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PERFORMANCE COMPARISONS OF MODEL SELECTION 
CRITERIA: AIC, BIC, ICOMP AND WOLD’S FOR PLSR 

Özlem GÜRÜNLÜ ALMA 

ABSTRACT 

Partial least squares regression (PLSR) is a statistical method of modeling 
relationships between MNY   response variable and KNX   explanatory
variables which is particularly well suited to analyzing when explanatory 
variables are highly correlated. In partial least square part, some model 
selection criteria are used to obtain the latent variables which are the most 
relevant variables describing the response variables. In typical approach to 
select the numbers of latent variables are Akaike information criterion (AIC) 
and Wold’s R criterion. 

In this study, we are interested in the performance of Bayesian Information 
Criterion (BIC) and Information Complexity Criterion (ICOMP) criteria 
besides the traditional methods AIC and Wold’s R criteria as the model 
selection criteria for partial least squares regression when the number of 
observations are higher than predictor variables. Performances of AIC, BIC, 
ICOMP and Wold’s R criteria were compared by real life data and 
simulation study. Simulation results were obtained from different sample 
sizes, different number of predictor variables and different number of 
response variables. The simulation results demonstrate that the BIC and 
ICOMP model selection methods are more effective than AIC and Wold’s R 
criteria selecting of latent variables for known PLSR models. 

Keywords: AIC, BIC and ICOMP information criteria, K-fold cross-validation, Model selection, 
Partial least squares regression, Wold’s R criterion. 

1. INTRODUCTION

The partial least squares regression is a generalization of multiple linear regression 
analysis. It was developed by Herman Wold (1966) as an econometric technique but 
became popular as a tool to analyze data from chemical applications.  PLSR is also used 
in multivariate statistical data analysis (Geladi and Kowalski, 1986; Wold, 1982). It is 
useful when the predictor variables are highly correlated and/or the number of 
dependent variables is greater than or equal to the number of observations (Wold, 
1982). This success has led to the development of extensions methods of PLSR with 
objectives other than simple multivariate linear regression. A statistical overview of 
PLSR can be found in Geladi and Kowalski (1986), Wold et al. (2001), and Abdi and 
Salkind (2007).  

The PLSR’s goal is to predict or analyze a set of response variables from a set of 
independent variables or predictors. This prediction is achieved by extracting from the 
predictors a set of orthogonal factors called latentvariables which have the best 
predictive power. Associations are established with latent factors extracted from 
predictor variables that maximize the explained variance in the response variables. 
These latent factors are defined as linear combinations constructed between predictor 
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and response variables, such that the original multidimensionality is reduced to a lower 
number of orthogonal factors to detect the structure in the relationships between 
predictor variables and between these latent factors and the response variables (Abdi 
and Salkind, 2007; Helland, 1990; Wold, 1982). Although as many latent variables as 
min(N,K) can be calculated, where N is the sample size and K is number of explanatory 
variables, it is conjectured that the lower order latent variables are associated with 
process noise and should be excluded from the model. Therefore to remove the noise, a 
criterion is required for selecting the number of latent variables to include in the PLSR 
model (Li et al., 2002). 

Various approacheshave been proposed in the literature for model order selection 
methods, including Final Prediction Error criterion (FPE), Multiple Correlation 
Coefficient )(R2 , Adjusted Multiple Correlation Coefficient )(R2

a , Normalized 
Residuals Sum of Squares (NRSS), Mallow’s Statistics )C( p , Predicted Error of Sum of 
Squares (PRESS), Wold’s R criterion, Akaike Information Criterion (AIC), Bayesian 
Information Criterion (BIC) and Information Complexity Criterion (ICOMP). A review 
of these model order selection criteria can be found in Haber and Unbenhauen (1990); 
Bozdoğan (2000); Li et al. (2002); Clark and Troskie (2006). To evaluate the 
performance of the different criteria, simulated models allow the underlying structures 
of the models to be known (Bedrick and Tsai, 1994; Eastment and Krzanowski, 1982). 
Practical case studies as described in Bozdogan (2000), Myung (2000), Li et al. (2002), 
and Clark and Troskie (2006).  

The PLSR creates latent variables for both explanatory and response variables using 
different algorithms. As well as the standard NIPALS, SIMPLS and Kernel algorithms, 
many different algorithms have been proposed to compute PLSR parameters such as 
IVS-PLS, PoLiSh, UVE-PLS, GA-PLS, and etc (Jouan-Rimbaud Bouveresse and 
Rutledge, 2009). 

In this paper, the subset of latent variables that best fit the data is sequentially 
determined. Firstly, the latent variables are extracted using partial least squares 
algorithm, secondly, the number of latent variables can be consistently estimated using 
information criterion. The performance of information criterion is considered with the 
generation of experimental data. We have shown the behaviour of AIC, BIC, ICOMP 
and Wold’s R criteria for different sample sizes and different dimension of PLSR 
models by simulation study.  

The article is organized as follows.  Section 2 includes the PLSR algorithm and 
describes how to obtain the latent variables. Section 3 gives summary information about 
the model selection criteria which are AIC, BIC, ICOMP and Wold’s R criteria. In 
Section 4, real life data and simulation models are described, and the simulation results 
are given. This section focuses on the empirical results which showthe performance of 
information criteria for various configurations of data sets. Finally a summary of 
simulation results and conclusions are given in section 5. 

2. PARTIAL LEAST SQUARES REGRESSION MODEL

The objective of all linear PLSR algorithm is to project the data down onto a number of 
latent variables )u and t(  aa , and then to develop a regression model between latent 
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variables. It uses both the variation of X and Y to construct latent variables. The 
intension of PLSR is to form components that capture most of the information in the X 
variables, which is useful for predicting response variables, while reducing the 
dimensionality of the regression problem by using fewer components than the number 
of X variables (Garthwaite, 1994).  

N×KX represents the data matrix of N observation units on K explanatory variables and 
N×MY  the data matrix of N observation units on M response variables. 

)A,...,1a(and ut a a   are latent variables, where A is the number of the latent variables, 
and then a regression model between latent variables is written as follows: 

a a a ab e , u t a= 1,…, A        (1) 

where ae  is vector of errors and ab  is an unknown parameter estimated by 
ˆ -1

a a a a ab =(t t ) t u .   The latent variables are computed by aaa wXt   and aaa qYu  , where 
both aa q and w  have unit length and are determined by maximizing the covariance 
between .u and t aa  

aaa1a ptXX  where 1 a a a a a a 1 a a a a 1X X  and  p X t /(t t )  and  Y Y b t q  where Y Y.        
Letting aaa tb̂û   be prediction of au , the matrices X and Y can be decomposed as the 
following (Li et al., 2002): 

ˆand ,  
A A

a a a a
a=1 a=1

X= t p +E,         Y= u q +F (2) 

where E and F are the residuals of X and Y after extracting the first “a” pairs of latent 
variables.  

3. ESTIMATING NUMBER OF LATENT VARIABLES USING INFORMATION
CRITERION 

The problem of estimating the true error of hypothesis using different adjustable 
parameters in order to choose the best one is known as model selection (Hastie et al., 
2001). The necessity of introducing the concept of model evaluation has been 
recognized as one of the important technical areas, and the problem is posed on the 
choice of the best approximating model among a class of competing models by a 
suitable model evaluation criterion given a data set. Model evaluation criteria are 
defined as figures of merit, or performance measures, for competing models (Bozdoğan, 
2000). In this section a number of criteria for PLSR model selection can be briefly 
summarized for multivariate regression models. In PLSR model, the information criteria 

used to find the number of latent variables and aTaVM aa  ),,(,,Y,T  was used instead of
K,M,     Y, X,  . Let aT  be a matrix of latent variables, and )T,a(V a is the sum of squared 

residuals. 


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Selection of the number of latent variables to build a representative model is an 
important issue in PLSR. The main goal of model selection is to approximate the true 
model using candidate models and then retain the model that entails a minimum loss of 
information. A metric frequently used by chemometricians for the determination of the 
number of latent variables is that of Wold's R criterion, whilst more recently a number 
of statisticians have advocated the use of AIC (Li et al., 2002). Generally a good model 
has small residuals and few parameters, and then it is preferred, chosen with the 
smallest value of information criterion. However, it is well known that different 
information theoretic criteria with proper choice of penalty function can be used to 
choose the correct model (Kundu and Murali, 1996). Bedrick and Tsai (1994) modified 
the AIC criterion which is corrected version of the multivariate AIC for the small 
sample case (Bedrick and Tsai, 1994).  

AIC and BIC are the two penalized criteria that are based on two different model 
selection approaches. AIC is aimed at finding the best approximating model to the 
unknown data generating process whilst BIC is designed to identify the true model. AIC 
does not depend directly on sample size. Bozdoğan (1987) noted that because of this, 
AIC lacks certain properties of asymptotic consistency. Although BIC takes a similar 
form like AIC, it is derived within a Bayesian framework, reflects sample size and have 
properties of asymptotic consistency. For reasonable sample sizes, BIC apply a larger 
penalty than AIC, thus other factors being equal it tend to select simpler models than 
does AIC. From a Bayesian view point this motivates the adoption of the Bayesian 
information criteria. AIC and BIC have been compared theoretically and empirically 
(Kuha, 2004; Weakliem, 2004) and examined empirically with respect to theselection of 
stock-recruitment relationships (Wang and Liu, 2006; Henry de-Graf, 2010). Although, 
AIC, BIC, and Bozdogan information criteria compared theoretically and empirically in 
many areas, there has been no empirical comparison for their relative performance in 
PLSR modeling context.  

3.1 The Akaike Information Criterion  

The Akaike information criterion was developed by Akaike (Akaike, 1974). AIC has 
played a significant role in solving problems in a wide variety of fields for analyzing 
actual data. The AIC is defined as,  

ˆAIC 2logL(θ) 2K,           (5) 

where ̂  is the maximum likelihood estimator of the parameter   for an approximating 
statistical model Y , )ˆ(L   is the maximized likelihood function, and K is the number of 
free parameters in Y . The multivariate version of AIC was given by Bedrick and Tsai 
(1994),  

ˆMAIC N(log M) 2d[MK M(M 1) / 2],      (6) 
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where )]1MK(N/[Nd   and ̂  is the maximum likelihood estimator of .  This is 
the corrected version of the multivariate AIC for the small sample case. When the 
sample size is large, d value can be equal to one, thus equation (6) may be further 
simplified. Also, Bozdoğan (2000) derived a score information theoretic criteria under 
the multivariate normal assumption for the multivariate regression model which are 
given as follows, 

 2/)1M(MMK2NMˆlogN)2log(NMAIC          (7) 

Since 1974, AIC has been modified in many ways. For example, many model selection 
criteria including CAIC, CAICF (Bozdogan, 1987), GAC (Torr, 1998), GAIC 
(Kanatani, 2002) and MAIC (Boyer et al., 1994) are derived from AIC. 

3.2 The Bayesian Information Criterion  

The Bayesian Information Criterion is an information criterion based on Bayesian 
method proposed by Schwarz (1978), has recently been applied to the selection of 
models. BIC is shown as, 

ˆBIC 2log L( ) K log(N),            (8) 

where ̂  is the maximum likelihood estimator of the parameter   for an approximating 
model M, )ˆ(L   is the maximized likelihood function, and K is the number of the 
estimated parameters. The multivariate version of BIC was given by Bedrick and Tsai 
(1994). It is shown as follows,  

MK M(M 1)ˆBIC Nlog log(N).
2

       
(9) 

BIC favourizes more parsimonious models than AIC due to its penalization. AIC, but 
not BIC, is biased in the following sense: if the true model belongs to the family iM , 
the probability that AIC chooses the true model does not tend to one when the number 
of observations goes to infinity. AIC and BIC have similar formulas but originates from 
different theories and there is no rationale to use simultaneously AIC and BIC: AIC is 
an approximation of the Kullback-Leibler divergence between the true model and the 
estimated one, while BIC comes from a bayesian choice based on the maximisation of 
the posterior probability of the model, given the data (Saporta, 2008). 

3.3 The Information Complexity Criterion 

The development of ICOMP has been motivated partly by AIC, and partly by 
information complexity concepts and indices. In contrast to AIC, the new procedure 
ICOMP is based on the structural complexity of an element or set of random vectors via 
a generalization of the information based covariance complexity index. ICOMP inverse 
Fisher information matrix (ICOMP(IFIM)) is shown as for multiple regression 
(Bozdoğan, 2000; Bozdoğan, 2004), 
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2 1
1

ˆˆˆICOMP(IFIM) N log(2π) Nlog(σ ) N C (F (θ)),        (10) 

where 2σ̂  is the estimated variance of regression model, and K explanatory variables in 
regression model. Bozdoğan (2000) introduced ICOMP (IFIM) information theoretic 
criterion for the multivariate regression model, and it is also used when there is 
multicollinearity in regression model. It is shown as follows, 

1
1

ˆˆ ˆICOMP NM log(2π) N log Σ NM 2C (F (θ)).    (11) 

The complexity measure ))ˆ(F̂(C 1
1   is given by, 
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     (12) 

3.4 Wold’s R Criterion 

Wold’s R criterion is based on cross validation which can be calculated from the 
Predicted Residual Sum of Squares (PRESS) values, and it can be explained as follows: 

 
 

PRESS a+1
R=

PRESS a
,      (13) 

where PRESS(a) denotes the PRESS after including the first a latent variables. Wold’s 
R criterion terminates when R is greater than unity or a given threshold and hence A=a 
(Li et al., 2002). PRESS is a measure of how well the use of the fitted values for a 
subset model can predict the observed responses of a dependent variable, and its value 
for the ith observation is calculated as follows: 

 
n 2

i i(i)
i 1

ˆPRESS y y ,


  (14) 

where the notation )i(iŷ  is used for the fitted value. By the first subscript i, it is shown 
that it is a predicted value for the ith case and by the second subscript (i), it is shown that 
ith case is omitted when the regression function was fitted. The smaller PRESS value 
shows that it is the best model to predict. In some situations PRESS should reach a 
minimum and start to rise again. To avoid building a model that is either overfit or 
underfit, the number of components where the PRESS value reaches a minimum would 
be the obvious choice for the best model. While the minimum of the PRESS may be the 
best choice for predicting the particular set of samples, most likely it is not the optimum 
choice for predicting all unknown samples in the future. That is, the optimum number of 
factors was determined rather than the selection of the model, which yields a minimum 
in PRESS; the model selected is the one with the fewest number of factors such that 
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PRESS for that model is not significantly greater than the minimum PRESS (Niazi and 
Azizi, 2008). A solution to this problem has been suggested in which the PRESS values 
for all previous factors are compared to the PRESS value at the minimum. 

4. REAL LIFE DATA EXAMPLE, DESIGN OF SIMULATION STUDY AND
RESULTS 

In this paper, real life data are used and a simulation study is conducted to gain a better 
understanding of AIC, BIC, ICOMP, and Wold’s R criteria performances for PLSR 
model selection; in fact it is a designed experimental simulation study for choosing 
thetrue latent variables. The experiment has various characteristics of the simulation 
models, in order to quantify the expected performance of information criteria. In the 
next subsection, the steps of data generation and performance results of criteria to PLSR 
model selection are shown by means of a simulation study. Additionaly, in order to 
select model number of components to be retained in the final model,  k-fold cross 
validation in kernel PLSR algorithm is used (Kohavi, 1995). 

4.1 Real Life Data Example 

Performances of AIC, BIC, ICOMP and Wold’s R criteria have been tested considering 
a real life dataset: the Body Fat Measurement. This data set has been used by Bozdoğan 
(2004) for subset selection of best predictors using Genetic Algorithms. In this data set, 
it is determined that the best subset predictors of y=Percent body fat from Siria (1956) 
equation, using k=13 predictors are x1=Age (years), x2=Weight(lbs), x3=Height 
(inches), x4=Neck circumference (cm), x5=Chest circumference(cm), x6=Abdomen 2 
circumference (cm), x7=Hip circumference (cm), x8=Thigh circumference (cm), 
x9=Knee circumference (cm), x10=Ankle circumference (cm), x11=Biceps (extended) 
circumference (cm), x12 = Forearm circumference (cm), x13 =Wrist circumference (cm). 
The data contain the estimates of the percentage of body fat determined by underwater 
weighing and various body circumference measurements for n = 252 men. This is a 
good example to illustrate the versatility and utility of our approach using multiple 
regression analysis with GA. This data set is maintained by Dr. Roger W. Johnson of 
the Department of Mathematics & Computer Science at South Dakota School of Mines 
and Technology1. A variety of popular health books suggest that the readers assess their 
health, at least in part, by estimating their percentage of body fat. In Bailey (1994), for 
instance, the reader can estimate body fat from tables using their age and various skin-
fold measurements obtained by using a caliper. Other texts give predictive equations for 
body fat using body circumference measurements (e.g. abdominal circumference) 
and/or skin-fold measurements. See, for instance, Behnke and Wilmore (1974); 
Wilmore (1976); or Katch and Mc Ardle (1977).Percentage of body fat for an individual 
can be estimated once body density has been determined. Siria (1956) assumes that the 
body consists of two components-lean body tissue and fat tissue.  

Letting, 

D = Body Density (gm/cm3) D = 1/[(A/a) + (B/b)] 
A = proportion of lean body tissue
B = proportion of fat tissue (A+B=1) B = (1/D)*[ab/(a-b)] - [b/(a-b)]. 

1E-mail: rwjohnso@silver.sdsmt.edu, and web address: http://silver.sdsmt.edu/∼rwjohnso 
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a = density of lean body tissue (gm/cm3)
b = density of fat tissue (gm/cm3)

Using the estimates a=1.10gm/cm3 and b=0.90 gm/cm3 (Katch and McArdle, 1977) or 
Wilmore (1976), we come up with Siri's equation: 

Percentage of Body Fat (i.e. 100*B) = 495/D - 450. 

Volume, and hence body density, can be accurately measured by a variety of ways. The 
technique of underwater weighing computes body volume as the difference between 
body weight measured in air and weight measured during water submersion. In other 
words, body volume is equal to the loss of weight inwater with the appropriate 
temperature correction for the water's density (Katch and McArdle, 1977). Using this 
technique, 

Body Density = WA/[(WA-WW)/c.f. - LV] 

where, WA=Weight in air (kg), WW=Weight in water (kg), c.f.=Water correction factor 
(=1 at 39.2 deg F as one-gram of water occupies exactly one cm3 at this temperature, 
=.997 at 76-78 deg F), LV=Residual Lung Volume (liters) (Katch and McArdle, 1977). 
Other methods of determining body volume are given in Behnke and Wilmore (1974). 

For this data set, PLSR model is established using Minitab package program tool, and 
validation technique is selected as k-fold cross validation, k=5. Then, the results of 
model selection and validation are as follows:  

Table 1. Model selection and validation for percent body fat
Number of 

latentvariables 
Relativecumulativevariance 

of components 
Sum of 

squareerror 
R-Square PRESS R-Sq (pred) 

1 0.59 0.039 0.56 0.041 0.54
2 0.70 0.012 0.86 0.015 0.83
3 0.75 0.004 0.95 0.005 0.93
4 0.81 0.002 0.96 0.003 0.96
5 0.84 0.002 0.97 0.002 0.97
6 0.87 0.002 0.97 0.002 0.97
7 0.002 0.97 0.002 0.97
8 0.002 0.97 0.002 0.97
9 0.002 0.97 0.002 0.97

10 0.002    0.97 0.002     0.97 

As seen from the results in Table 1, the number of latent variable is 6, and Figure 1 
shows the model selection plot. 
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Figure 1. Partial least squares regression model selection plot 

This data set is used to compare the performance of model selection criteria AIC, BIC, 
ICOMP and Wold’sR. For this data set, AIC, BIC and ICOMP find the optimal number 
of components (6) whereas Wold’s R finds it as 7. 

4.2 Design of Simulation Study 

In this subsection, simulation experiments are performed to evaluate the performance 
comparisons of AIC, BIC, ICOMP, and Wold’s R criteria. The framework for the 
simulation models are based on the study of Naes and Martens (1985), Li and et al. 
(2002). It is extended in this paper to the situation where there exist multiple response 
variables and different number of explanatory variables. In the simulation study, the 
multivariate regression models arefirst developed from which data aregenerated, and 
then model selection criteria areapplied. The resulting models arethen compared with 
the true models and finally an evaluation of the different criteria for PLSR model 
selection ismade through a comparison of the success rate as to which the true model is 
selected (Bedrick and Tsai, 1994; Li et al., 2002). 

The X and Y block data, with sample size N, aregenerated as: 


*A

i i
i=1

X= rξ +E, (15) 

  
* *

* * *

A A

i iA i A i A
i=1 i=1

Y= z η +ψ= r η +F ,      (16) 

where iE and  r
 are generated from mutually independent normal variables. It is noted 

that 1 jvar(r )+var(e )  is the largest eigenvalue of cov(X). ψ  is generated from a 

multivariate normal distribution, F  is a noise matrix, and Z  is constructed as i i iz =r +f , 

if  are generated as independent normal variables.    A*iandiξ   η are normalized 

orthogonal vector series, and ir  are mutually independent random variables.  

Comparing equation (2), with equations (15) and (16), it can be calculated that latent 
variable it , loading vectors i iandp   q  obtained from PLSR algorithm are approximately 
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equal to ir ,    andi A*iξ   η *i (1,...,A ) , respectively. The Y-block data, Y  of the 

response variables then essentially depends on ir , *i (1,...,A ) , plus noise. This means 
that the theoretical value of the number of latent variable is equal to *A  (Li et. al. 
2002). 

To carry out simulations run, it is proceeded on different simulation models and a fixed 
number of blocks for k-fold cross-validation in kernel algorithm; k is selected as 5. The 
dimensions of explanatory variables are extended as N×5, N×8, N×10, N×15, and N×20 . 
The dimensions of response variables matrix, Y, are chosen as N×3, N×4, N×5, and 
sample sizes are selected as N=50, 100, 250, 500, 1000. For each of the combinations of 
parameters in Table 2, 10000 data sets are generated taking into account the dimension 
of partial least squares regression models and sample sizes, so that 25 10000  data sets 
are generated. 

Table 2. The elements of experimental data sets
Number of 

latent variables 
The dimension of 
response variables 

matrix

The dimensions of 
explanatory variables 

Sample sizes

5*31 N 3Y  N 5X   N= 50, 100, 250, 500, 1000
8*4 N 4Y  N 8X   N= 50, 100, 250, 500, 1000

10*4 N 4Y  N 10X   N= 50, 100, 250, 500, 1000
15*5 N 5Y  N 15X   N= 50, 100, 250, 500, 1000
20*5 N 5Y  N 20X   N= 50, 100, 250, 500, 1000

15*3 shows that the number of predictor variables is 5, and these variables are reduced to number 3 for the number
of latent variables.

Then these data sets are applied to AIC, BIC, ICOMP, and Wold’s R criteria. 
Explanatory data matrix, X, isgenerated from equation (15), and Y, isgenerated from 
equation (16). Generation of X and Y data matrices are just explained for 5*3 which is 
shownin Table 3, and the other data matrices are given in Appendix. The components of 
X and Y datamatrices are given in Table 3 ( * *i [1,...,A ], A 3  ). 

Table  3. The components values of X and Y matrices for 5*3
E 1 5[e ,...,e ] ~ N(0,0.02)E=

ir 1 2 3r ~ N(0,15), r ~ N(0,7.5), r ~ N(0,3)  

iξ [0.6247 0.5635 0.4472 0.2871 0.0989]'
[0.5635 0.0989 - 0.4472 - 0.6247 - 0.2871]'
[0.4472 - 0.4472 - 0.4472 0.4472 0.4472]'





1

2

3

ξ                       
ξ              
ξ                 

if 1 2 3f ~ N(0,0.5), f ~ N(0,0.25), f ~ N(0,0.1)  

*iA
η 31

32

33

[0.7887 0.5774 0.2113]'
[0.5774 - 0.5774 - 0.5774]'
[0.2113 - 0.5774 0.7887]'

 

 
 

           
      
         

ψ 0.00010 0.00006 0.00006
0.00006 0.00010 0.00006
0.00006 0.00006 0.00010

 
 
 
 
 

  
ψ=    
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The variance inflation factor (VIF) values for 5*3 design matrix shows that there 
ismulticollinearity (Table 4).The VIF values are calculated by Minitab package 
program. Table 5 shows the relative cumulative variances by the five latent variables for 
the X and Y blocks, averaged over  10000 simulation experiments. It can be seen from 
the first two rows of Table 5 that on average, for *A 3 , first three latent variables 
capture 100% and 98% of the variances in the X and Y data sets, respectively. This 
verifies the theoretical value of the number of latent variables *A 3.  

Table 4. The VIF values for 5*3. (N=100, k=5) 
  1X 2X 3X 4X 5X

VIF 67.6 238.0 142.0 72.3 42.8 

Table 5. Relative cumulative variances of X and Y for 5*3 . (N=100, k=5) 
True Model Blocks Number of Latent Variables 

1 2 3 4 5

A*=3 X-block 0.55 0.89 1.00 1.00 1.00 

Y-block 0.71 0.84 0.98 0.98 0.98 

4.3 Results of Simulation Study and Performance Comparison of Model Selection 
Criteria 

In this study, we compare the performance of model selection criteria by using the 
percentage of success which shows the precision in finding the number of latent 
variables by model selection criteria. We also compute performances of all criteria for 
Li et. al. (2002) data when dimension to reduction PLSR model is 6*4, and the results 
are shown in Table 6. As seen from the results, AIC, BIC, ICOMP methods provide the 
best selection of the number of latent variables. 

Table 6. Comparison of the percentages of the selected number of latent variables for 6*4 

N AIC BIC  ICOMP MAIC  Wold 's R

100 100 100 100 84.0* 47.6* 

1000 100 100 100 75.8* 49.0* 
* MAIC and Wold’s R results are taken from Li et al. study (2002).

All results of the simulations for various sample sizes and dimensions are given in 
Table 7 and these are obtained by 10000 replications. It illustrates the ability of AIC, 
BIC, ICOMP, and Wold’s R criteria in selecting latent variables for all situations.  

Table 7. Percentages of performance comparison for each criterion 
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As it can be seen from Table 7, for all experimental data sets, almost AIC, BIC, and 
ICOMP criteria have similar performances except Wold’s R criterion. It has the lowest 
success rate compared to other criteria. For (p *a) (8* 4) , AIC, BIC, and ICOMP 
criteria perform better than the Wold’s R criterion. When (p *a) (8* 4)  the success 
rates of AIC, BIC, ICOMP and Wold’s R criteria decrease as the sample sizes and the 
dimensions of models increase. Overall ICOMP criterion provides the best selection 
ofthe number of latent variables among AIC, BIC, and Wold’s R criteria.  

These comparisons of performances are graphically presented in Figure 2(a)-(e) and 
Figure 3(a)-(f).  

Figure 2. (a)-(d) Performance comparison of each model selection criterion for various 
dimension of models and sample sizes. (e) The average success rate of model selection criterion 

for various sample sizes 

As can be seen from Figure 2 (a)-(f), there is dependency among dimension of the 
PLSR models, sample sizes and model selection criteria. AIC, BIC, and ICOMP truly 
estimate the latent variables of the underlying known PLSR models for the dimension 
5*3 and the dimension 8*4. When the sample sizes increase and the dimension of PLSR 
models isconstant, these criteria have a slight tendency to over-fit their PLSR models. 
The simulation results show that BIC and ICOMP criteria achieved selecting the true 
number of latent variables with such a rate of approximately eighty percent for all 
design matrices. Generally it can be said that, when N and the dimension of PLSR 
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models increases, PLS creates a model with a high number of latent variables, which is 
statistically significant.  
While the dimensions of the PLSR model change and the sample size is constant, 
variation in the criteria of performances is shown in Figure 3 (a)-(f). 

Figure 3. (a)-(e) Performance comparison of each model selection criterion for various 
dimensions of models for each sample size. (f) The average success rate of model selection 

criterion for various sample sizes 

In each experiment all model selection criteria is applied to test how well they can 
identify the true known PLSR model. Figure 3(a)-(f) show the success rate of each 
criterion in identifying the true model. Since the performance of every criterion can be 
affected by the sample sizes and the dimension of PLSR models, the performances of 
AIC, BIC, and ICOMP criteria in general show a similar characteristic. Especially, 
when the dimension of models is smaller than (p *a) (10* 4) , AIC, BIC, and ICOMP 
criteria have acceptable performance and almost more accurately select the latent 
variables than the Wold’s R criterion for all dimensions. As shown in Figure 3 (a)-(e), 
Wold’s R criterion does not work well for any sample size and dimension. BIC and 
ICOMP criteria perform quite well, and in general select the true number of latent 
variables for known PLSR models.  
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Results depicted in Figure 3(a)-(e) clearly show that there is a significant reduction in 
the performances of AIC, BIC, and ICOMP criteria as the dimensions of the PLSR 
model increase. However, the performance of the Wold’s R criterion almost stays the 
same but it is never satisfactory. In order to provide anoverall measure of success, the 
average success rate is calculated and shown in Figure 2(f) and Figure 3(f) for various 
sample sizes. It can be seen from this figure that on the average AIC, BIC, and ICOMP 
criteria out perform Wold’s R criterion, and BIC and ICOMP criteria success rates are 
higher than the AIC and Wold’s R criteria. 

5. CONCLUSION

The major contribution of this paper is that this study evaluating the performances of 
AIC, BIC, ICOMP, and Wold’s R criteria for model selection in PLSR, where the 
number of observations is typically much larger than the number of predictor variables. 
The aim of the analysis is to extract latent variables with respect to their partial 
contribution to total variance to build representative models of PLSR. Given this 
ranking to the latent variables, AIC, BIC, ICOMP, and Wold’s R criteria are used to 
determine a consistent estimate of the dimension of the model. In a real life data set 
AIC, BIC, ICOMP criteria truly find the number of latent variables. It seems that AIC, 
BIC and ICOMP criteria are considerably better in choosing the right model when these 
are applied to our data set. 

A simulation study is undertaken to compare the performances of AIC, BIC, ICOMP, 
and Wold’s R criteria. Synthetic data are generated for different number of sample sizes 
and different dimensions of PLSR models. The simulation studies results clearly show 
much improved performances of BIC and ICOMP criteria in comparison to AIC and 
Wold’s R criteria methods. The AIC, BIC, and ICOMP criteria properly finds latent 
variables for (p*a) < (10*4), for all sample sizes except the Wold’s R criterion.  It is 
seen from Table 7 that there is a dependency between dimension and sample size of the 
PLSR models and the success rates of the model selection criteria except for the Wold’s 
R criterion. 

In conclusion, these experiments showed that BIC and ICOMP criteria are considerably 
better than the traditional methods (AIC and Wold’s R criteria) in choosing the right 
model when it is applied to our experimental set of synthetic data. An important point to 
make is that there is a big difference between the performances of AIC, BIC, ICOMP 
for different number of observations and the dimensions of PLSR models. Thus, one 
should select the sample size and the dimensions of the experiment in advance 
depending on the success rates of the criteria given in this study.   
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KEKKR İÇİN MODEL SEÇME KRİTERLERİNİN PERFORMANS 
KARŞILAŞTIRMALARI: AIC, BIC, ICOMP ve WOLD'S R 

ÖZET 

Ksmi en küçük kareler regresyonu (KEKKR), çoklu bağlantnn olduğu 
durumlarda, yant değişkeni MNY  ile  açklayc değişkenler KNX 

arasnda modelleme yapabilen istatistiksel bir yöntemdir. Ksmi en küçük 
kareler bölümünde, yant değişkenini en iyi açklayabilecek gizli (latent) 
değişkenlerin elde edilmesi için baz model seçme kriterleri uygulanr. Gizli 
değişkenlerin seçiminde kullanlan genel yaklaşmlar Akaike bilgi kriteri 
(AIC) ve Wold’s R kriteridir. 

Bu çalşmada, gözlem saysnn açklayc değişken saysndan fazla olduğu 
durumlarda, geleneksel yöntemler AIC ve Wold’s R’a ek olarak Bayes bilgi 
kriteri (BIC) ve Bilgi karmaşklk kriteri de (ICOMP) KEKKR için model 
seçme kriterleri olarak incelenmiştir. AIC, BIC, ICOMP ve Wold’s R model 
seçme kriterlerinin performanslar gerçek veri örneği ve benzetim çalşmas 
yoluyla karşlaştrlmştr. Benzetim çalşmas sonuçlar, farkl örneklem 
büyüklükleri, farkl sayda açklayc değişken ve yant değişkeninin olduğu 
durumlarda elde edilmiştir. Yaplan benzetim çalşmas sonuçlarBIC ve 
ICOMP model seçme kriterlerinin KEKKR modelleri için, gizli değişkenin 
seçiminde diğer model seçme kriterlerinden (AICveWold’s R)  çok  daha 
etkili olduklarn ve daha doğru sayda gizli değişken seçimi yaptklarn  
göstermiştir. 

Anahtar Kelimeler: AIC, BIC ve ICOMP bilgi kriterleri, K çapraz doğrulama, Ksmi en küçük 
kareler regresyonu, Model seçimi, Wold’s R kriteri. 
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APPENDIX 

Table 1. The components of X and Y matrix for 8*4 

E 1 8[e ,...,e ] ~ N(0,0.01)E 

ir 1 2 3 4r ~N(0,10),r ~N(0,5),r ~N(0,2),r ~N(0,0.5)

iξ

]'0.4642-   0.1612-   0.4082    0.3030    0.3030-   0.4082-   0.1612    0.4642[
]'0.4082    0.4082    0.0000-   0.4082-   0.4082-   0.0000    0.4082    0.4082[
]'0.3030-   0.4642-   0.4082-   0.1612-   0.1612    0.4082    0.4642    0.3030[

]'0.1612    0.3030    0.4082    0.4642    0.4642    0.4082    0.3030    0.1612[

4

3

2

1






if 1 2 3 4f ~N(0,0.25), f ~N(0,0.125), f ~N(0,0.05), f ~N(0,0.0125)

 0.5000]'    0.0000-   0.5000-   [0.5000η
0.0000]'-   0.5774-   0.0000    0.5774 [η

0.5000]'-   0.0000    0.5000    [0.5000η
0.5000]'    0.5774    0.5000    [0.2887η

44

43

42

41






ψ 0.00010 0.00006 0.00006 0.00006
0.00006 0.00010 0.00006 0.00006
0.00006 0.00006 0.00010 0.00006
0.00006 0.00006 0.00006 0.00010

 
 
  
 
 
 

   
   

   
   

Table 2. The components of X and Y matrix for 10*4 

E 1 10[e ,...,e ] ~ N(0,0.02)E=

ir 1 2 3 4r ~ N(0, 20), r ~ N(0,10), r ~ N(0, 4), r ~ N(0,1)    

iξ 1

2

[0.4458 0.4349 0.4132 0.3813 0.3401 0.2904 0.2337 0.1711 0.1044 0.0351]'
[0.4349 0.3401 0.1711 - 0.0351 - 0.2337 - 0.3813 - 0.4458 - 0.4132 - 0.290

 
 

                                             
                          

3

4

4 - 0.1044]'
[0.4132 0.1711 - 0.1711 - 0.4132 - 0.4132 - 0.1711 0.1711 0.4132 0.4132 0.1711]'
[0.3813 - 0.0351 - 0.4132 - 0.3401 0.1044 0.4349 0.2904 - 0.1711

 
 

  
                                    
                          - 0.4458 - 0.2337]'     

if 1 2 3 4f ~ N(0,0.5), f ~ N(0,0.25), f ~ N(0,0.1), f ~ N(0,0.025)   

*iA
η 41

42

43

44

[0.6935 0.5879 0.3928 0.1379]'
[0.5879 - 0.1379 - 0.6935 - 0.3928]'
[0.3928 - 0.6935 0.1379 0.5879]'
[0.1379 - 0.3928 0.5879 - 0.6935]'

 
 
 
 

            
       
           
          

ψ 0.00010 0.00006 0.00006 0.00006
0.00006 0.00010 0.00006 0.00006
0.00006 0.00006 0.00010 0.00006
0.00006 0.00006 0.00006 0.00010

 
 
  
 
 
 

   
    
   
   



TÜİK, İstatistik Araştırma Dergisi, Aralık 2013
TurkStat, Journal of Statistical Research, December 2013

33

  Performance Comparisons of Model Selection KEKKR için Model Seçme Kriterlerinin Performans 
 Criteria: AIC, BIC, ICOMP and Wold’s R for PLSR Karşılaştırmaları: AIC, BIC, ICOMP ve Wold’s R

Table 3. The components of X and Y matrix for 15*5 

E 1 15[e ,...,e ] ~ N(0,0.02)E=

ir 1 2 3 4 5r ~ N(0,20), r ~ N(0,10), r ~ N(0,5), r ~ N(0,3.5), r ~ N(0,0.8)    

iξ

1(1,...,10)

1(11,...,15)

2(1,...,10)

ξ =[0.3646    0.3607    0.3527    0.3409    0.3253    0.3062    0.2838    0.2582    0.2298    0.1989]'

ξ =[0.1658     0.1309    0.0945    0.0571    0.0191]'

ξ [0.3607    

2(11,...,15)

3(1,...,10)

0.3253    0.2582    0.1658    0.0571   -0.0571   -0.1658   -0.2582   -0.3253   -0.3607]'

ξ [-0.3607    -0.3253   -0.2582   -0.1658   -0.0571]'

[0.3527    0.2582    0.0945   -0.0



 

3(11,...,15)

4(1,...,10)

945   -0.2582   -0.3527   -0.3527   -0.2582   -0.0945    0.0945]'

[0.2582      0.3527    0.3527    0.2582    0.0945]'

[0.3409    0.1658   -0.0945   -0.3062   -0.3607   -0.2298

 

 

4(11,...,15)

5(1,...,10)

 0.0191    0.2582    0.3646  0.2838]'

[0.0571     -0.1989   -0.3527   -0.3253   -0.1309]'

[0.3253    0.0571   -0.2582   -0.3607   -0.1658    0.1658    0.3607    0.2582   

 

 

5(11,...,15)

-0.0571   -0.3253]'

[-0.3253     -0.0571    0.2582    0.3607    0.1658]' 

if 1 2 3 4 5f ~ N(0,0.05), f ~ N(0,0.025), f ~ N(0,0.0125), f ~ N(0,0.05), f ~ N(0,0.0125)    

*iA
η 51

52

53

54

[0.6247 0.5635 0.4472 0.2871 0.0989]'
[0.5635 0.0989 - 0.4472 - 0.6247 - 0.2871]'
[0.4472 - 0.4472 - 0.4472 0.4472 0.4472]'
[ 0.2871 - 0.6247 0.4472 0.098

 
 
 
 

                
             
              

            

55

9 - 0.5635]'
[ 0.0989 - 0.2871 0.4472 - 0.5635 0.6247]' 

   
               

ψ 0.00010 0.00006 0.00006 0.00006 0.00006
0.00006 0.00010 0.00006 0.00006 0.00006
0.00006 0.00006 0.00010 0.00006 0.00006
0.00006 0.00006 0.00006 0.00010 0.00006
0.00006 0.00006 0.00006 0.00006 0.00010




 



    
    
    
    
    




 
 
 
 
 





TÜİK, İstatistik Araştırma Dergisi, Aralık 2013
TurkStat, Journal of Statistical Research, December 2013

34

Özlem GÜRÜNLÜ ALMA

Table 4. The components of  X and Y matrix for 20*5 

E 1 20[e ,...,e ] ~ N(0,0.02)E=

ir 1 2 3 4 5r ~ N(0,30), r ~ N(0, 20), r ~ N(0,10), r ~ N(0,6), r ~ N(0,3)    

iξ

1(1,...,10)

1(11,...,20)

ξ =[0.3160    0.3140    0.3102    0.3044    0.2967    0.2872    0.2759    0.2629    0.2483    0.2322

ξ =[0.2147     0.1958    0.1757    0.1545    0.1324    0.1095    0.0858    0

2(1,...,10)

2(11,...,20)

.0617    0.0372    0.012

ξ [0.3140    0.2967    0.2629    0.2147    0.1545    0.0858    0.0124   -0.0617   -0.1324   -0.195

ξ [-0.2483    -0.2872   -0.3102   -0.3160   -0.





3(1,...,10)

3(11,...,20)

3044   -0.2759   -0.2322   -0.1757   -0.1095   -0.

[0.3102    0.2629    0.1757    0.0617   -0.0617   -0.1757   -0.2629   -0.3102   -0.3102   -0.262

[-0.1757    -0.061

 

 

4(1,...,10)

4(11

7    0.0617    0.1757    0.2629  0.3102    0.3102    0.2629    0.1757    0.0

[0.3044    0.2147    0.0617   -0.1095   -0.2483   -0.3140   -0.2872   -0.1757   -0.0124    0.154 

 ,...,20)

5(1,...,10)

[0.2759     0.3160    0.2629    0.1324   -0.0372   -0.1958   -0.2967   -0.3102   -0.2322   -0.0

[0.2872    0.0858   -0.1757   -0.3140   -0.2322    0.0124    0.2483    0.3102 



 

5(11,...,20)

   0.1545   -0.109

[-0.2967    -0.2759   -0.0617    0.1958    0.3160    0.2147   -0.0372   -0.2629   -0.3044   -0.1 

if 1 2 3 4 5f ~ N(0,0.4), f ~ N(0,0.1), f ~ N(0,0.5), f ~ N(0,0.02), f ~ N(0,0.00125)    

*iA
η 51

52

53

54

[0.4472 0.4472 0.4472 0.4472 0.4472]'
[0.4472 0.5635 - 0.0989 - 0.6247 - 0.2871]'
[ 0.4472 - 0.0989 - 0.2871 0.5635 - 0.6247]'
[0.4472 - 0.6247 0.5635 - 0.287

 

 

 

 

                
             

              
          

55

1 - 0.0989]'
[0.4472 - 0.2871 - 0.6247 - 0.0989 0.5635]' 

   
             

ψ 0.00010 0.00006 0.00006 0.00006 0.00006
0.00006 0.00010 0.00006 0.00006 0.00006
0.00006 0.00006 0.00010 0.00006 0.00006
0.00006 0.00006 0.00006 0.00010 0.00006
0.00006 0.00006 0.00006 0.00006 0.00010




 



    
    
    
    
    




 
 
 
 
 






