

4-Dimensional 2-Crossed Modules

Elis Soylu Yılmaz ${ }^{1}$

Article Info
Received: 25 Jul 2022
Accepted: 23 Aug 2022
Published: 30 Sep 2022
doi:10.53570/jnt. 1148482
Research Article

Abstract

In this work, we defined a new category called 4-Dimensional 2-crossed modules. We identified the subobjects and ideals in this category. The notion of the subobject is a generalization of ideas like subsets from set theory, subspaces from topology, and subgroups from group theory. We then exemplified subobjects and ideals in the category of 4 -Dimensional 2 -crossed modules. A quotient object is the dual concept of a subobject. Concepts like quotient sets, spaces, groups, graphs, etc. are generalized with the notion of a quotient object. Using the ideal, we obtain the quotient of two subobjects and prove that the intersection of finite ideals is also an ideal in this category.

Keywords - Crossed Module, subobject, ideal, category
Mathematics Subject Classification (2020) - 18D99, 55P15

1. Introduction

In order to generalize the well-known conclusion that the category of crossed modules is equivalent to the category of simplicial groups with a Moore complex of length 2, Conduché introduced 2-crossed modules of groups in [1] demonstrating that the category of simplicial groups with a three-dimensional Moore complex and the category of 2-crossed modules are equivalent. Therefore, 2-crossed modules also serve as algebraic models for connected homotopy 3 -types or pointed CW-complexes X such that $\pi(X)=0$ if $i>3$. The idea of 2 -crossed modules is adapted for algebras by Grandjean and Vale [2].

The homotopy 3 -types can also be represented by crossed squares [3] and quadratic modules [4]. The categories of braided regular crossed modules [5] and Gray 3-groupoids with a single object [6], are other categories that are equivalent to the category of 2 -crossed modules. The category of 2 -crossed modules is also shown in [7] to be equivalent to the categories of neat crossed squares and neat maps.

For the algebraic description of pointed relative CW-complexes with cells in dimensions 4, Baues and Bleile introduced the concept of 4 -dimensional quadratic complexes [8] to investigate the presentation of a space X as mapping cone of a map $\partial(X)$ under a space D. The need for a proper understanding of the relevant algebraic and categorical structure of the 4-Dimensional 2-crossed modules are motivated by studies and examples [9-15] for higher categorical structures. In this work, we defined the notion of 4-Dimensional 2-crossed modules in order to look into any potential equivalence between homotopy 4 -types, which was inspired by the work of Baues and Bleile. Examining how 4 -Dimensional 2 -crossed modules relate to an algebraic structure resembling 2 -crossed modules is the main goal of this paper. In order to achieve this, we first introduce the category of 4-Dimensional 2 -crossed modules before describing subobjects and ideals in full detail. In conclusion, we demonstrate that the quotient of the objects in this category is a 4-Dimensional 2 -crossed module.

[^0]The main ideas of this work can be given as:

- To construct a new category weaker than homotopy 4 -types and stronger than homotopy 3 -types,
- To fully describe the subobjects and ideals within this category,
- To construct the quotient object by using ideals in this category.

2. 4-Dimensional 2-Crossed Modules

Grandjeán and Vale [2] have given a definition of 2-crossed modules of algebras. The following is an equivalent formulation of that concept.

A 2-crossed module of k-algebras consists of a complex of P-algebras $L \xrightarrow{\partial_{2}} M \xrightarrow{\partial_{7}} P$ together with an action of P on all three algebras and a P-linear mapping

$$
\{-,-\}: M \times M \rightarrow L
$$

which is often called the Peiffer lifting such that the action of P on itself is by multiplication, ∂_{2} and ∂_{1} are P-equivariant.

PL1: $\partial_{2}\left\{m_{0}, m_{1}\right\}=m_{0} m_{1}-\partial_{1}\left(m_{1}\right) \cdot m_{0}$
PL2: $\left\{\partial_{2}\left(l_{0}\right), \partial_{2}\left(l_{1}\right)\right\}=l_{0} l_{1}$
PL3: $\left\{m_{0}, m_{1} m_{2}\right\}=\left\{m_{0} m_{1}, m_{2}\right\}+\partial_{1}\left(m_{2}\right) \cdot\left\{m_{0}, m_{1}\right\}$
PL4: $\left\{m, \partial_{2}(l)\right\}+\left\{\partial_{2}(l), m\right\}=\partial_{1}(m) \cdot l$
PL5: $\left\{m_{0}, m_{1}\right\} \cdot p=\left\{m_{0} \cdot p, m_{1}\right\}=\left\{m_{0}, m_{1} \cdot p\right\}$
for all $m, m_{0}, m_{1}, m_{2} \in M, l, l_{0}, l_{1} \in L$ and $p \in P$. Note that we have not specified that M acts on L. We could have done that as follows: if $m \in M$ and $l \in L$, define

$$
m \cdot l=\left\{m, \partial_{2}(l)\right\}
$$

From this equation $\left(L, M, \partial_{2}\right)$ becomes a crossed module. We can split PL4 into two pieces:
PL4:

$$
\begin{aligned}
& \text { (a) } \quad\left\{m, \partial_{2}(l)\right\}=m \cdot l \\
& \text { (b) } \quad\left\{\partial_{2}(l), m\right\}=m \cdot l-\partial_{1}(m) \cdot l
\end{aligned}
$$

We denote such a 2 -crossed module of algebras by $\left\{L, M, P, \partial_{2}, \partial_{1}\right\}$.
A morphism of 2-crossed modules is given by the following diagram

where $f_{0} \partial_{1}=\partial_{1}^{\prime} f_{1}, f_{1} \partial_{2}=\partial_{2}^{\prime} f_{2}$

$$
f_{1}(p \cdot m)=f_{0}(p) \cdot f_{1}(m) \quad, \quad f_{2}(p \cdot l)=f_{0}(p) \cdot f_{2}(l)
$$

for all $m \in M, l \in L, p \in P$ and

$$
\{-,-\}\left(f_{1} \times f_{1}\right)=f_{2}\{-,-\}
$$

We thus get the category of 2 -crossed modules denoting it by $\mathrm{X}_{2} \mathrm{Mod}$. In [4], Baues developed the concept of 4 -dimensional quadratic modules after defining quadratic modules. Adapting this definition for 2-crossed modules we get a complex of algebras

$$
\sigma: K \xrightarrow{\partial_{4}} L \xrightarrow{\partial_{3}} M \xrightarrow{\partial_{2}} P
$$

such that

1. $\left(L, M, P, \partial_{2}, \partial_{3}\right)$ is a 2 -crossed module with Peiffer lifting $\{-,-\}: M \times M \rightarrow L$;
2. K is a L-module such that $\partial_{2}(M)$ acts trivially and
3. ∂_{4} is a homomorphism of Q_{1}-modules, such that $\partial_{3} \partial_{4}=0$.

A morphism of 4-dimensional 2-crossed modules, $f: \sigma \rightarrow \sigma^{\prime}$, is a sequence of morphisms

such that $\left(f_{3}, f_{2}, f_{1}\right)$ yields a morphism of 2-crossed modules, f_{4} is an f_{1}-equivariant homomorphism of modules and $\partial_{4} f_{4}=f_{3} \partial_{4}$. We denote the category of 4-Dimensional 2-crossed modules by $X_{2} M o d^{4 D}$.

Next, we will define the subobjects in $X_{2} M o d^{4 D}$.
Definition 2.1. Let

$$
\sigma: Q_{4} \xrightarrow{\partial_{4}} Q_{3} \xrightarrow{\partial_{3}} Q_{2} \xrightarrow{\partial_{2}} Q_{1}
$$

be an object in $X_{2} \operatorname{Mod}^{4 D}$. Then we say that

$$
\sigma^{\prime}: Q_{4}^{\prime} \xrightarrow{\partial_{4}^{\prime}} Q_{3}^{\prime} \xrightarrow{\partial_{3}^{\prime}} Q_{2}^{\prime} \xrightarrow{\partial_{2}^{\prime}} Q_{1}^{\prime}
$$

is a subobject of σ if

1. Q_{4}^{\prime} is a subalgebra of Q_{4}, Q_{3}^{\prime} is a subalgebra of Q_{3} and Q_{2}^{\prime} is a subring of Q_{2};
2. $\partial_{2}^{\prime}: Q_{2} \rightarrow Q_{1}$ is a subpre-crossed module of $\partial_{2}: Q_{2} \rightarrow Q_{1}$;
3. The actions of Q_{2}^{\prime} on Q_{4}^{\prime} and Q_{3}^{\prime} via Q_{1}^{\prime} is induced from the actions of Q_{2} on Q_{4} and Q_{3} via Q_{1};
4. σ^{\prime} is an object in $X_{2} \operatorname{Mod}^{4 D}$ and
5. The diagram

is commutative where for $\mathrm{i}=1,2,3 \mu_{i}$ are injections.
Example 2.2. Let

$$
\sigma: Q_{2} \otimes Q_{2} \xrightarrow{\partial_{4}} Q_{2} \otimes Q_{2} \xrightarrow{\partial_{3}} Q_{2} \xrightarrow{\partial_{2}} Q_{1}
$$

be an object in $X_{2} M o d^{4 D}$ with $I d: Q_{2} \otimes Q_{2} \rightarrow Q_{2} \otimes Q_{2}$ as Peiffer lifting. If K_{2} is ideal of Q_{2} and K_{1} is a subring of Q_{1} that is $\delta_{2}: K_{2} \rightarrow K_{1}$ is a subpre-crossed module of $\partial_{2}: Q_{2} \rightarrow Q_{1}$ then

$$
\sigma^{\prime}: K_{2} \otimes K_{2} \xrightarrow{I d} K_{2} \otimes K_{2} \xrightarrow{\delta_{3}} K_{2} \xrightarrow{\delta_{2}} K_{1}
$$

is a subobject of σ with $I d: K_{2} \otimes K_{2} \rightarrow K_{2} \otimes K_{2}$ as Peiffer lifting.

Example 2.3. Let R be a k-algebra and

$$
\begin{gathered}
R / R^{2} \otimes R / R^{2} \\
\sigma: R / R^{2} \otimes R / R^{2} \underset{I d}{\{-,-\}=I d} \downarrow \\
\downarrow \\
R / R^{2} \otimes R / R^{2} \underset{\partial}{\longrightarrow} R \underset{I d}{\longrightarrow} R
\end{gathered}
$$

be an object in $X_{2} M_{o d^{4}}$. If I is an ideal of R and J is a subring of I then,

$$
\begin{gathered}
I / I^{2} \otimes I / I^{2} \\
\sigma^{\prime}: I / I^{2} \otimes I / I^{2} \xrightarrow[I d]{\{-,-\}=I d} \mid \\
I / I^{2} \otimes I / I^{2} \xrightarrow[\partial^{\prime}]{\longrightarrow} I \xrightarrow[i]{\longrightarrow} J
\end{gathered}
$$

is a subobject of σ.

3. Ideals in X_{2} Mod $^{4 D}$

In this section we will define ideals in $X_{2} M o d^{4 D}$ and intersections of two ideals is an ideal in this category.

Definition 3.1. Let

$$
\sigma: K \xrightarrow{\partial_{4}} L \xrightarrow{\partial_{3}} M \xrightarrow{\partial_{2}} P
$$

be an object in $X_{2} M o d^{4 D}$. Then we say that

$$
\sigma^{\prime}: K^{\prime} \xrightarrow{\partial_{4}^{\prime}} L^{\prime} \xrightarrow{\partial_{3}^{\prime}} M^{\prime} \xrightarrow{\partial_{2}^{\prime}} P^{\prime}
$$

is an ideal of σ if

1. Let $L^{\prime} L \subseteq L^{\prime}, K^{\prime} K \subset K^{\prime}$ and M^{\prime} be an ideal of M;
2. (a) $M^{\prime} M \subset M$ and P^{\prime} is an ideal of P;
(b) for $p \in P^{\prime}$ and $m \in M, p \cdot m \in M^{\prime}$;
(c) for $m^{\prime} \in M^{\prime}$ and $p \in P, p \cdot m^{\prime} \in M^{\prime}$;
3. For $m^{\prime} \in M^{\prime}, l \in L, k \in K \partial_{1}\left(m^{\prime}\right) \cdot l \in L^{\prime}, \partial_{1}\left(m^{\prime}\right) \cdot k \in K^{\prime}$;
4. For $l^{\prime} \in L^{\prime}, m \in M$ and $k^{\prime} \in K^{\prime}, \partial_{1}(m) \cdot l^{\prime} \in L^{\prime}, \partial_{1}(m) \cdot k^{\prime} \in K^{\prime} ;$
5. K^{\prime} and L^{\prime} are P-algebras. That is,
(a) For $p^{\prime} \in P^{\prime}, l \in L$ and $k \in K, p^{\prime} \cdot l \in L^{\prime}, p^{\prime} \cdot k \in K^{\prime}$;
(b) For $l^{\prime} \in L^{\prime}, p \in P$ and $k^{\prime} \in K^{\prime}, p \cdot l^{\prime} \in L^{\prime}, p \cdot k^{\prime} \in K^{\prime}$;

Example 3.2. Let I be an ideal of R if

$$
\theta: K \longrightarrow L \longrightarrow I \xrightarrow{i d} I
$$

is an object in $X_{2} \mathrm{Mod}^{4 D}$ then θ is an ideal of the 4-Dimensional 2-crossed module σ in Example 2.3.

Example 3.3. Let I and I^{\prime} be ideals of R and $(I, R, \mu),\left(I^{\prime}, R, \mu^{\prime}\right)$ be two nil(2)-modules. Since $\left(I \cap I^{\prime}, I, \vartheta\right)$ is a $\operatorname{nil}(2)$-module we have,
i)

$$
\sigma^{\prime}: K \xrightarrow{\partial_{2}} L \xrightarrow{\pi} I \cap I^{\prime} \xrightarrow{\vartheta^{\prime}} I^{\prime}
$$

is an ideal of

$$
\sigma: K \xrightarrow{\delta_{2}} I \times I \xrightarrow{\pi} I \xrightarrow{\mu} R
$$

ii)

$$
\theta^{\prime}: K \xrightarrow{\partial_{2}} L \xrightarrow{\pi} I \cap I^{\prime} \xrightarrow{\vartheta} I
$$

is an ideal of

$$
\theta: K \xrightarrow{\delta_{2}^{\prime}} I^{\prime} \times I^{\prime} \xrightarrow{\pi} I^{\prime} \xrightarrow{\mu^{\prime}} R
$$

where $L=\left(I \cap I^{\prime}\right) \times\left(I \cap I^{\prime}\right)$ with Peiffer liftings as identities and π as projection.
Theorem 3.4. The intersection of finite ideals is an ideal in $X_{2} \operatorname{Mod}^{4 D}$.
Proof. Let

$$
\sigma: K \xrightarrow{\partial_{3}} L \xrightarrow{\partial_{2}} M \xrightarrow{\partial_{1}} P
$$

be an object in X_{2} Mod $^{4 D}$. If

$$
\sigma_{1}: K_{1} \xrightarrow{\partial_{3}^{\prime}} L_{1} \xrightarrow{\partial_{2}^{\prime}} M_{1} \xrightarrow{\partial_{1}^{\prime}} P_{1}
$$

and

$$
\sigma_{2}: K_{2} \xrightarrow{\partial_{3}^{\prime \prime}} L_{2} \xrightarrow{\partial_{2}^{\prime \prime}} M_{2} \xrightarrow{\partial_{1}^{\prime \prime}} P_{2}
$$

be two subobjects of σ. Then we have,

1. Since $L_{1} L \subset L_{1}, L_{2} L \subset L_{2}$ and $K_{1} K \subset K_{1}, K_{2} K \subset K_{2}$ we get

$$
\left(L_{1} \cap L_{2}\right) L \subseteq L_{1} \cap L_{2}
$$

and

$$
\left(K_{1} \cap K_{2}\right) K \subset K_{1} \cap K_{2}
$$

2. a. Since $M_{1} M \subseteq M_{1}$ and $M_{2} M \subseteq M_{2}$ we get

$$
\left(M_{1} \cap M_{2}\right) M \subseteq M_{1} \cap M_{2}
$$

where $N_{1} \unlhd P$ and $P_{2} \unlhd P$ imply $P_{1} \cap N_{2} \unlhd P$.
b. Since σ_{1} is an ideal of σ for $x \in P_{1}$ we have $x \cdot m \in M_{1}$ and σ_{2} is an ideal of σ for $x \in P_{2}$ we have $x \cdot m \in M_{2}$. Then we get $x \cdot m \in M_{1} \cap M_{2}$.
c. Since σ_{1} and σ_{2} are ideals of σ, for $y \in M_{1}, y \in M_{2}$, and $p \in P$ we have $p \cdot y \in M_{1}$ and $p \cdot y \in M_{2}$ which implies $p \cdot y \in M_{1} \cap M_{2}$.
3. Since σ_{1} is an ideal of σ for $y \in M_{1}$ and $l \in L$ we have $\partial(y) \cdot l \in L_{1}$ and since ∂_{2} is an ideal of σ for $\partial(y) \in M_{2}$ and $l \in L$ we have $\partial(y) \cdot l \in L_{2}$. Then we get $\partial(y) \cdot l \in L_{1} \cap L_{2}$. Similarly for $y \in M_{1} \cap M_{2}$ and $k \in K$ we get $\partial(y) \cdot k \in K_{1} \cap K_{2}$.
4. Since for $z \in L_{1}$ and $m \in M \partial_{1}(m) \cdot z \in L_{1}$ and for $z \in L_{2}, m \in M \partial_{1}(m) \cdot z \in L_{2}$ we have $\partial_{1}(m) \cdot z \in L_{1} \cap L_{2}$. Similarly for $t \in K_{1} \cap K_{2}$ we get $\partial_{1}(m) \cdot t \in K_{1} \cap K_{2}$.
5. a. Let $x \in P_{1} \cap P_{2}$ for $x \in P_{1}$ and $l \in L$ we have $x \cdot l \in L_{1}$ and for $x \in P_{2}$ and $l \in L$ we have $x \cdot l \in L_{2}$. Then we get $x \cdot l \in L_{1} \cap L_{2}$. Simlarly for $x \in P_{1} \cap P_{2}$ and $k \in K$ we have $x \cdot k \in K_{1} \cap K_{2}$.
b. Let $z \in L_{1} \cap L_{2}$ for $p \in P$ and $z \in L_{1}$ we have $p \cdot z \in L_{1}$ and for $z \in L_{2}$ and $p \in P$ we have $p \cdot z \in L_{2}$. Then we have $p \cdot z \in L_{1} \cap L_{2}$. Similarly for $t \in K_{1} \cap K_{2}$ we have $p \cdot k \in K_{1} \cap K_{2}$.

As a result the object

$$
K_{1} \cap K_{2} \xrightarrow{\left(\partial_{3}^{\prime}, \partial_{3}^{\prime \prime}\right)} L_{2} \cap L_{2} \xrightarrow{\left(\partial_{2}^{\prime}, \partial_{2}^{\prime \prime}\right)} M_{1} \cap M_{2} \xrightarrow{\left(\partial_{1}^{\prime}, \partial_{1}^{\prime \prime}\right)} P_{1} \cap P_{2}
$$

in $X_{2} \mathrm{Mod}^{4 D}$ is an ideal of

$$
K \xrightarrow{\partial_{3}} L \xrightarrow{\partial_{3}} M \xrightarrow{\partial_{3}} P
$$

4. Quotient object in $X_{2} M o d^{4 D}$

In this section using the ideal σ^{\prime} of an object σ in $X_{2} \operatorname{Mod}^{4 D}$, we prove that the quotient σ / σ^{\prime} is an object in X_{2} Mod $^{4 D}$.

Let

$$
\sigma^{\prime}: K^{\prime} \xrightarrow{\partial_{3}^{\prime}} L^{\prime} \xrightarrow{\partial_{2}^{\prime}} M^{\prime} \xrightarrow{\partial_{1}^{\prime}} P^{\prime}
$$

be an ideal of

$$
\sigma: K \xrightarrow{\partial_{3}} L \xrightarrow{\partial_{2}} M \xrightarrow{\partial_{1}} P
$$

in $X_{2} M o d^{4 D}$. Since $M \unlhd M$ and $P^{\prime} \unlhd P$, the action of P / P^{\prime} on M / M^{\prime} can be given as

$$
\left(x+P^{\prime}\right) \cdot\left(y+M^{\prime}\right)=x \cdot y+M^{\prime}
$$

and for $p^{\prime} \in P^{\prime}$

$$
\begin{aligned}
p^{\prime} \cdot\left(y+M^{\prime}\right) & =p^{\prime} \cdot y+M^{\prime} \\
& =0+M^{\prime} \quad\left(\because p^{\prime} \cdot y \in M\right)
\end{aligned}
$$

P^{\prime} acts on M / M^{\prime} trivially. Next, we will show that

$$
\begin{array}{ccc}
\delta: M / M^{\prime} & \rightarrow & P / P^{\prime} \\
y+M^{\prime} & \mapsto & \partial_{1}(y)+P^{\prime}
\end{array}
$$

is a well defined nil(2)-module morphism.
∂_{1}^{\prime} is the restriction of ∂_{1} to M^{\prime} implies $\partial_{1}^{\prime} \subset P^{\prime}$. For $m^{\prime} \in M^{\prime}$ we have $\partial_{1}^{\prime}\left(m^{\prime}\right) \cdot\left(l+L^{\prime}\right)=$ $\partial_{1}^{\prime}\left(m^{\prime}\right) \cdot l+L^{\prime}=L^{\prime}\left(\sigma^{\prime}\right.$ is an ideal of σ then $\left.\partial_{1}^{\prime}\left(m^{\prime}\right) \cdot l \in L^{\prime}\right)$. That is the action of M^{\prime} on L / L^{\prime} via P^{\prime} must be trivial. Therefore M / M^{\prime} acts on L / L^{\prime} via P / P^{\prime}. This action can be defined as:

$$
\left(\partial_{1}(m)+M\right) \cdot\left(l+L^{\prime}\right)=\partial_{1}(m) \cdot l+L^{\prime}
$$

for $l+L^{\prime} \in L / L^{\prime}$ and $m+M^{\prime} \in M / M^{\prime}$.
Theorem 4.1. Let

$$
\sigma^{\prime}: K^{\prime} \xrightarrow{\partial_{3}^{\prime}} L^{\prime} \xrightarrow{\partial_{2}^{\prime}} M^{\prime} \xrightarrow{\partial_{1}^{\prime}} P^{\prime}
$$

be an ideal of

$$
\sigma: K \xrightarrow{\partial_{3}} L \xrightarrow{\partial_{2}} M \xrightarrow{\partial_{1}} P
$$

in $X_{2} \operatorname{Mod}^{4 D}$. Then

$$
\sigma / \sigma^{\prime}: K / K^{\prime} \xrightarrow{\delta_{3}} L / L^{\prime} \xrightarrow{\delta_{2}} M / M^{\prime} \xrightarrow{\delta_{1}} P / P^{\prime}
$$

is an object in X_{2} Mod $^{4 D}$.
Proof. 1. PL1. For $x_{1}+M^{\prime}, x_{2}+M^{\prime} \in M / M^{\prime}$:

$$
\begin{aligned}
\delta\left\{x_{1}+M^{\prime}, x_{2}+M^{\prime}\right\}_{\delta} & =\partial_{2}\left\{x_{1}, x_{2}\right\}_{\sigma}+L^{\prime} \\
& =x_{1} x_{2}-x_{1} \cdot \partial_{1}\left(x_{2}\right)+L^{\prime}
\end{aligned}
$$

PL2. For $y_{1}+M^{\prime}, y_{2}+M^{\prime} \in L / L^{\prime}$:

$$
\begin{aligned}
\left\{\delta_{2}\left(y_{1}+L^{\prime}\right), \delta\left(y_{2}+L^{\prime}\right)\right\}_{\delta} & =\left\{\partial_{2}\left(y_{1}\right)+M^{\prime}, \partial_{2}\left(y_{2}\right)+M^{\prime}\right\}_{\sigma} \\
& =\left\{\partial_{2}\left(y_{1}\right), \partial_{2}\left(y_{2}\right)\right\}_{\sigma}+M^{\prime} \\
& =y_{1} y_{2}+M^{\prime} \\
& =\left(y_{1}+M^{\prime}\right)\left(y_{2}+M^{\prime}\right)
\end{aligned}
$$

PL3. For $x_{o}+M^{\prime}, x_{1}+M^{\prime}, x_{2}+M^{\prime} \in M / M^{\prime}$:

$$
\begin{aligned}
\left\{x_{0}+M^{\prime}, x_{1} x_{2}+M^{\prime}\right\}_{\delta} & =\left\{x_{0}, x_{1} x_{2}\right\}_{\sigma}+M^{\prime} \\
& =\left\{x_{0} x_{1}, x_{2}\right\}_{\sigma}+\partial_{1}\left(x_{2}\right)\left\{x_{0}, x_{1}\right\}_{\sigma}+M^{\prime} \\
& =\left\{x_{0} x_{1}, x_{2}\right\}_{\sigma}+M^{\prime}+\partial_{1}\left(x_{2}\right)\left\{x_{0}, x_{1}\right\}_{\sigma}+M^{\prime} \\
& =\left\{x_{0} x_{1}+M^{\prime}, x_{2}+M^{\prime}\right\}_{\delta}+\partial_{1}\left(x_{2}\right)\left\{x_{0}+M^{\prime}, x_{1}+M^{\prime}\right\}_{\delta}
\end{aligned}
$$

PL4. a. For $y+L^{\prime} \in L / L^{\prime}$ and $x+M^{\prime} \in M / M^{\prime}$:

$$
\begin{aligned}
\left\{\delta_{2}\left(y+L^{\prime}\right), x+M^{\prime}\right\}_{\delta} & =\left\{\partial_{2}(y)+M^{\prime}, x+M^{\prime}\right\}_{\delta} \\
& =\left\{\partial_{2}(y), x\right\}_{\sigma}+M^{\prime} \\
& =\left(x \cdot y-\partial_{1}(x) \cdot y\right)+M^{\prime}
\end{aligned}
$$

b. For $y+L^{\prime} \in L / L^{\prime}$ and $x+M^{\prime} \in M / M^{\prime}$:

$$
\begin{aligned}
\left\{x+M^{\prime}, \delta_{2}\left(y+L^{\prime}\right)\right\}_{\delta} & =\left\{x+M^{\prime}, \partial_{2}(y)+M^{\prime}\right\}_{\delta} \\
& =\left\{x, \partial_{2}(y)\right\}_{\sigma}+M^{\prime} \\
& =(x \cdot y)+M^{\prime}
\end{aligned}
$$

PL5. For $x_{o}+M^{\prime}, x_{1}+M^{\prime} \in M / M^{\prime}$ and $t+P^{\prime} \in P / P^{\prime}$:

$$
\begin{aligned}
\left\{x_{0}+M^{\prime}, x_{1}+M^{\prime}\right\}_{\delta} \cdot\left(t+P^{\prime}\right) & =\left(\left\{x_{0}, x_{1}\right\}_{\sigma} \cdot\left(t+P^{\prime}\right)_{\delta}\right)+M^{\prime} \\
& =\left(\left\{x_{0} \cdot t, x_{1}\right\}_{\sigma}\right)+M^{\prime} \\
& =\left\{\left(x_{0} \cdot t\right)+M^{\prime}, x_{1}+M^{\prime}\right\}_{\delta}
\end{aligned}
$$

and

$$
\begin{aligned}
\left\{x_{0}+M^{\prime}, x_{1}+M^{\prime}\right\}_{\delta} \cdot\left(t+P^{\prime}\right) & =\left(\left\{x_{0}, x_{1}\right\}_{\sigma} \cdot\left(t+P^{\prime}\right)_{\delta}\right)+M^{\prime} \\
& =\left(\left\{x_{0}, x_{1} \cdot t\right\}_{\sigma}\right)+M^{\prime} \\
& =\left\{x_{0}+M^{\prime},\left(x_{1} \cdot t\right)+M^{\prime}\right\}_{\delta}
\end{aligned}
$$

2. Since σ^{\prime} is an ideal of σ / σ^{\prime} for $m+M^{\prime} \in M / M^{\prime}$ we have $\delta_{1}\left(m+M^{\prime}\right) \cdot\left(k+K^{\prime}\right)=\delta_{1}\left(m+M^{\prime}\right) \cdot\left(k+K^{\prime}\right)=$ K^{\prime}. That is M / M^{\prime} acts on K / K^{\prime} via P^{\prime} trivially. Therefore K / K^{\prime} is a P / P^{\prime}-module.
3. For $k+K^{\prime} \in K / K^{\prime}$:

$$
\begin{aligned}
\delta_{2} \delta_{3}\left(k+K^{\prime}\right) & =\delta_{2}\left(\partial_{3}(k)+L^{\prime}\right) \\
& =\partial_{2}\left(\partial_{3}(k)+M^{\prime}\right) \\
& =0+M^{\prime} \\
& =0_{M / M^{\prime}}
\end{aligned}
$$

5. Conclusion

In this work, we introduced a new category weaker than homotopy 4 -types and stronger than homotopy 3 -types. As an intriguing result 4 -dimensional 2 -crossed modules serve as a bridge to investigate categorical equivalences between homotopy 3 -types and homotopy 4 -types. The categorical equivalences of the category $X_{2} \mathrm{Mod}^{4 D}$ and other homotopy 3-4 types from the various models can be explored as further research. The research presented in this study has addressed fundamentals of the category $X_{2} M o d^{4 D}$, and these provide guidance for future work in the following:

- Constructing categorical properties such as limit, product, pullback, pushout, etc.,
- Embedding theorem can be adapted for the category $X_{2} \mathrm{Mod}^{4 D}$,
- Freeness conditions and simplicial properties can be examined.

In addition, categorical equivalences and properties are also reference points for further work of $X_{2} \operatorname{Mod}^{4 D}$.

Author Contributions

The author read and approved the last version of the paper.

Conflicts of Interest

The author declares no conflict of interest.

References

[1] D. Conduché, Modules Croisés Généralisés de Longueur 2, Journal of Pure and Applied Algebra 34 (2-3) (1984) 155-178.
[2] A. R. Grandjeán, M. J. Vale, 2-Modulos Cruzados en la Cohomologia de André-Quillen, Memorias de la Real Academia de Ciencias 22 (1986) 1-28.
[3] G. Ellis, Crossed Squares and Combinatorial Homotopy, Mathematische Zeitschrift 214 (1) (1993) 93-110.
[4] H. J. Baues, Combinatorial Homotopy and 4-Dimensional Complexes, Berlin, De Gruyter, 2011.
[5] R. Brown, N. D. Gilbert, Algebraic Models of 3-Types and Automorphism Structures for Crossed Modules, In Proceedings of the London Mathematical Society 59 (1) (1989) 51-73.
[6] K. H. Kamps, T. Porter, 2-Groupoid Enrichments in Homotopy Theory and Algebra, K-theory 25 (4) (2002) 373-409.
[7] J. F. Martins, The Fundamental 2-Crossed Complex of a Reduced CW-Complex, Homology, Homotopy and Applications 13 (2) (2011) 129-157.
[8] H. J. Baues, B. Bleile, Presentation of Homotopy Types Under a Space, ArXiv Preprint, ArXiv:1005.4810, 2010.
[9] U. E. Arslan, S. Kaplan, On Quasi 2-Crossed Modules for Lie Algebras and Functorial Relations, Ikonion Journal of Mathematics 4 (1) (2022) 17-26.
[10] R. Brown, I. Içen, Homotopies and Automorphisms of Crossed Modules of Groupoids, Applied Categorical Structures 11 (2) (2003) 185-206.
[11] P. Carrasco, J. M. Moreno, Categorical G-Crossed Modules and 2-Fold Extensions, Journal of Pure and Applied Algebra 163 (3) (2001) 235-257.
[12] A. Mutlu, T. Porter, Freeness Conditions for 2-Crossed Codules and Complexes, Theory and Applications of Categories 4 (8) (1998) 174-194.
[13] A. Mutlu, Free 2-Crossed Complexes of Simplicial Algebras, Mathematical and Computational Applications 5 (1) (2000) 13-22.
[14] F. Wagemann, 2 Crossed Modules of Lie Algebras, Communications in Algebra 34 (5) (2006) 1699-1722.
[15] K. Yılmaz, E. Ulualan, Construction of Higher Groupoids via Matched Pairs Actions, Turkish Journal of Mathematics 43 (3) (2019) 1492--1503.

[^0]: ${ }^{1}$ esoylu@ogu.edu.tr (Corresponding Author)
 ${ }^{1}$ Department of Mathematics and Computer Science, Faculty of Sciences, Eskişehir Osmangazi University, Eskişehir, Türkiye

