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Abstract
In order to solve the fixed point of nonexpansive mappings, we propose two iterative
algorithms based on runge-kutta method. The first algorithm is focused on solving the
fixed point problem of a single nonexpansive mapping, and weak convergence has been
proved. we suggest the second algorithm by dynamic string-averaging rule. It can be used
to find a common fixed point of a family of finite nonexpansive mappings. We show that
the second algorithm is bounded perturbations resilient, and it is strongly convergent.
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1. Introduction
Fixed point theory and method is an important branch of nonlinear functional analysis,

it is widely applied in signal processing, image recovery, variational inequality, equilibrium
problems, etc. (see [6, 16, 17] and references therein). The origin of these theory can
be traced back to last century. Since 1922 Banach proposed the contraction mapping
principle, fixed point theory has attracted the attention of many scholars. With the
development of science, researchers are no longer limited to the existence of fixed point,
and more and more people begin to focus on the study of iterative algorithms (see [2–5,7,
9, 12–14]). Up to now, scholars have made remarkable achievements. For example, Mann
introduced the so-called one-step method [15] in 1953, it iteration format as follows:

x0 ∈ H, xn+1 = (1 − αn)xn + αnTxn, ∀n ≥ 0.
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In 1974, Ishikawa introduced two-step Mann method[15]:{
yn = (1 − αn)xn + αnTxn,
xn+1 = (1 − βn)xn + βnTyn.

In 2000, Moudafi introduced viscosity algorithm[15]:
x0 ∈ H, xn+1 = (1 − αn)f(xn) + αnTxn, ∀n ≥ 0,

where f is a contractive mapping.
Fixed point theory and differential equations are closely linked. On the one hand, fixed

point method is an effective tool for solving differential equations. On another hand,
the iterative method of numerical solution of differential equations also provides help for
the development of fixed point theory. In recent years, many scholars began to connect
the differential equation theory with the fixed point iterative methods(see [1, 8, 10, 11]).
Motivated by these articles, we utilize runge-kutta method to propose two algorithms to
solve the fixed point problem.

For the ordinary differential equation, it is the following form:
y′(x) = f(x, y(x)) = fx(y(x)), y(0) = y0. (1.1)

Where f : [0, x̄] × Rn −→ Rn, and fx(·) = f(x, ·). Let h > 0 be a step-size. Using the
runge-kutta method, we can get

y[(n + 1)h] = y(nh) + h(b1k1 + b2k2 + · · · + bmkm)
k1 = f(nh, y(nh))
k2 = f(nh + λ2h, y(nh) + µ2h)
...
km = f(nh + λmh, y(nh) + µmh)

where λj ∈ [0, 1], y(nh) + µjh is the approximate value of y(nh + λjh). Under some mild
smoothness conditions on f , the above method converges uniformly to the exact solution
of (1.1) as h → 0 over x in any fixed finite time interval [0, x̄].

If we set the function fx(y) = gx(y) − y, the differential equation (1.1) will become
y′(x) = gx(y(x)) − y(x), y(0) = y0. (1.2)

Thus, differential equation (1.2) is related to the equilibrium problem by a common fixed
point

y = gx(y).
This encouraged us to apply the runge-kutta method to solve fixed point equation

Tx = x.

Note that the above process can be rewritten as
yn+1 = yn + h[b1g(nh, y(nh)) + · · · + bmg(xn + λmh, y(nh) + µmh)]

− h(
m∑

i=1
biyn + b2µ2h + · · · + bmµmh).

(1.3)

Based on the local truncation error, when
∑m

i=1 bi = 1 the runge-kutta method has first-
order precision.

Set λ1 = µ1 = 0, then the equation becomes

yn+1 = (1 − h)yn + h
m∑

i=1
big(nh + λih, y(nh) + µih) − h2

m∑
i=1

biµi. (1.4)

Due to h → 0, so we have

yn+1 ≈ (1 − h)yn + h
m∑

i=1
big(nh + λih, y(nh) + µih). (1.5)
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Denote Tλ the relaxation of T . Since h → 0, the difference between g(nh, y(nh)) and
g(nh + λih, y(nh) + µih) is very small. Meanwhile, (1 − λ)y(nh) + λg(nh, y(nh)) is ap-
proximately equal to g(nh, y(nh)) when λ → 1. If we substitute the relaxation of g for
g(nh + λih, y(nh) + µih), then we can construct the following iteration of a nonexpansive
mapping T : 

yn+1 = (1 − h)yn + hun

un =
m∑

k=1
ω(k)Tλk

yn.
(1.6)

Where
∑m

k=1 ω(k) = 1, and{λk} ⊂ [0, 1].
The structure of this work is as follows. In section 2, we review some of the concepts and

preliminary results used below. In section 3, we deal with analyzing the weak convergence
of the first algorithm. In section 4, we propose the second algorithm, and in section 5 we
prove the strong convergence of the second algorithm and that it is bounded perturbations
resilient.

2. Preliminaries
Denote by H a Hilbert space endowed with inner product ⟨·, ·⟩ and norm ∥ · ∥, respec-

tively. Let C ⊂ H is a nonempty closed convex subset, and Fix(T ) the set of fixed points
of T . The sequence {xn} converges weakly to x is denoted by xn ⇀ x as n → ∞. ωw(xn)
denotes the weak limit set of {xn}, i.e.

ωn(xn) = {x ∈ H : there exists a subsequence {nj} of {n} such that xnj ⇀ x}.

For any u, v ∈ H and λ ∈ [0, 1], we have the following equality.
∥λu + (1 − λ)v∥2 = λ∥u∥2 + (1 − λ)∥v∥2 − λ(1 − λ)∥u − v∥2. (2.1)

We also have
∥

m∑
i=1

ωixi∥2 =
m∑

i=1
ωi∥xi∥2 − 1

2

m∑
i,j=1

ωiωj∥xi − xj∥2, (2.2)

where
∑m

i=1 ωi = 1, xi ∈ H.

Definition 2.1. Let T : H → H be an operator. Then
1. the operator T is called nonexpansive if

∥Tx − Ty∥ ≤ ∥x − y∥
for all x, y in H .

2. the operator T is called strongly quasi-nonexpansive if exists α > 0
∥Tx − z∥2 ≤ ∥x − z∥2 − α∥Tx − x∥2

for all x in H and z in Fix(T ).
3. denote Tλ the relaxation of T ,

Tλ = (1 − λ)I + λT,

where I is the identity operator and λ ∈ [0, 2]. If λ ∈ (0, 1) and T is nonexpan-
sive, then Tλ is averaged and denote by S. Clearly, an averaged operator is both
nonexpansive and strongly quasi-nonexpansive.

Lemma 2.2. ([11]). Let T be a nonexpansive self-mapping on C with Fix(T ) ̸= ∅. Assume
that xn converges weakly to x as n → ∞, and (I − T )xn → 0. Then x ∈ Fix(T ).

Lemma 2.3. ([11]). Let C be a nonempty closed convex subset of a Hilbert space H, and
{yn} represents a bounded sequence in H such that:

(1) limn→∞ ∥yn − u∥exists for all u ∈ C;
(2) ωw(yn) ⊂ C.
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Then {yn} converges to a point in C weakly.

3. The first algorithm
In this section, a new algorithm is introduced to solve the fixed point problem of a

nonexpansive mapping. In order to obtain the convergence of the method, we make
the following assumptions. Assume that an operator T : C → C is nonexpansive, and
ω(k) ∈ (0, 1), k = 1, 2, · · · , m, such that

∑m
k=1 ωk = 1.

Algorithm 3.1 
yn+1 = (1 − sn)yn + snun

un =
m∑

k=1
ω(k)Tλk

yn,
(3.1)

where {sn} ⊂ (0, 1), {λk} ⊂ [0, 1] and there exists k ∈ {1, 2, · · · , m} such that λk ̸= 0.

Proposition 3.1. Let {yn} be the sequence generated by (3.1), then we have for all x∗ ∈
Fix(T ),

∥yn+1 − x∗∥ ≤ ∥yn − x∗∥. (3.2)

Proof. Using (2.1), we have

∥yn+1 − x∗∥2 = ∥(1 − sn)(yn − x∗) + sn(un − x∗)∥2

= (1 − sn)∥(yn − x∗)∥2 + sn∥(un − x∗)∥2 − (1 − sn)sn∥yn − un∥
= (1 − sn)∥(yn − x∗)∥2

+ sn(
m∑

k=1
ω(k)∥Tλk

yn − x∗∥2 − 1
2

m∑
i,j=1

ω(i)ω(j)∥Tλi
yi − Tλj

yj∥2)

− (1 − sn)sn∥yn − un∥
≤ (1 − sn)∥(yn − x∗)∥2

+ sn

m∑
k=1

ω(k)∥Tλk
yn − x∗∥2 − (1 − sn)sn∥yn − un∥2

≤ ∥(yn − x∗)∥2 − (1 − sn)sn∥yn − un∥2.

(3.3)

We get immediately that
∥yn+1 − x∗∥ ≤ ∥yn − x∗∥.

□

Further, we also have
∞∑

n=1
(1 − sn)sn∥yn − un∥ < +∞. (3.4)

Based on iterative parameter {sn} satisfies the condition that {sn} ⊂ (0, 1), then we can
deduce

lim
n→∞

∥yn − un∥ = 0. (3.5)

Theorem 3.2. Let H be a Hilbert space, and an operator T : C → C be nonexpansive.
Assume that {yn} is a sequence generated by (3.1), then {yn} converges weakly to a point
in Fix(T ).
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Proof. According to the norm triangle inequality, we have
∥yn − Tyn∥ ≤ ∥un − Tyn∥ + ∥yn − un∥

= ∥yn − un∥ + ∥
m∑

k=1
(1 − λk)ω(k)(yn − Tyn)∥

≤ ∥yn − un∥ +
m∑

k=1
(1 − λk)ω(k)∥(yn − Tyn)∥.

(3.6)

By (3.5), we can deduce immediately that
lim

n→∞
∥yn − Tyn∥ = 0. (3.7)

It follows from Lemma 2.2, we have ωw(yn) ⊂ Fix(T ). Based on (3.2) we get that
limn→∞ ∥yn − x∗∥ exists for all x∗ ∈ Fix(T ). So, we can apply Lemma 2.3 to derive
the weak convergence of {yn} to a point in Fix(T ). □

4. The second algorithm
Now, we extend our result to solve the common fixed point problem for a family of

finite nonexpansive mappings. Set {Ti}m
i=1 is a family of nonexpansive self-mapping on H.

Denote by Ti,λ = I + λ(Ti − I), where I is the identity operator. For each x0 ∈ H and any
r > 0, we mean

B(x0, r) = {x ∈ H : ∥x − x0∥ ≤ r}.

For any positive number ϵ > 0 and every i ∈ {1, 2, · · · , m}, assume that

F =
m∩

i=1
Fix(Ti) (4.1)

Fϵ(Ti) = {x ∈ H : ∥x − Ti(x)∥ ≤ ϵ} (4.2)
F̃ϵ(Ti) = Fϵ(Ti) + B(0, ϵ) (4.3)

Fϵ =
m∩

i=1
Fϵ(Ti) (4.4)

F̃ϵ =
m∩

i=1
F̃ϵ(Ti) (4.5)

By an index vector t = (t1, t2, · · · , tp) such that ti ∈ {1, 2, · · · , m} for all i = 1, 2, · · · , p.
For an index vector t = (t1, t2, · · · , tq), we mean

T [t] = T
t1,λ

(n+1)
t1

T
t2,λ

(n+1)
t2

· · · T
tq ,λ

(n+1)
tq

, p(t) = q. (4.6)

Fix a number θ ∈ (0, 1
2 ], for all n ≥ 0, and i ∈ {1, 2, · · · , m},we define λ

(n)
i ∈ [θ, 1 − θ].

It is obvious for every index vector t and for all z ∈ F, x, y ∈ H that T [t] is nonexpansive
and

T [t](z) = z. (4.7)
Let A be the collection of all pairs (Ω, ω) and ω satisfies

ω : Ω → (0, 1),
∑
t∈Ω

ω(t) = 1, (4.8)

where Ω represents a finite collection of index vectors.
Let (Ω, ω) ∈ A and set

TΩ,ω(x) =
∑
t∈Ω

ω(t)T [t](x), x ∈ H. (4.9)

It is clearly to see TΩ,ω is nonexpansive, and for all z ∈ F we have TΩ,ω(z) = z.
In the present, we propose a dynamic string-averaging algorithm.
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Algorithm 4.1 {
yn+1 = (1 − sn)yn + snTΩn+1,ωn+1(yn)
TΩn+1,ωn+1(yn) = Σt∈Ωn+1ω(t)T [t](yn).

Where {sn} ⊂ [a, 1 − a], a ∈ (0, 1
2 ] is a fixed number.

Note that (1.5), we will prove that algorithm 4.1 is bounded perturbations resilient. In
other words, set a sequence {ϵn} ⊂ [0, ∞) satisfies

∑∞
n=1 ϵn < ∞, and {yn} is a sequence

generated by algorithm 4.1. If for each n ≥ 0

∥yn+1 − (1 − sn)yn − snTΩn+1,ωn+1(yn)∥ ≤ ϵn+1, (4.10)

then {yn} converges strongly to a point in F̃ϵ.
Fix an integer q̄ and a number δ such that

q̄ ≥ m, (4.11)

δ ∈ (0, m−1]. (4.12)

Denote by A∗ the subset of A such that for each (Ω, ω) ∈ A∗ and t ∈ Ω,

p(t) ≤ q̄, (4.13)

ω(t) ≥ δ. (4.14)

Set N̄ a fixed natural number and Card(A) the cardinality of a set A.

Theorem 4.1. Let R > 0 satisfy

B(0, R)
∩

F ̸= ∅, (4.15)

Fix a positive number ϵ and {ϵn} ⊂ [0, ∞) satisfy

Λ :=
∞∑

n=1
ϵn < ∞. (4.16)

Let n0 be a natural number such that for every n > n0

ϵn < ϵ(N̄ + 1)−1(q̄ + 1)−1. (4.17)

Assume that
{(Ωn, ωn)}∞

n=1 ⊂ A∗, (4.18)

satisfy for any natural number j

{1, 2, · · · , m} ⊂
j+N̄−1∪

n=j

(
∪

t∈Ωn

{t1, t2, · · · , tp(t)}), (4.19)

y0 ∈ B(0, R). (4.20)

Then a sequence {yn} generated by algorithm 4.1 is bounded perturbations resilient and

Card({n ∈ {1, 2, · · · } : yn /∈ F̃ϵ})

≤ n0 + ((2R + Λ)2 + 2Λ(2R + Λ))N̄(1 + N̄)2(1 + q̄)2ϵ−2δ−1c,

where c = [aθ(1 − θ)]−1.
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5. Proof of Theorem 4.1
Proposition 5.1. For all n ≥ 0,

∥x∗ − yn∥ ≤ 2R +
n∑

i=0
ϵi, ∀x∗ ∈ B(0, R)

∩
F. (5.1)

Proof. Based on (4.15), there is a x∗ ∈ B(0, R)
∩

F. By (4.20) we have

∥x∗ − y0∥ ≤ 2R. (5.2)

Set ϵ0 = 0,inequality (5.1) clearly holds for n = 0. Assume that n ≥ 0 inequality (5.1)
holds, by (4.10)

∥yn+1 − x∗∥ ≤ ∥(1 − sn)yn + snTΩn+1,ωn+1(yn) − x∗∥
+ ∥yn+1 − (1 − sn)yn − snTΩn+1,ωn+1(yn)∥

≤ ∥x∗ − yn∥ + ϵn+1 ≤ 2R +
n+1∑
i=0

ϵi.

(5.3)

Above all, proposition 5.1 is proved. □

Set γ0 = ϵ(q̄ + 1)−1(N̄ + 1)−1, by (4.17) for all n > n0

ϵn < γ0. (5.4)

Let n > 0, for every t = (t1, t2, · · · , tp(t)) ∈ Ωn+1, we can find a finite sequence
{x

(n,t)
j }p(t)

j=0 ⊂ H such that

yn = x
(n,t)
0 (5.5)

Ttj (y(n,t)
j−1 ) = x

(n,t)
j , j = 1, 2, · · · , p(t). (5.6)

x
(n,t)
p(t) = xn,t. (5.7)

Set
βn,t = max{∥x

(n,t)
j+1 − x

(n,t)
j ∥ : j = 0, 1, · · · , p(t) − 1}. (5.8)

Then we get
TΩn+1,ωn+1(yn) =

∑
t∈Ωn+1

ωn+1(t)xn,t. (5.9)

Set
µn+1 = max{βn,t : t ∈ Ωn+1}. (5.10)

Proposition 5.2. For each natural number n ≥ n0 satisfies µn+1 < γ0, then we have

yn ∈ F̃q̄γ0(Ts), s ∈
∪

t∈Ωn+1

{t1, t2, · · · , tp(t)}, ∥yn+1 − yn∥ ≤ γ0(q̄ + 1). (5.11)

Proof. Let t = (t1, t2, · · · , tp(t)) ∈ Ωn+1, based on Ttj , j = t1, t2, · · · , tp(t) is averaged , for
every 0 ≤ j < p(t)

∥x
(n,t)
j − x∗∥2 − ∥x

(n,t)
j+1 − x∗∥2

= ∥x
(n,t)
j − x∗∥2 − ∥T

tj+1,λ
(n+1)
tj+1

(x(n,t)
j ) − x∗∥2

≥ (1 − λ
(n+1)
tj+1 )λ(n+1)

tj+1 ∥x
(n,t)
j − T

tj+1,λ
(n+1)
tj+1

(x(n,t)
j )∥2

≥ (1 − θ)θ∥x
(n,t)
j − x

(n,t)
j+1 ∥2.

(5.12)
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Moreover, we have

∥yn − x∗∥2 − ∥xn,t − x∗∥2 = ∥x
(n,t)
0 − x∗∥2 − ∥x

(n,t)
p(t) − x∗∥2

=
p(t)−1∑

j=0
(∥x

(n,t)
j − x∗∥2 − ∥x

(n,t)
j+1 − x∗∥2)

≥ (1 − θ)θ
p(t)−1∑

j=0
∥x

(n,t)
j − x

(n,t)
j+1 ∥2

≥ (1 − θ)θβ2
n,t.

(5.13)

It follows from (4.8), (4.13), (4.18), (5.10) and (5.13)

∥(1 − sn)yn + snTΩn+1,ωn+1(yn) − x∗∥2

≤ (1 − sn)∥yn − x∗∥2 + sn

∑
t∈Ωn+1

ωn+1(t)∥xn,t − x∗∥2

≤ (1 − sn)∥yn − x∗∥2 + sn

∑
t∈Ωn+1

ωn+1(t)(∥yn − x∗∥2 − (1 − θ)θβ2
n,t)

= ∥yn − x∗∥2 − sn(1 − θ)θ
∑

t∈Ωn+1

ωn+1(t)β2
n,t

≤ ∥yn − x∗∥2 − aδθ(1 − θ)µ2
n+1.

(5.14)

Further, by (4.10) and (5.1)

|∥yn+1 − x∗∥2 − ∥(1 − sn)yn + snTΩn+1,ωn+1(yn) − x∗∥2|
= |∥yn+1 − x∗∥ − ∥(1 − sn)yn + snTΩn+1,ωn+1(yn) − x∗∥|
× ∥yn+1 − x∗∥ + ∥(1 − sn)yn + snTΩn+1,ωn+1(yn) − x∗∥|
≤ |∥yn+1 − x∗∥ − ∥(1 − sn)yn + snTΩn+1,ωn+1(yn) − x∗∥|
× (∥yn − x∗∥ + ∥yn+1 − x∗∥)
≤ 2ϵn+1(2R + Λ).

(5.15)

Therefore, we have
∥yn+1 − x∗∥2 ≤ ∥yn − x∗∥2 − aδθ(1 − θ)µ2

n+1 + 2ϵn+1(2R + Λ). (5.16)
For each n > n0,

(2R + Λ)2 ≥ ∥yn0 − x∗∥2

≥ ∥yn0 − x∗∥2 − ∥yn − x∗∥2 =
n−1∑
i=n0

(∥yi − x∗∥2 − ∥yi+1 − x∗∥2)

≥
n−1∑
i=n0

[aδθ(1 − θ)µ2
i+1 − 2ϵn+1(2R + Λ)].

(5.17)

So, we have

(2R + Λ)2 + 2Λ(2R + Λ) ≥ aδθ(1 − θ)
n−1∑
i=n0

µ2
i+1

≥ aδθ(1 − θ)γ2
0Card({k ∈ {n0, · · · , n − 1} : µk+1 ≥ γ0}).

(5.18)

This implies
Card({k ∈ {n0, · · · , n − 1} : µk+1 ≥ γ0} ≤ (aδθ(1 − θ)γ2

0)−1((2R + Λ)2 + 2Λ(2R + Λ)).
(5.19)
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Assume that n ≥ n0 such that µn+1 < γ0. Set t = (t1, · · · , tp(t)) ∈ Ωn+1, we have

γ0 > ∥x
(n,t)
j+1 − x

(n,t)
j ∥ = ∥Ttj+1(x(n,t)

j ) − x
(n,t)
j ∥, (5.20)

therefore
x

(n,t)
j ∈ Fγ0(Ttj+1). (5.21)

Moreover, yn = x
(n,t)
0 , so we have

∥yn − x
(n,t)
j ∥ ≤ jγ0 ≤ q̄γ0. (5.22)

If j < p(t), then
yn ∈ F̃q̄γ0(Ttj+1), (5.23)

so we have
yn ∈ F̃q̄γ0(Tts), s = 1, 2, · · · , p(t). (5.24)

For all t ∈ Ωn+1,

∥yn − xn,t∥ ≤ q̄γ0, (5.25)
therefore

yn ∈
∩

{F̃q̄γ0(Ts) : s ∈
∪

t∈Ωn+1

{t1, · · · , tp(t)}}. (5.26)

Further, we have

∥yn+1 − yn∥
≤ ∥(1 − sn)yn + snTΩn+1,ωn+1(yn) − yn+1∥
+ ∥(1 − sn)yn + snTΩn+1,ωn+1(yn) − yn∥
≤ ϵn+1 + sn∥TΩn+1,ωn+1(yn) − yn∥
≤ ϵn+1 + snq̄γ0 < (q̄ + 1)γ0.

(5.27)

Above all, proposition 5.2 is proved. □

Set E0 = {i ∈ {n0, n0 + 1, · · · } : µi+1 ≥ γ0}, based on (5.19)

Card(E0) ≤ (aδθ(1 − θ)γ2
0)−1((2R + Λ)2 + 2Λ(2R + Λ)). (5.28)

Set E1 = {i ∈ {n0, n0 + 1, · · · } : [i, i + N̄ − 1]
∩

E0 ̸= ∅}, then

Card(E1) ≤ N̄Card(E0)
≤ N̄(aδθ(1 − θ)γ2

0)−1((2R + Λ)2 + 2Λ(2R + Λ)).
(5.29)

Let j ≥ n0 and j /∈ E1, then [j, j + N̄ − 1]
∩

E0 = ∅. By proposition 5.2, for each
n ∈ [j, j + N̄ − 1], we can get µn+1 < γ0.

For any n1, n2 ∈ {j, j + 1, · · · , j + N̄ − 1},

∥yn1 − yn2+1∥ ≤ (q̄ + 1)N̄γ0. (5.30)

Therefore, for all n ∈ {j, j + 1, · · · , j + N̄ − 1},

yn ∈ F̃(q̄+1)γ0(N̄+1)(Ts),

s ∈
j+N̄−1∪

n=j

∪
{{t1, · · · , tp(t)} : t ∈ Ωn+1} = {1, 2, · · · , m}.

(5.31)

So, yn ∈ F̃ϵ, n ≥ n0. This implies theorem 4.1 true.
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Remark 5.3. If Ti, i = 1, 2, · · · m is quasi-nonexpansive, then theorem 4.1 is also true.
Because we do not use the nonexpansibility of the operator in the proof. If Ti, i = 1, 2, · · · m
is α-strongly quasi-nonexpansive, then it is not difficult to get that Ti,λ, i = 1, 2, · · · m is
also strongly quasi-nonexpansive with the coefficient (λ(1 − λ) + λα). Meanwhile, λ ∈
(0, 1 + α) instead of in (0, 1). In this case, c = [aθ(1 − θ)]−1 in theorem 4.1 becomes
c = [aθ(1 − θ) + aαθ]−1. Obviously, it is an acceleration of algorithm 4.1.

Corollary 5.4. If Ti : C → C, i = 1, 2, · · · m, where C ⊂ H is compact. Then the sequence
{yn} defined by algorithm 4.1 converges to a point in F .

Proof. Obviously, T is nonexpansive and it follows that T is continuous. Based on theo-
rem 4.1, for each ϵ > 0, there is a common y(ϵ) such that

∥Tiy(ϵ) − y(ϵ)∥ < ϵ, i = 1, 2, · · · , m.

Because C is compact, there is a sequence {ϵn} such that y(ϵn) → y∗. Let ϵn → 0, for all
i = 1, 2, · · · , m

∥Tiy(ϵn) − y∗∥ ≤ ∥Tiy(ϵn) − y(ϵn)∥ + ∥y(ϵn) − y∗∥ ≤ ϵn + ∥y(ϵn) − y∗∥.

This implies that Tiy(ϵn) → y∗, i = 1, 2, · · · , m.
So, we have

Tiy
∗ = Ti lim

n→∞
y(ϵn) = lim

n→∞
Tiy(ϵn) = y∗, i = 1, 2, · · · , m.

Above all, corollary 5.4 is proved. □

6. Conclusion
In this article, we propose two algorithms based on runge-kutta method. The first al-

gorithm is weak convergent. The second algorithm turns out to be bounded perturbations
resilient and convergent strongly.
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