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Keyframe Extraction Using Linear Rotation Invariant Coordinates 
 

 

Hasan MUTLU*1, Ufuk ÇELİKCAN1 

 

 

Abstract 

 

Keyframe extraction is a widely applied remedy for issues faced with 3D motion capture -based 

computer animation. In this paper, we propose a novel keyframe extraction method, where the 

motion is represented in linear rotation invariant coordinates and the dimensions covering 95% of 

the data are automatically selected using principal component analysis. Then, by K-means 

classification, the summarized data is clustered and a keyframe is extracted from each cluster based 

on cosine similarity. To validate the method, an online user study was conducted. The results of 

the user study show that 45% of the participants preferred the keyframes extracted using the 

proposed method, outperforming the alternative by 6%. 

 

Keywords: Keyframe extraction, linear rotation invariant coordinates, motion data summarization 

 

 

 

1. INTRODUCTION 

 
In today's world, motion capture technology is 

used in many areas, especially in movies and 

video games. At the same time, editing and 

transmission of motion capture data are still 

difficult due to large data sizes. Hence, 

representing motion capture data compactly 

continues to be a vital consideration of 

research. 

  

Skeletal animation is the most effective and 

commonly used technique of exploiting motion 

capture data. Skeletal animation consists of two 

parts, a mesh and a hierarchical set of bones. 

The mesh part contains surface (skin) 

information of the character to be rendered, 
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while animation is realized with the spatio-

temporal information by the latter. As skeletal 

animation is performed, the technique fills the 

gap between two keyframes with interpolation 

on the timeline. Although skeletal animation 

provides a solution to represent motions 

compactly, frame counts remain 

problematically large for processing, storing 

and editing. As a remedy, keyframe extraction 

has been a widely applied solution for issues 

faced in motion capture -based skeletal 

animation.  

  

A keyframe extraction method must be capable 

of sorting out significant keyframes from the 

others. Also, to improve the success rate of the 

solution, deriving the characteristics of vertices 
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concerning both the vertex itself and its 

neighbor vertices is important. For these 

reasons, we argue that representing vertices of 

joints in alternative coordinate systems and 

processing the motion data accordingly can 

provide a better solution. 

 

In this article, we propose a novel keyframe 

extraction approach. In our approach, we 

represent the joints in the frames with linear 

rotation invariant (LRI) coordinates [1], apply 

principal component analysis (PCA) [2] to 

reduce the data dimension and extract summary 

data of each keyframe. Then, we divide them 

into clusters with the K-means algorithm [3] 

and select keyframes according to cosine 

similarity concerning adjacent keyframes. 

Also, we examine the performance effect of 

LRI transformation on our method against 

using regular Cartesian coordinates without 

LRI. 

  

The structure of this paper is as follows: Section 

2 gives a review of prior work on the subject 

matter. After that, we detail our solution and 

provide experimental results collected with our 

online user study in Sections 3 and 4, 

respectively. Finally, Section 5 concludes the 

paper. 

 

2. RELATED WORK 

 
There have been a number of different 

approaches for keyframe extraction. These 

previous methods either convert the motion 

data into various spaces, use motion/frame data 

as trajectory/motion curves, apply clustering 

algorithms, handle a matrix factorization 

problem, or solve a kind of machine learning 

problem with a genetic algorithm. 

  

Representing skeletal animations in different 

spaces can provide the facility to determine the 

difference between frames. The method by 

Kapadia et al. [4] indexes the motion data in a 

trie-based structure according to structural, 

geometrically, and dynamic features. This trie-

based structure contains most salience 

keyframes of the animation. Jin et al.'s method 

[5] focuses on determining the saliency of the 

frames. The method computes the saliency of 

each frame and selects groups from these 

frames. After this step, the solution uses a non-

linear dimension reduction algorithm and 

extracts keyframes. The method proposed by 

Voulodimos et al. [6] creates physics-based 

temporal summaries and determines different 

keyframes, while Sapinski et al.'s method [7] 

defines a new representation using the spatial 

location and orientation of the keyframe joints 

and selects keyframes from this representation. 

Xia et al. [8] defines a joint kernel sparse 

representation, and the algorithm determines 

the sparseness of the frames and then decides 

keyframes according to the calculated 

sparseness value. Choensawat et al. [9] 

introduced an algorithm named GENLABAN 

by which they calculate a score for each frame 

by analyzing body motion, body postures, and 

weight of the body parts. With these scores, the 

algorithm extracts keyframes. 

  

Solutions based on trajectory or motion curves 

convert skeletal animation to a curve and then 

apply their algorithms to this curve. Miura et al. 

[10] combines curve-simplification and 

Bayesian information criterion to extract 

keyframes from given motion capture data. 

After the algorithm generates the motion curve, 

the method divides the curve into two segments 

at the point most distant from the straight line 

connecting the endpoints. For the calculated 

error between the curve and simplified line, the 

method uses the Bayesian information criterion 

to select keyframes. Bulut and Capin [11] 

defined a metric named curve saliency. The 

solution detects salient parts of the curve and 

uses Gaussian weighted average value 

distribution to select keyframes. In the method 

by Togawa and Okuda [12], after the joints in 

the animation are converted into curves, the 

algorithm calculates the cost value for all 

frames and conducts elimination of frames 
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accordingly. These steps repeat until the most 

important keyframes remain. The algorithm by 

Yang et al. [13] applies Butterworth filtering 

and PCA to the input data and then selects 

keyframes with zero-crossing points of 

velocity. Zhang et al.'s method [14] creates 

motion curves from the amplitudes of motion of 

joints, applies PCA, defines a distance 

characteristic curve, and eventually uses this 

curve to extract keyframes. The method 

proposed by Halit and Capin [15] defined a 

metric named 'motion saliency'. With this 

metric, their method analyzes the motion curve 

of the animation and extracts keyframes. 

  

In contrast, clustering-based approaches 

convert skeletal animation into a different 

dimension and handle the task as a type of 

shortest-path problem. One such method by 

Roberts et al. [16] simplifies the motion frames 

by around 10% while retaining most of its 

detail. The method considers each frame as a 

node in a weighted graph and calculates the 

weights of the graph with the perpendicular 

distance between joint positions in each node 

(frame). After these calculations, the algorithm 

selects the nearest N keyframes according to 

weights. Sun et al.'s method [17] defines the 

inter-frame similarity metric based on a group 

of motion joints and uses affine propagation 

clustering to extract keyframes. Qiang Zhang et 

al.'s method [18] uses an unsupervised 

clustering algorithm to divide frames into two 

classes by similarity distances and, in the last 

step, uses dynamic clustering ISODATA to 

centralize similar frames and eliminate them. 

  

Matrix factorization solutions represent given 

skeletal animation data as matrices. The 

algorithm by Huang et al. [19] provides a 

solution handled as a constrained matrix 

factorization problem with a least-squares 

optimization technique. This method represents 

the animation as matrices that contain key 

weights and non-keyframe weights. The 

algorithm uses these two matrices to extract 

keyframes according to user-specified error 

tolerance iteratively. 

  

Machine learning solutions often use genetic 

algorithms to determine keyframes from the 

animation data. For instance, the method by 

Zhang et al. [20] uses a multiple-population-

based genetic algorithm and defines a fitness 

method to meet minimizing the reconstruction 

error to select keyframes. Liu et al.'s method 

[21] uses genetic optimization algorithms and 

calculates the sparseness of the frames for 

determining keyframes. 

 

3. METHOD 

 
Although our method uses a clustering 

approach, unlike other solutions, it applies LRI 

and PCA methods before the clustering process. 

Applying LRI and PCA algorithms summarizes 

the characteristic information of each 

keyframe. Also, our solution makes use of the 

cosine similarity measure to estimate similarity 

between summarized keyframes.  

     

Our proposed method consists of two main 

steps. The first step comprises representing 

skeletal motion frames in LRI local frames and 

dimension reduction by applying PCA. At the 

end of the first step, we get summarized data for 

each frame in the motion data. For the second 

step, we divide obtained data from the first step 

into clusters with the K-means algorithm. Then 

we use cosine similarity to determine the 

selected keyframe for each cluster. 

  

In the following,𝐴 = (𝐹1,𝐹2,, 𝐹3,, … , 𝐹𝑘) defines 

a skeletal motion where k is the keyframe count 

of the motion and F defines a keyframe of a 

skeletal motion such that 𝐹𝑖 = (𝑗1, 𝑗2, 𝑗3 … , 𝑗𝑛), 

𝑗𝑛∈ 𝑅3 where n is the number of joints j in the 

skeleton model so that 𝐹𝑖 defines the set of joint 

positions for the ith keyframe of the given 

motion. 
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As mentioned above, our solution O(A) outputs 

(𝐶1
1, 𝐶2

1, 𝐶3
1, 𝐶𝑛

1, 𝐶1
2, 𝐶2

2, 𝐶3
2, … , 𝐶𝑛2

2 , … , 𝐶𝑛𝑚
𝑚 ) 

where O applies LRI, PCA, and K-means 

algorithms, respectively over A. C defines a 

cluster in the result that contains summarized 

data for each keyframe in the same order after 

applied LRI conversion and PCA algorithm. m 

is the total number of clusters. 𝑛𝑖 is the element 

count of the 𝑖𝑡ℎ cluster. Accordingly, 𝑛𝑚 is the 

element count of the related extracted cluster. 

  

After obtaining clusters from the first step, we 

use cosine similarity S as a measure of detecting 

similarity between two summarized keyframes 

for the clusters of summarized keyframes as 

follows. 

 

𝑆(𝑋, 𝑌)  =  
∑ 𝑋𝑛

3
𝑛=1  × 𝑌𝑛

√∑ 𝑋𝑛
23

𝑛=1 ×√∑ 𝑌𝑛
23

𝑛=1

                        (1)                                    

 

Our algorithm selects a keyframe from the 

obtained cluster iteratively. To accomplish that, 

we define two vectors for each iteration. The 

first vector is the difference between the 

candidate summarized frame data and the 

previous one. The second vector is the 

difference between the next one and the 

candidate summarized frame data. With these 

two vectors, our algorithm gathers information 

about the motion changes. If these vectors are 

similar, that means these frames are also 

similar. For this reason, initially, the algorithm 

determines the second summarized keyframe 

𝐶𝑚
2  as the first candidate keyframe where m is 

the iterating cluster in the algorithm and 

calculates two vectors using that. The first one 

of these is 𝑣1 = 𝐶𝑚
𝑖 − 𝐶𝑚

𝑖−1 where i is the 

iterating (candidate) summarized keyframe. 

The equation gives the difference between the 

candidate summarized keyframe and the 

previous one. The second one 𝑣2 = 𝐶𝑚
𝑖+1 − 𝐶𝑚

𝑖  

is the difference between next one and 

candidate summarized keyframe. With these 

two vectors, the first similarity value σ 

initialized by using the Equation 1 above as 

 

𝜎 = 𝑆(𝑣1, 𝑣2)                                                               (2) 

 

and the selected pose sp is initialized as 2. 

 

After this initialization, σ will be updated when 

the new similarity in the processed iteration is 

less than the current value. The algorithm tries 

to find the keyframe that has the least similarity 

with the rest iteratively, as follows. 

 
(𝑠𝑝, 𝜎) =

{
𝑠𝑝 = 𝑖, 𝜎 = 𝑆(𝑉𝑖−1

𝑐 , 𝑉𝑖+1
𝑐 ), 𝑖𝑓 𝑆(𝑉𝑖−1

𝑐 , 𝑉𝑖+1
𝑐 ) ≤ 𝜎

𝑟𝑒𝑠𝑢𝑚𝑒              , 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
}             

                                                                      (3) 

 

In this equation, 𝑉𝑖−1
𝑐  defines the vector 

difference between the current summarized 

keyframe in the iteration and the previous one 

in the cluster c. Similarly, 𝑉𝑖+1
𝑐  defines the 

vector difference between the current 

summarized keyframe in the iteration and the 

next one in the related cluster c. 

 

3.1. Representing Motion as LRI Local 

Frames 

 

As a representation, LRI defines a separate 

local frame for each vertex, where the discrete 

forms encode the relationship and change 

between adjacent local frames. A local frame 

contains all characteristic properties of the 

vertex it belongs to and encodes properties 

relative to the neighboring vertices. 

  

LRI defines two discrete forms. The first 

discrete form is for the projections of the 

neighboring vertices into the tangent plane of 

the vertex. It also denotes lengths of the 

projected edges on the tangent plane and signed 

angles between every two adjacent projected 

edges. The first discrete form provides 

invariability for positions of vertices, but it 

lacks information in the normal direction of 

neighboring vertices. For this reason, LRI also 

provides a second discrete form. The second 

discrete form can be considered as a function 

that defines height distances from vertex to 
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tangent plane. LRI calculates unit vectors as the 

differences of these discrete forms of neighbor 

vertices. In the last step, LRI uses only the 

coefficients of this calculation to represent 

meshes. 

  

The critical feature of the LRI representation is 

that the vertices of a given mesh are represented 

in relative coordinates using these specified 

local frames. Because this relative definition 

contains no global information about the mesh's 

location or orientation, it also ensures 

invariance under rigid transformations. 

 

For the discrete equations, vertices are denoted 

by 𝑥𝑖, their corresponding positions in 𝑅3 are 

denoted by �̂�𝑖. The edge towards the 𝑘𝑡ℎ 

neighbor of i is 𝑥𝑘
𝑖 . Mesh edges in 𝑅3 are 

denoted by �̂�𝑘
𝑖 , and their projection onto the 

tangent plane by �̃�𝑘
𝑖 . Each vertex and their 

neighboring vertices are parameterized as 𝑈𝑖 

and triangles are denoted by △k
i  for defined set 

Ui consisting of vertices 𝑥𝑖, 𝑥𝑘
𝑖  and 𝑥𝑘+1

𝑖 . The 

first discrete form uses the standard inner 

product of triangles corresponding in the 

tangent plane 𝑇𝑖𝑀. Let μ = μ1𝑥𝑘
𝑖 + μ2𝑥𝑘+1

𝑖  be 

a vector in △𝑘
𝑖 . Here, μ1 and μ2 are the vector 

components of the defined triangle. According 

to this equation, μ becomes the diagonal vector 

of the triangle. 

 

 
Figure 1 Representing 1-ring neighborhood mesh 

and tangent plane 

 

The first discrete form equation is given as 

 

𝐼(. ): ⋃ △𝑘
𝑖

𝑑𝑖−1

𝑘1

→ 𝑅.                                                                   (4) 

 

where 

 

𝐼(μ) = ⟨μ, μ⟩𝑅𝟛 = ⟨μ1𝑥𝑘
�̃� + μ2𝑥𝑘+1

�̃� , μ1𝑥𝑘
�̃� +

μ2𝑥𝑘+1
�̃� ⟩

𝑅𝟛 = μ1
2𝑔𝑘,𝑘

�̃� + 2μ1μ2𝑔𝑘,𝑘+1
�̃� +

μ2
2𝑔𝑘+1,𝑘+1

𝑖̃                              

                                                                      (5)    

 

and the second discrete form equation is given 

as 

 

𝐼�̃�(. ): ⋃ △𝑘
𝑖

𝑑𝑖−1

𝑘1

→ 𝑅.                                                                    (6) 

 

where 

 

𝐼𝐼�̃�(μ) ≔ μ1⟨𝑥𝑘
�̂� , 𝑁𝑖⟩

𝑅𝟛 + μ2⟨𝑥𝑘+1
�̂� , 𝑁𝑖⟩

𝑅𝟛 =

μ1𝐿𝑘
�̃� + μ2𝐿𝑘+1

�̃�                                                    (7)                                                                            

 

in which the coefficients �̃� = ⟨𝑥𝑘
�̃� , 𝑁𝑖⟩

𝑅𝟛 and 𝑁𝑖 

is the normal of the vertex i in the tangent plane. 

LRI defines the local frame with a triplet 

𝑏1
𝑖 , 𝑏2

𝑖 , 𝑁𝑖 using these two discrete forms, where 

𝑏1
𝑖 ∈ 𝑇𝑖𝑀 is a unit vector parallel to 𝑥1

�̃� , 𝑏2
𝑖  is a 

unit vector orthogonal to 𝑥1
�̃�  and δ is the 

difference operator on the discrete frame 

vectors: 

 

δ𝑗(𝑏1
𝑖 ) = 𝑏1

𝑗
− 𝑏1

𝑖                                                (8) 

δ𝑗(𝑏2
𝑖 ) = 𝑏2

𝑗
− 𝑏2

𝑖                                                (9)              

δ𝑗(𝑁𝑖) = 𝑁𝑗 − 𝑁𝑖                                           (10) 

 

Finally, the discrete local frame equations 

 

δ𝑗(𝑏1
𝑖 ) = Γ𝑗,1

𝑖,1𝑏1
𝑖 + Γ𝑗,1

𝑖,2𝑏2
𝑖 + 𝐴𝑗,1

1 𝑁𝑖              (11) 

δ𝑗(𝑏2
𝑖 ) = Γ𝑗,2

𝑖,1𝑏1
𝑖 + Γ𝑗,2

𝑖,2𝑏2
𝑖 + 𝐴𝑗,2

1 𝑁𝑖               (12) 

δ𝑗(𝑁𝑖) = Γ𝑗,3
𝑖,1𝑏1

𝑖 + Γ𝑗,3
𝑖,2𝑏2

𝑖 + 𝐴𝑗,3
1 𝑁𝑖              (13) 
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As previously stated, LRI representation 

defines local frames that filter out global 

positions and rotations from the mesh. We use 

these local frames in our solution.  Since the 

LRI method is defined for meshes, in the first 

step of our solution, we transform skeleton data 

for each frame into a 1-ring neighborhood 

mesh. We assume that each joint position of the 

skeleton data is a vertex of a 1-ring 

neighborhood mesh (see Figure 1). After that, 

we apply LRI to this assumed mesh to extract 

LRI local frames for each vertex. LRI local 

frames are a matrix that consists of 9 values and 

encode characteristic properties of the related 

vertex and relation between neighborhood 

vertices. We construct a matrix whose 

dimension is 9 times the total number of 

employed joints for each keyframe. Although 

the extracted local frames are enough to detect 

similarity between adjacent vertices, we apply 

dimension reduction by PCA to all keyframe 

matrices. This way, PCA provides to eliminate 

the sparse density of the matrices, improving 

the performance of selecting keyframes 

computing and obtaining more meaningful data 

(Figure 2) 

 

In the dimension reduction step, instead of 

representing LRI data in fixed number of 

dimensions, our algorithm uses representations 

of dynamically changing dimensions. This 

implies that the dimensionality adapts to the 

given motion. This is carried out according to 

principles of the PCA method with the 

condition that the sum of them explains the 

given LRI data with at least 95% accuracy. Our 

tests show that between 4 and 12 dimensions 

are sufficient to explain LRI data with at least 

95% accuracy, in general. After these steps, the 

processed data can be used for extraction and 

reduction operations. 

 

 
Figure 2 Skeleton data representation as a 1-ring 

neighborhood mesh 

 

3.2. Clustering and Reducing Keyframes 

 

Our approach uses the K-means classification 

algorithm for clustering and cosine similarity to 

measure similarity between keyframes. Firstly, 

we apply the K-means clustering algorithm to 

the dimensionally reduced the data (Figures 3 

and 4). Our method dynamically clusters up to 

the desired number of keyframes and calculates 

the cosine similarity between sequential 

candidate keyframe changes. Thus, our method 

selects a keyframe that has the minimum 

similarity value relative to the rest of the cluster 

values for each cluster. As a result, the most 

different keyframes are selected. 
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Figure 3 Motion data representation after LRI 

and PCA steps are applied. The graph shows 

the distribution of the frames in the motion in 

3D space 

 

 
Figure 4 Clustering result of the motion after 

K-Means applied. This graph contains the 

distribution of the motion as divided into 5 

clusters. Each color (yellow, blue, gold, green, 

and purple) in the graph represents a distinct 

cluster. Accordingly, one keyframe for each 

cluster will be extracted 

 

4. RESULTS 

 
In this study, we used the HDM05 dataset for 

testing and evaluation of our proposed method. 

HDM05 is a royalty-free motion capture dataset 

created by Müller et al. [22]. It features more 

than 70 motion classes in ten to fifty 

realizations performed by a variety of 

performers. The sampling rate of performances 

in the dataset is 120 Hz. For evaluation, we 

selected 10 relatively short motions (Table 1) 

from the dataset and used our method to extract 

five keyframes from each motion. Figure 5 

demonstrates sample sets of keyframes 

extracted from three of these motions using our 

proposed method. 

 

Furthermore, as our study results can be 

subjective, we prepared a website to survey 

subjective performance evaluations of the 

participants comparing the results obtained by 

our method using LRI representations to the 

ones without. The survey included the ten pre-

selected motions under consideration with two 

sets of five extracted keyframes for each 

motion, one set including the results of our 

method and the other including the results 

obtained using the standard Cartesian 

coordinate representation. Figures 6 and 7 

demonstrate sample results for cartwheel and 

punch motions in both representations. 

 

 
Figure 5 Sample sets of keyframes extracted 

using our method. Each row illustrates a set of 

5 keyframes extracted from jumping, squat 

and knee to elbows motions, respectively 
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With the survey, only the gender and age 

information were collected from the 

participants, remaining otherwise anonymous. 

All participants volunteered to take the online 

survey and none of them have been 

compensated in any way. 

 

 
Figure 6 Extracted keyframes from cartwheel 

motion 

 

 
Figure 7 Extracted keyframes from punch 

motion 

 

 

 

 

 

 

 

 

 

Table 1 The motions used in the experiment 

and their corresponding frame counts 

# Motion Frame 

Count 

1 Cartwheel 401 

2 Elbow to Knee 319 

3 Jump Down 272 

4 Jumping Jack 142 

5 Kick 295 

6 Lie Down 621 

7 Punch 115 

8 Squat 191 

9 Throw Basketball 452 

10 Throw Ball 427 

 

The survey procedure took place as follows. 

When a participant visited our online survey 

website, they were first briefly informed about 

the study and their gender and age information 

were collected at this step (Figure 8). Then, the 

participant started the evaluation of the results. 

For each motion queried, the participant 

initially watched the motion in a skeletal 

animation twice as given in Figure 9. Next, each 

set of extracted keyframes from the original 

motion were shown to the participant where the 

order of the two sets were randomized (Figure 

11). Afterwards, the participant watched the 

original motion with the sets of extracted 

keyframes shown flanking the original motion 

on each side as in Figure 12 so that the 

participant could further assess the differences 

between the two sets of results. On this page, 

the participant responded by choosing either of 

the sets as the best representation of the original 

motion or 'none' if no significant difference was 

observed. This is repeated until the participant 

registered their responses for all 10 motions. 
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Figure 8 Test step where a participant is 

informed about the study and reports their 

gender and age 

 

 
Figure 9 Sample preview of an original motion 

as shown to the participants with the online 

survey interface 

 

 
Figure 10 Distribution of participants' preferences per each motion queried. The order of the 

motions in the figure is the same as in Table 1 

 

 

 
Figure 11 Sample instance where the 

participant is shown one of the extracted 

keyframes with the online survey interface 

 

 

 

 
Figure 12 Sample preview of the online survey 

instance where an original motion is shown to 

the participant with extracted keyframes of the 

two alternatives shown consecutively on each 

side of it 

 

A total of 30 people, 12 female (40%) and 18 

male (60%), participated in this study. The 

average age of the participants was 28 ± 3.14. 

Evaluation results are provided in Figures 10 

and 13. Figure 10 gives participants' 

preferences for each motion, while Figure 13 

Hasan MUTLU, Ufuk ÇELİKCAN

Keyframe Extraction Using Linear Rotation Invariant Coordinates

Sakarya University Journal of Science 26(5), 2040-2051, 2022 2048



gives the overall distribution of all participants' 

preferences.  

 

The survey outcomes per motion as shown in 

Figure 10 demonstrate that the participants 

preferred mostly the sets of keyframes 

extracted using the Cartesian coordinate system 

representation for the first four motions under 

consideration. However, the keyframes 

obtained using the LRI representation were 

preferred by more participants for the 

remaining six motions. Over the whole set of 10 

motion queries, the average preference ratio of 

the LRI results was 13.6% (±4%) while the 

average for the alternative was 11.6% 

(±3.64%).  

 

The aggregated preference results given in 

Figure 13 show that the participants preferred 

the keyframes extracted by our proposed 

approach more than the standard alternative by 

6% in general while 16% of the votes indicated 

no preference. 

 

 
Figure 8 Overall distribution of all participants' 

preferences collected with the online survey 

 

 

5. CONCLUSION 

 
We have presented a keyframe extraction 

method based on LRI coordinates 

representation and evaluated the method's 

performance against the ones based on 

Cartesian coordinates. Our study results 

underline the potential of LRI for keyframe 

extraction such that using our solution based on 

it outperforms the standard representation with 

a slightly better performance (6%). 

           

This work shows that representing animation 

keyframes using alternative representations, 

such as LRI, can provide better extraction 

performance for skeletal animations. For future 

work, it is possible to combine our LRI based 

approach with deep learning methods such as 

using transformer networks. Our method can 

use different similarity measures rather than the 

cosine similarity or it can be combined with 

other keyframe extraction methods such as 

curve simplification or matrix factorization 

approaches towards achieving better 

performance. Our proposed method can be used 

for keyframe reduction and compression 

purposes, as well. 
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