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1. Introduction 
 Infertility is not being able to conceive despite one year of 
regular, unprotected intercourse (1). Infertility is encountered 
approximately in 12–15% of couples and 72 million people 
worldwide are diagnosed with infertility (2). 

Despite all the developments in assisted reproduction 
today, most infertile patients cannot get pregnant with these 
methods. For this reason, stem cells are intensively 
investigated as an alternative method in the treatment of 
infertile patients (3,4,5,6,7,8,9,10,11). 

It can be used as an alternative method in the treatment of 
infertility, as well as in the treatment of pathologies that 
indirectly cause infertility. These four diseases are as follows: 

Premature Ovarian Failure (POF): According to the 
definition made by the European Society of Human 
Reproduction and Embryology (ESHRE), it is defined as a 
condition under 40 years of age, defined as oligo/amenorrhea 
lasting at least 4 months and Follicle Stimulating Hormone 
(FSH) value >25 IU/l measured at least 4 weeks apart. Its 
incidence has been reported to be 1% on average (13). The 
etiology of the disease has not been fully elucidated and 
genetic, environmental, enzymatic, infectious and iatrogenic 
factors are blamed (14). Current treatments are insufficient and 
different treatment modalities are needed. 

Polycystic ovary syndrome (PCOS): It is a cause of 
infertility that causes increased ovarian function and 
anovulation. It is characterized by high androgen levels, 
irregular menstruation and the presence of numerous small 

cysts in the ovary. Its incidence is among 5-10%  women of 
reproductive age and it is the most common endocrine disorder 
among women of reproductive age (15,16). Current treatments 
are inadequate in many patients. Regenerative medicine 
applications are being investigated in the treatment of 
inflammatory and immunological processes. 

Endometriosis: It is a chronic inflammatory disease in 
which the basal layer of the endometrium is located outside the 
uterine cavity. Its frequency is between 6% and 10% and it is a 
multifactorial disease (17). Genetic, environmental and 
immunological mechanisms are involved in its pathogenesis. 
Today, treatments for infertility and pain cannot provide 
sufficient success for these patients. 

Asherman’s Syndrome: It is characterized by intrauterine 
adhesions, hypomenorrhea, or amenorrhea. Scar tissue formed 
in the uterus may disrupt embryo implantation and cause 
infertility or recurrent pregnancy loss (18). There is a history 
of pregnancy-related curettage in 90% of the patients. 
Although hysteroscopy and hormonal treatments are applied 
today, developments in regenerative methods may increase the 
success in the management of the disease. 

Stem cells are undifferentiated cells found in embryo or 
adult tissues. These cells are cells that can renew themselves or 
differentiate when necessary. 

Stem cells are divided into embryonic stem cells, induced 
pluripotent stem cells, adult mesenchymal stem cells, 
spermatogonial stem cells and ovarian stem cells according to 
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their origin. 

Embryonic stem cells are cells that can transform into all 
three germ sheets obtained from the inner cell mass of the 
embryo. It has been observed that both human and mouse 
embryonic stem cells are transformed into primordial germ 
cells in vitro, from which male and female gamete cells are 
formed by meiosis (19). It has also been shown that embryonic 
stem cells are effective in the restoration of endometrial tissue 
(20). However, due to ethical concepts, studies on the subject 
are limited. 

Induced pluripotent stem cells were obtained from mouse 
fibroblast culture in 2006 and it has been shown that they can 
form all three germ sheets and maintain the same karyotype as 
embryonic stem cells (21). Since these cells are produced from 
adult cells, ethical problems caused by embryos are eliminated. 
In addition, since it is produced from people's own cells, 
immunological reactions are also less (22). Eguizabal et al. 
produced haploid gamete-like cells from keratinocytes and 
cord blood. They used a culture medium containing retinoic 
acid. Then forskolin, human recombinant leukemia inhibiting 
factor (LIF) and CYP26 inhibitor R115866 were used (23). 
Ramathal et al., on the other hand, transplanted skin cells from 
azoospermic and fertile men, together with Bone 
morphogenetic protein 4 (BMP4), Bone morphogenetic 
protein 8 (BMP8), retinoic acid (RA) and LIF, into mouse testis 
and studied germ cells. Ramathal et al. transplanted skin cells 
from azoospermic and fertile men together with BMP4, BMP8, 
RA and LIF into mouse testis and obtained germ cell-like cells 
(GCLCs) (24). Sasaki et al. human induced pluripotent stem 
cells in the presence of Activin A, CHIRON, BMP4, stem cell 
factor (SCF), epidermal growth factor (EGF) and LIF in human 
primordial stem cells. demonstrated that they can transform 
into germ cells. These cells are epithelial cell adhesion 
molecule (EpCAM) and Integrin α6 are distinguished from 
other cells by markers (25). Another study showed that human 
fibroblast-derived induced stem cells were transformed into 
spermatogenic cells both in a normal culture medium and by 
xenotransplantation (26). In their study, Yamashiaro et al. (27) 
and Gell and Clark (28) first transformed somatic cells into 
induced stem cells, then incipient mesoderm-like cells 
(iMeLCs) with Activin A and Chiron and then into human 
primordial germ cells and these cells were transformed into 
female mouse embryonic cells. Oogonia cells were obtained by 
culturing with ovarian-derived gonadal cells. Although 
induced pluripotent stem cells are promising, they carry 
teratogenic potential and the use of nucleic acid integration 
procedures, epigenic changes and genomic instability limits 
their use in treatment (29,30,31). 

Mesenchymal stem cells are cells that can transform into 
osteoblasts, adipocytes and chondroblasts containing CD105, 
CD73 and CD90 surface antigens (32). These can be stem cells 
from bone marrow, stem cells from adipose tissue, stem cells 
from menstrual blood, stem cells from the umbilical cord and 

stem cells from amniotic fluid, depending on the tissue from 
which they are obtained. Mesenchymal stem cells contribute to 
the restoration of the ovary by going to the damaged ovarian 
tissue and secreting various cytokines. It increases new vessel 
formation with insulin-like growth factor (IGF-1), vascular 
endothelial growth factor (VEGF) and hepatocyte growth 
factor (HGF) and reduces apoptosis and fibrosis. The 
proliferation and differentiation abilities of mesenchymal stem 
cells decrease with age (33). Increased telomerase activity 
causes fetal stem cells to live longer than adult stem cells (34). 
Fetal mesenchymal stem cells can also be obtained from 
extraembryonic tissues such as amnion, umbilical cord, and 
placenta. Fetal stem cells contain CD105, CD29 and CD90, 
which are the surface markers of mesenchymal cells, as well as 
Octamer-binding transcription factor 4 (Oct-4), Nanog and 
Rex-1 markers of pluripotent cells (34). Fetal and adult 
mesenchymal stem cells use different pathways (35). For 
example, it was observed that fetal mesenchymal cells act 
through melatonin membrane receptor and antioxidant activity 
in mouse ovary damaged by cyclophosphamide (36). 

Bone marrow-derived stem cells were obtained by Owen 
and Friedenstein in 1988 (37). Jing et al. showed that bone 
marrow-derived stem cells increased endometrial thickness 
after intravenous injection in mice while increasing anti-
inflammatory cytokines and decreasing inflammatory 
cytokines (38). Wang et al. found that bone marrow-derived 
stem cells injected intravenously or directly into the uterus of 
mice with which they formed intrauterine adhesion increased 
the estrogen-progesterone receptor of the endometrium and 
decreased the fibrotic area. has shown to increase glands (39). 
Abd-Allah et al. provided the restoration of ovarian follicles by 
downregulating the FSH receptor of bone marrow-derived 
stem cells, downregulating the estrogen and upregulating the 
VEGF receptor in mice, in which they caused ovarian failure 
by giving cyclophosphamide in rabbits (3). Santamaria et al., 
in a prospective study of patients with Asherman syndrome, 
gave CD133+ bone marrow-derived stem cells to spiral 
arterioles and 10 of 16 patients became pregnant spontaneously 
or after the transfer (5). 

Menstrual blood-derived stem cells are cells that can 
differentiate and proliferate like other mesenchymal stem cells 
and are obtained noninvasively. Liu et al. found that in the 
treatment with menstrual blood-derived stem cells in mice with 
premature ovarian failure with cyclophosphamide, Anti-
Müllerian Hormone (AMH), Inhibin and estrogen levels 
improved and ovarian functions improved compared to the 
control group (40). Zheng et al., in their study, transformed 
MB-Mesenchymal stem cells (MB-MSC) cells into 
endometrial cells in vitro and then transplanted them into mice 
with adhesions in vivo to regenerate the endometrium (41). The 
ability to differentiate cells of menstrual origin comes from the 
presence of the OCT-4 transcription factor. Tan et al. used 
menstrual stem cells together with hormonal therapy in seven 
Asherman patients, while five patients became pregnant on 
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their own, while two patients became pregnant after the 
transfer (42). 

Endometrial stem cells stromal consists of epithelial and 
endothelial cells. Stromal ones contain CD44, CD73 and CD90 
but CD34 and CD45 are negative, epithelial ones are stage-
specific embryonic antigen (SSEA-1), N- cadherin and 
NTDPase2 are positive, endothelial ones are in CD 31 and CD 
34 phenotype (43). endometrial in the absence of injury, these 
cells remain silent. In the presence of endometrial damage, 
these cells are directed to the damaged area by means of 
chemokines and C-X-C chemokine receptor type 4 (CXCR4) 
(44). 

Umbilical cord-derived stem cells are CD29, CD44, CD73, 
CD90 and CD105 positive, CD31, CD45 and HLADR-85 
negative. It is very advantageous to obtain easily, low tumor 
risk and low immunological response. In animal POI models, 
the ovarian function has been shown to provide ovarian 
restoration by antiapoptotic activity in granulosa cells, 
decreasing FSH levels and increasing estrogen and 
progesterone (45,46). In addition, the dehydroepiandrosterone-
induced mouse PCOS model has been shown to reduce 
inflammatory cytokines and improve infertility (47). 
Umbilical-derived stem cells prevent granulosa cell apoptosis 
by using various signaling pathways. Mitogen-activated 
protein kinase signaling pathway, G protein-associated 
receptors and insulin signaling pathways (48). In animal 
models, umbilical cord-derived stem cells have been shown to 
be beneficial by interfering with damaged endometrial cells by 
changing vascularity and inflammation (49). In addition, it was 
seen that it showed the same effect by activating matrix 
metalloproteinase 9 (50). In premature ovarian failure patients, 
it phosphorylates transcription factor forkhead box protein O3a 
(FOXO3a) and Forkhead Box protein O1 (FOXO1), providing 
primordial follicle activation and thus increasing the number of 
follicles (51) 

Amniotic fluid-derived stem cells are frequently used in 
regenerative medicine due to their immunoregulatory 
properties and their ability to differentiate. VEGF, 
Transforming growth factor alpha and beta (TGFα and β) 
of these cells’ growth It has been shown to improve ovarian 
function by activating factor (EGF) and bone morphogenic 
protein (BMP) signaling pathways (48). In mouse POF models, 
these cells are follicular especially if they have CD4C/CD105+ 
antigen. It has been shown to prevent atresia and restore 
ovarian function (52,53). 

Amnion-derived mesenchymal stem cells ovarian in POF 
animal model’s dysfunction prevents (54.55). Besides, 
inflammatory it decreases cytokines, increases 
neovascularization, and reduce apoptosis. 

Placenta-derived mesenchymal stem cells increase 
folliculogenesis by activating the 
Phosphatidylinositol-4,5-bisphosphate 3-kinase/protein kinase 

B (PI3K/Akt) signaling pathway in animal POF models and 
restore ovarian function by changing the expression of 
hormones and receptors (56,57). Li et al. inositol-requiring 
ovarian cells using enzyme 1 (IRE 1) α pathway. showed that 
it corrects the dysfunction (58). 

Adipose tissue-derived mesenchymal stem cells are 
frequently preferred because of their easy availability. In 
animal experiments, snowed that when the ovarian graft is 
applied together with the stem cell, it gains function faster by 
increasing VEGF expression (59). It has been shown to 
increase neovascularization and follicle proliferation in mouse 
ovarian defects induced by chemotherapy (60). It has been 
observed that mesenchymal stem cell and hormone therapy 
accelerate endometrial regeneration in Asherman syndrome 
(61). 

Ovarian stem cells: In 2012, White et al. obtained stem-
cell-specific marker VASA-positive cells from the human 
ovarian cortex and showed that follicle synthesis occurred after 
xenotransplantation of these cells into diabetic 
immunodeficient mice (62). However, the fact that these cells 
are very few in number and decrease with age has 
unfortunately hindered the progress of research. In addition, 
differentiation of these cells in vitro culture medium takes quite 
a long time. 

Today, mesenchymal stem cell-derived extracellular 
vesicles are used to reduce the immunological reactions of 
stem cell therapy (63). However, although all these methods 
are promising, many studies are needed before they can be put 
into routine practice. 
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