corrupted at a time.

When the database server is corrupted: We as-
sume that the adversary observes t encrypted queries
q1, q2, . . . , qt, where qℓ = tr1,ℓ⊕ tr2,ℓ and 1 ≤ ℓ ≤ t

in the real protocol. tr1,ℓ is Proxy1’s ℓth partial
trapdoor for ℓth query and tr2,ℓ is Proxy2’s ℓth
partial trapdoor for ℓth query in the real protocol.
During these queries, the adversary observes two
kinds of leakage:

1. The encrypted database table Tenc, including the
number of rows and columns, and their sizes
(bits).

2. The positions of the responses to encrypted
queries in Tenc (CKW), P (q1), . . . , P (qt).

SIM takes these leakages and simulates all the
transcripts in the real protocol. SIM does the fol-
lowings for query ℓ, where 1 ≤ ℓ ≤ t:

• For each E ′
i,j, G

′
i, H

′
i, where 1 ≤ i ≤ n, 1 ≤ j ≤

m chooses random values. |E ′
i,j| = λ, |G′

i| =
|H ′

i| = λ′.
• Chooses two random tr′1,ℓ and tr′2,ℓ, where
|tr′1,ℓ| = |tr′2,ℓ| = λ.

• If P (qℓ) ̸= ∅, for each position (i, j) ∈ P (qℓ)

in CKW .

– Computes F ′
i,j = Encq′ℓ(E

′
i,j), where q′ℓ =

tr′1,ℓ ⊕ tr′2,ℓ.

• For other positions in the table that do not
satisfy any of the queries, SIM chooses random
values for F ′

i,j , where 1 ≤ i ≤ n, 1 ≤ j ≤ m,
and |F ′

i,j| = λ.
• Outputs (T ′

enc, (tr
′
1,1, tr

′
2,1), . . . , (tr

′
1,t, tr

′
2,t)).

The indistinguishability is preserved in Enc()

(pseudo random permutation) and H (pseudo ran-
dom function). Since H is a pseudo random function
(PRF) which is indistinguishable from a totally
random function, the adversary’s advantage is neg-
ligible ϵ to distinguish H(k1, w) from H ′, where H ′

is a totally random function.

When Proxy2 is corrupted: This case is
straightforward that Proxy2 only receives
random values (pseudo random values that
are not distinguishable from random values)
H(k1, w1), H(k1, w2), . . . , H(k1, wt) from the data
owner, and uniformly random values ri that satisfy
the queries. Proxy2 can obtain ri values after
decrypting Hi values from the database server.
Since the adversary observes random values from
the data owner and the database server, it is
straightforward to construct a simulator.

Theorem 2 If H is a pseudo random function, the
proposed scheme has trapdoor privacy.

Proof: The proof is straightforward in that
it follows from the property of a pseudo-random

24

INTERNATIONAL JOURNAL OF INFORMATION SECURITY SCIENCE
Ö. Öksüz, Vol. 11, No. 4, pp. 14-27

function. Adversary Proxy2 gets pseudo random
values/trapdoors H(k1, wi) in the protocol. Since
the adversary can not distinguish these values from
random values with non-negligible probability, the
adversary is not able to extract any useful (keyword)
information from the trapdoor. Moreover, a pseudo
random function is also a one-way function. If an
output H(k1, wi) is given, it is infeasible to compute
wi from it.

6. Discussion

The previous studies, [7], [12], [13], [14], and
[15], have a fully trusted proxy, the user sends plain-
text queries to the proxy. The proxy converts the
plaintext query to encrypted query. Then, the proxy
sends the encrypted query to database. In these stud-
ies, since the proxy is fully trusted, knowing of the
plaintext query does not break user query privacy.
However, in our protocol, we assume that one of
the proxy is compromised by the adversary. This
results that the adversary controls the proxy. Since
one of the proxies is controlled by the adversary,
the user can not send plain queries to the proxies.
Otherwise, the corrupted proxy can learn what the
user wants to search over the database. This breaks
the trapdoor privacy. The trapdoor privacy says that
the issued keyword by the user should be hidden
from the adversary. To have trapdoor privacy in our
scheme, we use keyed hash function to hide the
keyword that user wants to search over encrypted
database.

In our scheme, even the two adversaries can
collude which means that a new powerful adver-
sary arises. This new adversary controls one proxy
(Proxy2) and the data server. The new adversary
sees encrypted database, knows Proxy2’s secret key
and its identity, (k3, pid2), sees H(k1, wi,j). However,

the new adversary still can not learn any useful in-
formation about user’s database. The new adversary
can decrypt the half of the document ciphertexts.
These ciphertexts are Hi = Enck3(ri) values for
document Di. The new adversary decrypts Hi using
secret key k3 and it gets ri (rj for document Dj)
which is a random value to the new adversary. In
order to recover the documents, the new adversary
should also know Di⊕ri (Dj⊕rj for Gj). However,
this value is not known by Proxy2. Furthermore, the
new adversary also observes value H(k1, wi,j) that
is issued by the user. However, the new adversary
can not recover the keyword wi,j from H(k1, wi,j)

since it does not know secret key k1.

Our scheme can easily be extended to multi-proxy,
α, case where α can be the number of proxies in
the system. In this case, if at most α − 1 (at least
one proxy is honest) of the proxies are controlled by
adversary 2, our scheme still has trapdoor privacy
and data privacy. In other words, adversary 1 and
and adversary 2 can not learn any useful information
about users’ searched keyword and data. In multi-
proxy case, the computation and communication
costs are going to be linear in the number of proxies.

A note that our protocol leaks the search pattern
of the user/data owner to adversaries (the database
server, and Proxy2). The adversary knows if given
two trapdoors are generated from the same keyword
or not by the data owner over time. Moreover,
the database server learns which locations on the
database (encrypted keywords) satisfy each query.
The proxy and the database server learn the location
of the encrypted documents (identities/indexes) that
satisfy the query. Moreover, over time, the corrupted
proxy (Proxy2) figures out if the data owner issues
the same keyword or not since the trapdoor/query
pattern (H(k1, w)) is deterministic. Even tough the
proxy does not know which keyword that the data
owner is interested in, the proxy figures out if the

25

INTERNATIONAL JOURNAL OF INFORMATION SECURITY SCIENCE
Ö. Öksüz, Vol. 11, No. 4, pp. 14-27

data owner wants to search the same keyword over
time.

Even though all the data in the database server and
each trapdoor issued by the proxies are encrypted,
the adversaries (database server and Proxy2) can
make accurate inference on keyword plaintexts and
the documents over time. This is because our pro-
tocol leaks the search pattern (trapdoor) of the
data owner to the adversaries. Moreover, during the
query process, the adversaries learn which encrypted
trapdoors are associated with which documents.

7. Conclusion

We introduce a secure and efficient two-proxy
based encrypted keyword search scheme. Our
scheme eliminates the single point of failure attack
that the proxy based schemes have [7], [12], [13],
[14], and [15]. Moreover, our scheme uses only
symmetric key encryption algorithm that provides
very fast encryption and decryption computations.
Furthermore, the proxies do the heavy computations
on behalf of the user since trapdoor generation
(encryption) and decryption computations are del-
egated to proxies by the data owner. The proxies do
trapdoor generation and decryption computations.
Trapdoor generation process has encryption com-
putation.

For future work, we would like to use other
types of queries such as range and multi-keyword
queries using multi proxies. Moreover, we would
like to improve my system to prevent access pattern
leakage.

Acknowledgments

The author thanks the anonymous reviewers for
their valuable comments and suggestions for im-
proving the paper’s quality and presentation.

References

[1] P. R. Clearinghouse. Chronology of data breaches.
[Online]. Available: http://www.privacyrights.org/data-breach.
July19,2022

[2] N. V. D. C. statistics. [Online]. Available: http://web.nvd.nist.
gov/view/vuln/statistics,July19,2022.

[3] C. Gentry, “Fully homomorphic encryption using ideal lattices,”
in STOC, vol. 9, 2009, pp. 169–178.

[4] R. Agrawal, J. Kiernan, R. Srikant, and Y. Xu, “Order preserv-
ing encryption for numeric data,” in Proc. of ACM SIGMOD,
June 2004.

[5] A. Boldyreva, N. Chenette, and A. OŃeill, “Order preserving
symmetric encryption revisited: improved security analysis and
alternative solutions,” in Proc. of CRYPTO, 2011.

[6] A. Boldyreva, N. Chenette, Y. Lee, and A. OŃeil, “Order
preserving symmetric encryption,” in Proc. of EUROCRYPT,
April 2009.

[7] R. A. Popa, C. M. S. Redfield, N. Zeldovich, and H. Balakrish-
nan, “CryptDB: Protecting confidentiality with encrypted query
processing,” in Proc. of SOSP, 2011.

[8] R. A. Popa, F. H. Li, and N. Zeldovich, “An ideal-security
protocol for order-preserving encoding,” in Proc. of Security
and Prvacy, 2013.

[9] P. Paillier, “Public-key cryptosystems based on composite de-
gree residuosity classes,” in International conference on the
theory and applications of cryptographic techniques, J. Stern,
Ed. Prague, Czech Republic: Springer Berlin Heidelberg, 2-6
May 1999, pp. 223–238.

[10] R. L. Rivest, A. Shamir, and L. Adleman, “A method for
obtaining digital signatures and public-key cryptosystems,”
Communications of the ACM, vol. 21, no. 2, pp. 120–126, 1978.

[11] L. Kocarev and Z. Tasev, “Public-key encryption based on
chebyshev maps,” Proceedings of the 2003 International Sym-
posium on Circuits and Systems, 2003. ISCAS ’03., vol. 3, pp.
III–III, 2003.

[12] H. Hacigumus, B. Lyer, C. Li, and S. Mehrotra, “Executing SQL
over encrypted data in the database service provider model,” in
Proc. of ACM SIGMOD, June 2002, pp. 216–227.

[13] O. Oksuz, “Time-specific encrypted range query with minimum
leakage disclosure,” IET Information Security, vol. 15, no. 1, pp.
117–130, 2021.

[14] L. Zhang, O. Oksuz, L. Nazaryan, C. Yue, B. Wang, A. Ki-
ayias, and A. Bamis, “Encrypting wireless network traces to
protect user privacy: A case study for smart campus,” in 2016
IEEE 12th International Conference on Wireless and Mobile
Computing, Networking and Communications (WiMob). IEEE,
October 2016, pp. 1–8.

[15] Z. Yang, S. Zhong, and R. N. Wright, “Privacy-preserving
queries on encrypted data,” in ESORICS, 2006.

[16] R. Curtmola, J. Garay, S. Kamara, and R. Ostrovsky, “Search-
able symmetric encryption: Improved definitions and efficient
constructions,” in Proceedings of the 13th ACM Conference on

26

http://www.privacyrights.org/data-breach. July 19, 2022
http://www.privacyrights.org/data-breach. July 19, 2022
http://web.nvd.nist.gov/view/vuln/statistics, July 19, 2022.
http://web.nvd.nist.gov/view/vuln/statistics, July 19, 2022.

INTERNATIONAL JOURNAL OF INFORMATION SECURITY SCIENCE
Ö. Öksüz, Vol. 11, No. 4, pp. 14-27

Computer and Communications Security, ser. CCS ’06. New
York, NY, USA: Association for Computing Machinery, 2006,
pp. 79–88.

[17] E. Goh, “Secure indexes,” in Technical Report
2003/216, IACR ePrint Cryptography Archive, 2003. See
http://eprint.iacr.org/2003/216., 2003.

[18] B. Hore, S. Mehrotra, and G. Tsudik, “A privacy-preserving
index for range queries,” in Proc. of VLDB, 2004.

[19] R. Li, A. X. Liu, A. L. Wang, and B. Bruhadeshwar, “Fast
range query processing with strong privacy protection for cloud
computing,” Proc. VLDB Endow., 2014.

[20] D. X. Song, D. Wagner, and A. Perrig, “Practical techniques
for searches on encrypted data,” in Proceeding 2000 IEEE
Symposium on Security and Privacy, 2000, pp. 44–55.

[21] D. Boneh, G. D. Crescenzo, R. Ostrovsky, and G. Persiano,
“Public key encryption with keyword search,” in Proc. of
EUROCRYPT, 2004.

[22] D. Boneh and B. Waters, “Conjunctive, subset, and range
queries on encrypted data,” in Theory of Cryptography, S. P.
Vadhan, Ed. Berlin, Heidelberg: Springer Berlin Heidelberg,
2007, pp. 535–554.

[23] B. Qin, Y. Chen, Q. Huang, X. Liu, and D. Zheng, “Public-
key authenticated encryption with keyword search revisited:
Security model and constructions,” Information Sciences, vol.
516, pp. 515–528, 2020. [Online]. Available: https://www.
sciencedirect.com/science/article/pii/S0020025519311752

[24] Y. Yang, X. Liu, and R. Deng, “Expressive query over
outsourced encrypted data,” Information Sciences, vol. 442-
443, pp. 33–53, 2018. [Online]. Available: https://www.
sciencedirect.com/science/article/pii/S0020025518300987

[25] N. S. Joshi, R. Raghuwanshi, and B. R. Chandavarkar, “Compu-
tational complexity analysis of block ciphers of transport layer
security,” in 2021 International Conference on COMmunication
Systems & NETworkS (COMSNETS), 2021.

[26] S. Goldwasser and M. Bellare, “Lecture notes on cryptography.
summer course lecture notes at mit,” 1999.

27

https://www.sciencedirect.com/science/article/pii/S0020025519311752
https://www.sciencedirect.com/science/article/pii/S0020025519311752
https://www.sciencedirect.com/science/article/pii/S0020025518300987
https://www.sciencedirect.com/science/article/pii/S0020025518300987

	Introduction
	Related Work
	System Architecture and Threat Model
	System Architecture
	Threat Model

	Definitions
	Multi-Proxy Based Encrypted Keyword Search
	Complexity Analysis
	Security Analysis

	Discussion
	Conclusion
	References

