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ABSTRACT

We study null hypersurfaces of indefinite Kähler manifolds and by taking the advantages of the
almost complex structure J , we select a suitable rigging ζ, which we call the J−rigging, on the
null hypersurface. This suitable rigging enables us to build an associated Hermitian metric ğ on
the ambient space and which is restricted into a non-degenerated metric g̃ on the normalized null
hypersurface. We derive Gauss-Weingarten type formulae for null hypersurface M of an indefinite
Kähler manifold M with a fixed closed Killing J−rigging for M . Later, we establish some relations
linking the curvatures, null sectional curvatures, Ricci curvatures, scalar curvatures etc. of the
ambient manifold and normalized null hypersurface.
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1. Introduction

The geometry of non-degenerate submanifolds of semi-Riemannian manifolds has many similarities with
Riemannian submanifolds, see [8]. However, when the induced metric on a submanifold is degenerate then its
geometry is remarkably difficult and different as the known techniques result in a failure.

In [3], Bejancu and Duggal initiated the general study of arbitrary null submanifolds of semi-Riemannian
manifolds. To overcome the anomaly due to the degeneracy of the induced metric, their approach consists
in fixing geometric data formed by a null section and a screen distribution (or equivalently by a null section
and a null transversal section) on a null hypersurface. This technique, even if it has great success, has the
disadvantage to depend on two independent and arbitrary choices and seems not appropriate to study intrinsic
geometry of the null hypersurfaces.

Gutierrez and Olea [6] presented a rigging technique to study the geometry of null hypersurfaces in
Lorentzian spaces (see [1, 7, 11] for further works). The major advantages of rigging technique on null
hypersurface are that it allows the construction of a Riemannian metric on the null hypersurface and the
geometric data depends on a rigging vector field ζ. Thus, the geometry of null hypersurfaces can be handled
with Riemannian structure coupled with rigging vector field, that is, can be studied using the well known
Riemannian geometry. Recently, we studied null hypersurfaces of a Lorentzian manifold with a closed
rigging for the hypersurface and derived inequalities involving Ricci tensors, scalar curvature, squared mean
curvatures for a null hypersurface in [10].

In the present paper, we extend the concept of the rigging technique from a null hypersurface of Lorentzian
manifolds to a null hypersurface of indefinite almost Hermitian manifolds. In Section 2, we recall basic facts
about null hypersurfaces of semi-Riemannian manifolds to fix up the terminology. We construct an associated
Hermitian metric ğ on an indefinite almost Hermitian manifold with a fixed J−rigging ζ and then derive an
induce non-degenerate J−rigged metric g̃ on its normalized null hypersurface in Section 3. Further, since the
structures (g, J) and (ğ, J) are not simultaneous Kählerian (Theorem 3.2), we obtain a non-existence result for
globally defined closed Killing transverse vector field in a neighborhood of the null hypersurface (Theorem
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3.3). We derive some fundamental formulas and equations for the rigged connection ∇̃ of the non-degenerate
J−rigged metric g̃ in Theorem 3.6. The Levi-Civita connections ∇ and ∇̃ of g and g̃, respectively are linked
in Proposition 3.1. In Section 4, curvature relations and symmetries including sectional curvatures and null
sectional curvatures with respect to induced degenerate metric g and induced non-degenerate J−rigged metric
g̃ are established. Finally in Section 5, we obtain a condition for a null hypersurface of an indefinite Kähler
manifold with fixed J−rigging ζ to be a locally product manifold (Theorem 5.2).

2. Geometry of null hypersurfaces

Let M be a hypersurface of an (m+ 2)−dimensional semi-Riemannian manifold (M, g) of index q ∈
{1, . . . ,m+ 1}. Contrary to classical theory of non-degenerate hypersurfaces, the hypersurface M is said to
be a null (lightlike) hypersurface of M if the normal vector bundle TM⊥ of M is a rank one subbundle of
the tangent bundle TM of M . Then, there exists a non-degenerate complementary vector bundle S(TM) of
TM⊥ in TM , called the screen distribution of M such that TM = S(TM)⊕orth TM⊥, where ⊕orth denotes the
orthogonal direct sum. Let ξ be any null section of TM⊥ on a coordinate neighborhood U ⊂ M then there exists
a unique null section N , called the null transversal vector field of M , of a unique vector bundle tr(TM), called
the transversal vector bundle of M , of rank 1 in S(TM)⊥ satisfying g(ξ,N) = 1, g(N,N) = 0 and g(N,X) = 0,
for any X ∈ Γ(S(TM)). Thus, TM of M is decomposed as TM |M= TM ⊕ tr(TM) = {TM⊥ ⊕ tr(TM)} ⊕orth

S(TM). Since TM⊥ ⊕ tr(TM) is a Lorentz plane, then g restricted to S(TM) is non-degenerate with index q − 1.
Let ∇ be the Levi-Civita connection of M with respect to g and P be the projection morphism of Γ(TM) onto

Γ(S(TM)). Then local Gauss and Weingarten formulae are given by

∇XY = ∇XY +B(X,Y )N (2.1)

∇XN = −ANX + τ(X)N (2.2)

∇XPY = ∇⋆
XPY + C(X,PY )ξ (2.3)

∇Xξ = −A⋆
ξX − τ(X)ξ (2.4)

for any X,Y ∈ Γ(TM) and N ∈ Γ(tr(TM)), where ∇ and ∇⋆ are the induced liner connections on M and
S(TM), respectively. B and C are the local second fundamental forms on TM and S(TM), respectively.
AN and A⋆

ξ are the shape operators of TM and S(TM), respectively and τ is a 1-form on TM , defined by
τ(X) = g(∇XN, ξ), (for details, see [4]). The local second fundamental forms B and C are related to their shape
operators as

B(X,Y ) = g(A⋆
ξX,Y ), g(A⋆

ξX,N) = 0, (2.5)

C(X,PY ) = g(ANX,PY ), g(ANX,N) = 0. (2.6)

Furthermore, it should be noted that the local second fundamental form B is symmetric and independent of
the choice of the screen distribution and satisfies B(X, ξ) = 0, for any X ∈ Γ(TM).

Next, in their celebrated paper, Barros and Romero [2] defined indefinite Kähler manifolds as below.

Definition 2.1. Let (M, g, J) be an indefinite almost Hermitian manifold with a semi-Riemannian metric g
and an almost complex structure J on M . Let ∇ be the Levi-Civita connection on M with respect to g. Then
M is called an indefinite Kähler manifold if J is parallel with respect to ∇, that is (∇XJ)Y = 0, for any
X,Y ∈ Γ(TM).

3. Rigging on almost Hermitian manifold

A rigging for M is a vector field ζ defined on an open set containing M such that ζp /∈ TpM , for each p ∈ M .
For such a rigging, let ξ denotes the unique null vector in TM⊥ such that g(ζ, ξ) = 1. We consider the screen
distribution given by TM ∩ ζ⊥. Associated to a rigging ζ, a null transverse vector field N is given by

N = ζ − 1

2
g(ζ, ζ)ξ. (3.1)

Let (M, g, J) be a real 2m−dimensional indefinite almost Hermitian manifold, with g a semi-Riemannian metric
of index 2q, where 0 < q < m and J an almost complex structure on M . Let (M, g) be a null real hypersurface of
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(M, g, J), where g is the degenerate induced metric of M . The presence of an auxiliary structure J leads us to
select a special rigging more adapted to it. A rigging ζ for M is said to be compatible with the structure (g, J) if
g(ζ, Jξ) = 0. We will abbreviate this by writing a J−rigging and denote the set of such riggings by R(J). Then,
for ζ ∈ R(J) we have

g(Jξ, ξ) = g(Jξ,N) = g(JN,N) = g(ξ, JN) = 0, g(Jξ, JN) = 1.

We see that a J−rigging ζ ∈ R(J) induces a screen distribution (we denote) SJ
ζ including J(TM⊥) and

J(tr(TM)) as rank-one subbundles. In particular, there exists a non-degenerate almost complex distribution
D of M with respect to the almost complex structure J of M , that is, J(D) = D such that

TM |M=
((

J(TM⊥)⊕ J(tr(TM))
)
⊕orth D ⊕orth TM⊥

)
⊕ tr(TM). (3.2)

It should be noted that J(TM⊥)⊕ J(tr(TM)) is a Lorentz plane in SJ
ζ , since Jξ ∈ SJ

ζ and JN ∈ SJ
ζ are lightlike

and g(Jξ, JN) = 1. From now on, unless otherwise stated, only J−riggings will be in consideration.

Example 3.1. Let the 6−dimensional space M = R6 be endowed with an indefinite almost Her-
mitian structure (g, J) be given by g = −dx2

0 − dx2
1 + dx2

2 + dx2
3 + dx2

4 + dx2
5 and J(x0, x1, x2, x3, x4, x5) =

(−x1, x0,−x3, x2,−x5, x4) in the natural rectangular coordinates (x0, x1, x2, x3, x4, x5). Consider a Monge
hypersurface M of R6

2 defined by

M = {(x0, x1, x2, x3, x4, x5) ∈ R6
2 | x0 = x1 + x2 + x3}.

Then, a local frame of the tangent bundle TM is given by{
V1 = ∂x0 + ∂x1, V2 = ∂x0 + ∂x2, V3 = ∂x0 + ∂x3, V4 = ∂x4, V5 = ∂x5

}
and

TM⊥ = Span
{
ξ = −1

2
{V2 + V3 − V1} = −1

2
{∂x0 − ∂x1 + ∂x2 + ∂x3}

}
.

Thus, M is a lightlike hypersurface of (M, g, J) and Jξ = − 1
2{∂x0 + ∂x1 − ∂x2 + ∂x3}. Moreover, g(ξ, ∂x0 −

∂x1) = 1 and g(∂x0 − ∂x1, Jξ) = 0. So, a (compatible) J−rigging for M can be selected by setting ζ = ∂x0 − ∂x1.
It induces a screen distribution SJ

ζ = span{∂x0 + ∂x1, ∂x2 − ∂x3, ∂x4, ∂x5}.

Let (M, g) be a null hypersurface of a real 2m−dimensional indefinite almost Hermitian manifold (M, g, J)
and i : M ↪→ M be the canonical inclusion map. Let ζ ∈ R(J) be a J−rigging for M , α be a 1−form g−metrically
equivalent to ζ, that is, α(.) = g(ζ, .). Then, we define an associated metric ğ on M as

ğ(U, V ) = g(U, V ) + α(U)α(V ) + α(JU)α(JV ), (3.3)

for any U, V ∈ Γ(TM).

Lemma 3.1. For p ∈ M , ğp is non-degenerate if and only if g(ζp, ζp) ̸= −1.

Proof. Assume g(ζp, ζp) ̸= −1 and let u ∈ TpM , p ∈ M such that ğp(u, v) = 0 for any v ∈ TpM . In particular, for
v = ζp, ğp(u, ζp) = 0 implies that gp(u, ζp){1 + gp(ζp, ζp)} = 0 and consequently, gp(u, ζp) = α(u) = 0. Similarly,
ğp(u, Jζp) = 0 implies that α(Ju) = 0. Hence, ğp(u, v) = 0 implies gp(u, v) = 0, for any v ∈ TpM and then the
non-degeneracy of gp implies that u = 0. Thus, ğp is non-degenerate on M .

Conversely, assume g(ζp, ζp) = −1. Then, for every v ∈ TpM

ğp(ζp, v) = g(ζp, v) + α(ζp)α(v) + α(Jζp)α(Jv) = α(v)− α(v) = 0.

Hence ğp is degenerate and ζp ∈ ker(ğp).

Remark 3.1. (i) If ğ is Riemannian, then either ζp is spacelike or ζp is timelike and | ζp |> 1.
(ii) ğ is degenerate if and only if ζp is timelike and unitary for g.
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For any U, V ∈ Γ(TM), using (3.3), it is obvious that

ğ(JU, JV ) = g(U, V ) + α(JU)α(JV ) + α(U)α(V ) = ğ(U, V );

this implies that (ğ, J) is also an almost Hermitian structure on M .
Let ğ be non-degenerate then for a fixed J−rigging ζ ∈ R(J) for M . We consider the induced associated

metric g̃ on M as
g̃(U, V ) = i⋆ğ(U, V ) = g(U, V ) + ω(U)ω(V ) + α(i⋆JU)α(i⋆JV ), (3.4)

where ω = i⋆α being i : M ↪→ M the inclusion map and U, V ∈ Γ(TM). Using the definition of ω it is obvious
that ω(ξ) = 1.

Lemma 3.2. Let g(ζ, ζ) ̸= 1 then for each p ∈ M , g̃p is non-degenerate.

Proof. Let p ∈ M and u ∈ TpM such that g̃p(u, v) = 0 for all v ∈ TpM , that is

g̃p(u, v) = g(u, v) + ω(u)ω(v) + g(ζ, Ju)g(ζ, Jv) = 0,

for all v ∈ TpM . Set v = ξ. Then, 0 = ω(u) + g(ζ, Ju)g(ζ, Jξ) = ω(u), since ζ ∈ R(J) and g(ζ, Jξ) = 0. Hence
u ∈ SJ

ζ .
Now, setting v = Jζ leads to

0 = g(u, Jζ)− g(ζ, Ju)g(ζ, ζ) = −g(Ju, ζ)
[
1 + g(ζ, ζ)

]
.

Then g(Ju, ζ) = 0. Combining above two facts, it follows that gp(u, v) = 0 for all v ∈ TM , which implies that
u ∈ TpM

⊥.
Finally, we get u ∈ SJ

ζ ∩ TpM
⊥ = {0}, that is, u = 0 and g̃p is non-degenerate.

From now on, we consider g(ζ, ζ) ̸= 1, unless otherwise stated. For the fixed J−rigging ζ for M , we call the
associated non-degenerate metric g̃ on M the J−rigged metric on the normalized null hypersurface (M, ζ). Let
p ∈ M and u ∈ TpM , we have

g̃(ξ, u) = g(ξ, u) + ω(ξ)ω(u) + g(ζ, Jξ)g(ζ, Ju) = g(ζ, ξ)ω(u) = ω(u).

Hence, ξ is the g̃−metrically equivalent vector field to the 1−form ω. For this, it is called the rigged vector field
on (M, ζ). In particular, ξ is g̃−unitary. Also, for u ∈ TpM , we have

u ∈ SJ
ζ ⇔ 0 = g(ζ, u) = α(u) = ω(u) = g̃(ξ, u).

Thus, SJ
ζ = ker g̃(ξ, ·) meaning that the screen space SJ

ζ |p at p ∈ M is the g̃−orthogonal to ξp in M .

Theorem 3.1. Let ∇ and ∇̆ be the Levi-Civita connections on indefinite almost Hermitian manifolds (M, g, J) and
(M, ğ, J), respectively. Then for any U, V ,W ∈ Γ(TM), we have

2ğ(∇̆UV ,W ) = 2g(∇UV ,W ) +
{
(Lζg)(U, V ) + 2α(∇UV )

}
α(W )

+dα(U,W )α(V ) + dα(V ,W )α(U)

+
{
Uα(JV ) + V α(JU) + α(J [U, V ])

}
α(JW )

+
{
Uα(JW )−Wα(JU)− α(J [U,W ])

}
α(JV )

+
{
V α(JW )−Wα(JV )− α(J [V ,W ])

}
α(JU), (3.5)

where Lζ is the Lie derivative along ζ.

Proof. By Koszul formula for the connection ∇̆ and using equation (3.3), we obtain

2ğ(∇̆UV ,W ) = 2g(∇UV ,W ) + {Uα(V ) + V α(U) + α([U, V ])}α(W )

+{Uα(W )−Wα(U)− α([U,W ])}α(V )

+{V α(W )−Wα(V )− α([V ,W ])}α(U)

+{Uα(JV ) + V α(JU) + α(J [U, V ])}α(JW )

+{Uα(JW )−Wα(JU)− α(J [U,W ])}α(JV )

+{V α(JW )−Wα(JV )− α(J [V ,W ])}α(JU). (3.6)
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It is known that

(Lζg)(U, V ) = U(α(V ))− α(∇UV ) + V (α(U))− α(∇V U) (3.7)

and

dα(U, V ) = U(α(V ))− V (α(U))− α([U, V ]). (3.8)

By using the above facts in (3.6), the proof is complete.

Now, by replacing V by JV and W by JW in (3.5) and by adding the resulting expression with (3.5), we
derive

2ğ((∇̆UJ)V ,W ) = 2g((∇UJ)V ,W ) +
{
(Lζg)(U, JV ) + 2α(∇UJV )− Uα(JV )− V α(JU)

−α(J [U, V ])
}
α(W ) +

{
dα(JV ,W ) + dα(V , JW )

}
α(U)

+
{
− Uα(JW ) +Wα(JU) + α(J [U,W ]) + dα(U, JW )

}
α(V )

+
{
JV α(JW ) +Wα(V )− α(J [JV ,W ])− V α(W )− JWα(JV )− α(J [V , JW ])

}
α(JU)

+
{
dα(U,W )− Uα(W )− JWα(JU)− α(J [U, JW ])

}
α(JV )

+
{
− Uα(V ) + JV α(JU) + α(J [U, JV ]) + (Lζg)(U, V ) + 2α(∇UV )

}
α(JW ). (3.9)

Hence from (3.9), we have the following observation immediately.

Theorem 3.2. The structures (g, J) and (ğ, J) are not simultaneously Kählerian.

It is known that

(∇Uα)V = U(α(V ))− α(∇UV ) = g(∇Uζ, V ). (3.10)

Therefore, (3.7) and (3.8) can be respectively written as

(Lζg)(U, V ) = (∇Uα)V + (∇V α)U = g(∇Uζ, V ) + g(∇V ζ, U), (3.11)

dα(U, V ) = (∇Uα)V − (∇V α)U = g(∇Uζ, V )− g(∇V ζ, U). (3.12)

Let (M, g,∇, J) be an indefinite Kähler manifold and U, V ,W ∈ Γ(TM). Using (3.10) to (3.12) in (3.9), we derive

2ğ((∇̆UJ)V ,W ) = {(Lζg)(U, JV ) + (LJζg)(U, V )}α(W )

+
{
(Lζg)(W,JV )− (Lζg)(JW, V ) + 2{g(∇WJζ, V )− g(∇V Jζ,W )}

}
α(U)

+{g(∇JV ζ, JU) + g(∇V ζ, U)}α(JW )− {(Lζg)(U, JW ) + (LJζg)(U,W )}α(V )

+{dα(JV , JW ) + dα(W,V )}α(JU)− {g(∇JW ζ, JU) + g(∇W ζ, U)}α(JV ). (3.13)

Now,

(LJζg)(U, V ) = −Uα(JV ) + α(∇UJV )− V α(JU) + α(∇V JU). (3.14)

Therefore from (3.7), (3.8) and (3.14), we can easily derive

(Lζg)(U, JV ) + (LJζg)(U, V ) = (∇JV α)U − (∇V α)JU. (3.15)

Using (3.11) and (3.12), we get

dα(JV ,W ) + dα(V , JW ) = (Lζg)(W,JV )− (Lζg)(JW, V ) + 2{g(∇WJζ, V )− g(∇V Jζ,W )}. (3.16)

Using (3.10), we derive

g(∇JV ζ, JU) + g(∇V ζ, U) = (∇JV α)JU + (∇V α)U. (3.17)
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Hence, by using (3.12), (3.15), (3.16), (3.17) in (3.13), for an indefinite Kähler manifold (M, g,∇, J) with a fixed
J−rigging ζ, we have the following expression

2ğ((∇̆UJ)V ,W ) = {(∇JV α)U − (∇V α)JU}α(W ) + {(∇JV α)W

−(∇Wα)JV + (∇V α)JW − (∇JWα)V }α(U) + {(∇JV α)JU

+(∇V α)U}α(JW )− {(∇JWα)U − (∇Wα)JU}α(V )

+{(∇JV α)JW − (∇JWα)JV + (∇Wα)V − (∇V α)W}α(JU)

−{(∇JWα)JU + (∇Wα)U}α(JV ). (3.18)

Lemma 3.3. The 1−form α is parallel with respect to Levi-Civita connection ∇ of M if and only if ζ is a closed Killing
vector field.

Proof. Proof follows directly using (3.11) and (3.12).

Theorem 3.3. Let (M, g, J) be an indefinite Kähler manifold. There exists no closed Killing vector field ζ which is
(globally) transversal to a null hypersurface in M and whose image Jζ is tangent to it.

Proof. Assume that there exists a closed Killing vector field ζ transversal to a null hypersurface with required
properties. Then using Lemma 3.3 in (3.18), we get that (ğ, J) is a Kähler structure and since (M, g, J) is also an
indefinite Kähler structure, this contradicts Theorem 3.2.

Furthermore, if (M, g, J) is an indefinite Kähler manifold, then we can rewrite (3.5) as below

2ğ(∇̆UV ,W ) = 2g(∇UV ,W ) +
{
(∇Uα)V + (∇V α)U + 2α(∇UV )

}
α(W )

+
{
(∇Uα)JV + (∇V α)JU + 2α(∇UJV )

}
α(JW )

+{(∇Uα)W − (∇Wα)U}α(V ) + {(∇Uα)JW

−(∇Wα)JU}α(JV ) + {(∇V α)W − (∇Wα)V }α(U)

+{(∇V α)JW − (∇Wα)JV }α(JU). (3.19)

Hence on using (3.19), it yields the following result.

Theorem 3.4. Let (M, g, J) be an indefinite Kähler manifold with a fixed closed Killing J−rigging ζ ∈ R(J) for a null
hypersurface M ⊂ M . Then

ğ(∇̆UV ,W ) = g(∇UV ,W ) + α(∇UV )α(W ) + α(J∇UV )α(JW )

= ğ(∇UV ,W ), (3.20)

for any U, V ,W ∈ Γ(TM).

Next, let ∇ and ∇̃ be the Levi-Civita connections of g and g̃, respectively. Consider D = ∇− ∇̃ is the
difference tensor and which is symmetric tensor on TM . A straightforward computation leads to the following
expression.

Proposition 3.1. Let U, V,W ∈ TM ; then it holds that

g(D(U, V ),W ) = −1

2

{
(Lξ g̃)(U, V )ω(W ) + dω(U,W )ω(V ) + dω(V,W )ω(U)

}
+
1

2

{
W (α(i⋆JU))− U(α(i⋆JW ))− α(i⋆J [W,U ])

}
α(i⋆JV )

−1

2

{
V (α(i⋆JW ))−W (α(i⋆JV ))− α(i⋆J [V,W ])

}
α(i⋆JU)

−1

2

{
V (α(i⋆JU)) + U(α(i⋆JV )) + α(i⋆J [V,U ])

}
α(i⋆JW )

+α(i⋆J∇̃V U)α(i⋆JW ). (3.21)

Take D = ∇− ∇̃, where ∇ is a linear connection induced from ∇ on M and ∇̃ is the Levi-Civita connection
of g̃. It should be noted that D is symmetric and satisfies D −D = B ⊗N . For any U, V,W ∈ Γ(TM), we have

g(D(U, V ),W ) = g(D(U, V ),W )−B(U, V )ω(W ). (3.22)

Hence using (3.21) and (3.22), we have the following important corollary.
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Corollary 3.1. Let U ∈ Γ(TM) and X,Y, Z ∈ Γ(D); we have the following relations

(1) g̃(D(X,U), X) = g(D(X,U), X) = 0.

(2) g̃(D(X,Y ), Z) = g(D(X,Y ), Z) = 0.

(3) g(D(X, ξ), ξ) = 0 and g̃(D(U, ξ), ξ) = −τ(U) = −g(∇Uζ, ξ).

(4) −2C(U,X) = dα(U,X) + (Lζg)(U,X) + g(ζ, ζ)B(U,X).

A vector field W on (M, g) is said to be concircular if it satisfies ∇UW = λ U , for some smooth function
λ on M and for any vector field U tangent to M . Observe that concircular is equivalent to being closed and
conformal.

Theorem 3.5. Let (M, g, J) be an indefinite Kähler manifold and M ⊂ M be a null hypersurface furnished with a
concircular J−rigging ζ. Then

(i) τ = 0.

(ii) B(Jζ, U) = λg(U,V) with V = −Jξ.

(iii) C(U,PV ) = −λg(U, V )− 1
2g(ζ, ζ)B(U, V ), for U, V ∈ Γ(TM).

Proof. The rigging ζ satisfies ∇ζ = λ⊗ I , for λ ∈ C∞(M), where I denotes the identity map on X(M). In
particular, g(∇Uζ, V ) = λg(U, V ). Assertion (i) follows from item (3) in the Corollary 3.1. For (ii), note that
from Kähler condition, we have

B(Jζ, U) = g(∇UJζ, ξ) = g(J∇Uζ, ξ) = g(J(λU), ξ) = −λg(U, Jξ) = λg(UV).

Now, let U ∈ X(M) and X ∈ SJ
ζ ; then

C(U,X) = g(∇UX,N) = g(∇UX,N) = U · g(X,N)− g(X,∇UN)

= −g(X,∇U (ζ −
1

2
g(ζ, ζ)ξ))

= −λg(X,U) +
1

2
g(ζ, ζ)g(∇Uξ,X)

= −λg(U,X)− 1

2
g(ζ, ζ)B(U,X).

This completes the proof.

Corollary 3.2. Let (M, g, J) be an indefinite Kähler manifold with a fixed closed Killing J−rigging ζ ∈ R(J) for a null
hypersurface M ⊂ M . Then

(i) τ = 0.

(ii) B(Jζ, ·) = 0.

(iii) C(U,PV ) = − 1
2g(ζ, ζ)B(U, V ) = −α(N)B(U, V ), for U, V ∈ Γ(TM). Moreover, C(Jζ, PU) = 0 and C(U, Jζ) =

0 .

Let ∇̃ be the Levi-Civita connection induced on null hypersurface M of an indefinite almost Hermitian
manifold with a fixed J−rigging ζ ∈ R(J). This connection is said to be an induced rigged connection on M
by g̃. In the following theorem, we derive Gauss and Weingarten type formulae for the screen space SJ

ζ of the
null hypersurface.

Theorem 3.6. Let (M, g, J) be an indefinite Kähler manifold with a fixed closed Killing J−rigging ζ ∈ R(J) for a null
hypersurface M ⊂ M . Then for any U ∈ Γ(TM) and X ∈ Γ(SJ

ζ ), we have

∇̃UX = ∇⋆
UX +B(U,X)ξ, (3.23)

∇̃Uξ = −A⋆
ξU. (3.24)
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Proof. Let U, V ∈ Γ(TM) and W ∈ Γ(SJ
ζ ), then from (3.20), we have ğ(∇̃UV,W ) = ğ(∇UV,W ), which further

implies

g̃(∇̃UV,W ) = g̃(∇UV,W ). (3.25)

Let V = ξ. Then using (2.4), we get g̃(∇̃Uξ,W ) = g̃(−A⋆
ξU,W ). Since ∇̃ is a Levi-Civita connection of g̃, then the

equality (∇̃U g̃)(ξ, ξ) = 0 implies that ω(∇̃Uξ) = g̃(∇̃Uξ, ξ) = 0, i.e., ∇̃Uξ ∈ Γ(SJ
ζ ). Hence, the non-degeneracy of

g̃ on SJ
ζ , gives (3.24). Now, let V = X ∈ Γ(SJ

ζ ) in (3.25) then analogously, we obtain

∇̃⋆
UX = ∇⋆

UX. (3.26)

Hence on using (3.26), we have ∇̃UX = ∇⋆
UX + γξ, for any U ∈ Γ(TM) and X ∈ Γ(SJ

ζ ) and this further implies
∇̃UX = ∇⋆

UX − g̃(∇̃Uξ,X)ξ. Using (2.5), (3.4), (3.24) and the Corollary 3.2, we obtain

g̃(X, ∇̃Uξ) = −g̃(A⋆
ξU,X) = −B(U,X)− α(i⋆JA

⋆
ξU)α(i⋆JX)

= −B(U,X) +B(U, Jζ)α(i⋆JX) = −B(U,X).

Hence, the proof is complete.

Corollary 3.3. Let (M, g, J) be an indefinite Kähler manifold with a fixed closed Killing J−rigging ζ ∈ R(J) for a null
hypersurface M ⊂ M .

1. If M is totally geodesic, then the rigged vector field ξ is g̃−parallel.
2. If M is totally geodesic, then the screen distribution SJ

ζ is a parallel distribution on M with respect to the Levi-Civita
connection ∇̃.

3. Let Ĩ denote the second fundamental form of a generic leaf of (SJ
ζ , g̃) in (M, g̃). Then Ĩ = B(U,X)ξ. Hence, if M is

totally geodesic, then each leaf of the screen distribution SJ
ζ is totally geodesic as a hypersurface of (M, g̃).

4. ∇̃ξξ = 0.

Theorem 3.7. Let M be a null hypersurface of an indefinite almost Hermitian manifold (M, g, J) with a fixed conformal
J−rigging ζ ∈ R(J) for M . Then τ(ξ) = 0 and τ(X) = − 1

2 g̃(∇̃ξξ,X), for any X ∈ SJ
ζ .

Proof. Assume that J−rigging ζ ∈ R(J) to be conformal, that is, Lζg = 2ρg, for some smooth function ρ in the
domain of ζ. Then Lζg(ξ, ξ) = 2ρg(ξ, ξ) = 0, implies g(∇ξζ, ξ) = 0, consequently τ(ξ) = 0 or ∇ξξ = 0. Let X ∈ SJ

ζ

then from (3.21), we have g(D(ξ, ξ), X) = −dω(ξ,X) + α(i⋆J∇̃ξξ)(i⋆JX). Since τ(ξ) = 0 therefore −g(∇̃ξξ,X) =

−dω(ξ,X) + α(i⋆J∇̃ξξ)(i⋆JX), then using (3.4) and the fact that dω(ξ,X) = dα(ξ,X), as by definition ω = i⋆α,
that is, g̃(ξ, .) = g(ζ, .), we obtain g̃(∇̃ξξ,X) = dα(ξ,X). Also, (Lζg)(ξ,X) = 2ρg(ξ,X) = 0 implies g(∇ξζ,X) =
−g(ξ,∇Xζ). Hence

g̃(∇̃ξξ,X) = dα(ξ,X) = −2g(ξ,∇Xζ) = −2τ(X);

this completes the proof

Remark 3.2. Let X,Y ∈ Γ(D). Then from (3.21), we get g(D(X,Y ), ξ) = − 1
2 (Lξ g̃)(X,Y ), then on further using

(3.22), g(D(X,Y ), ξ) = − 1
2 (Lξ g̃)(X,Y )−B(X,Y ), this further gives (Lξ g̃)(X,Y ) = −2B(X,Y ).

4. Curvature relations with a closed Killing rigging

Let R, R̃ and R⋆ be the curvature tensors associated to the induced connection ∇, the Levi-Civita connections
∇̃ and ∇⋆, respectively. Let P be the projection morphism of Γ(TM) onto Γ(SJ

ζ ). Then for any U ∈ Γ(TM),

U = PU + ω(U)ξ. (4.1)

Lemma 4.1. For any U, V ∈ Γ(TM), we have

B(U,A⋆
ξV ) = B(V,A⋆

ξU), B(U, Jζ)α(i⋆JA
⋆
ξV ) = B(V, Jζ)α(i⋆JA

⋆
ξU). (4.2)

Proof. Assertions follow directly using (2.5).
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Lemma 4.2. Let (M, g, J) be an indefinite Kähler manifold with a fixed closed Killing J−rigging ζ for a null hypersurface
M ⊂ M . Then

(∇̃UB)(V,W ) = (∇UB)(V,W ) (4.3)

for any U, V,W ∈ Γ(TM).

Proof. Let U, V ∈ Γ(TM) then from (3.23), (3.24) and (4.1), it follows that

∇̃UV =∇⋆
UPV +B(U,PV )ξ+(∇̃Uω(V ))ξ−ω(V )A⋆

ξU.

Then

(∇̃UB)(V,W ) = U(B(V,W ))−B(∇⋆
UPV,W )−B(V,∇⋆

UPW ) + ω(V )B(A⋆
ξU,W ) + ω(W )B(V,A⋆

ξU).

Now, use (2.3), (2.4) and (4.1) to get the same expression for (∇UB)(V,W ).

Lemma 4.3. Let (M, g, J) be an indefinite Kähler manifold with a fixed closed Killing J−rigging ζ ∈ R(J) for a null
hypersurface M ⊂ M . Then

∇̃U (α(i⋆JPV ))− α(i⋆J∇⋆
UPV ) = 0, (4.4)

for any U, V ∈ Γ(TM).

Proof. For a fixed J−rigging ζ ∈ R(J), we have α(Jξ) = 0 and α(JN) = 0. Therefore using (2.1) and (2.3), we
obtain

∇̃U (α(i⋆JPV ))− α(i⋆J∇⋆
UPV ) = U(α(i⋆JPV ))− α(∇UJPV ).

From (4.1), we can write JV = JPV + ω(V )Jξ, on using this in the last equation, we have

∇̃U (α(i⋆JPV ))− α(i⋆J∇⋆
UPV ) = (∇Uα)(JV )− ω(V )(∇Uα)(Jξ).

Then, use of the Lemma 3.3 completes the proof.

Furthermore, using (4.2) together with the Corollary 3.2 and Lemmas 4.2 and 4.3, we have the following
relations.

Theorem 4.1. Let (M, g, J) be an indefinite Kähler manifold with a fixed closed Killing J−rigging ζ ∈ R(J) for a null
hypersurface M ⊂ M . Then

R̃(U, V )PW = R⋆(U, V )PW +
{
(∇̃UB)(V, PW )− (∇̃V B)(U,PW )

}
ξ −A⋆

ξUB(V, PW ) +A⋆
ξV B(U,PW ), (4.5)

R̃(U, V )ξ = A⋆
ξ [U, V ] +∇⋆

V A
⋆
ξU −∇⋆

UA
⋆
ξV, (4.6)

R̃(U, ξ)ξ = ∇⋆
ξA

⋆
ξU +A⋆

ξ [U, ξ], (4.7)

where (∇̃UB)(V, PW ) = ∇̃U (B(V, PW ))−B(∇̃UV, PW )−B(V,∇⋆
UPW ), for any U, V,W ∈ Γ(TM).

Proof. By straightforward calculations, assertions follow from (3.23), (3.24) and (4.1).

Remark 4.1. By using (4.1), (4.5) and (4.6), we can derive

R̃(U, V )W = R̃(U, V )PW + ω(W )R̃(U, V )ξ. (4.8)

By straightforward calculations, using (2.3) and (2.4), we have

R(U, V )PW = R⋆(U, V )PW +
{
(∇UC)(V, PW )− (∇V C)(U,PW )

}
ξ

−C(V, PW )A⋆
ξU + C(U,PW )A⋆

ξV

−C(V, PW )τ(U)ξ + C(U,PW )τ(V )ξ, (4.9)
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R(U, V )ξ = A⋆
ξ [U, V ] +∇⋆

V A
⋆
ξU −∇⋆

UA
⋆
ξV + C(V,A⋆

ξU)ξ

−C(U,A⋆
ξV )ξ − dτ(U, V )ξ + τ(V )A⋆

ξU − τ(U)A⋆
ξV, (4.10)

R(U, ξ)ξ = −∇Uτ(ξ)ξ + τ(ξ)A⋆
ξU +∇⋆

ξA
⋆
ξU + C(ξ, A⋆

ξU)ξ

+∇ξτ(U)ξ +A⋆
ξ([U, ξ]) + τ([U, ξ])ξ, (4.11)

where (∇UC)(V, PW ) = ∇UC(V, PW )− C(∇UV, PW )− C(V,∇⋆
UPW ).

Let R be the Riemannian curvature tensor associated with the Levi-Civita connection ∇ of a semi-
Riemannian manifold (M, g) and let (M, g, S(TM)) be a null hypersurface of (M, g). Then from [4, p.94], we
have Gauss-Codazzi structure equations as below

g(R(U, V )W,X) = g(R(U, V )W,X) +B(U,W )C(V,X)−B(V,W )C(U,X), (4.12)

g(R(U, V )PW,N) = (∇UC)(V, PW )− (∇V C)(U,PW ) + τ(V )C(U,PW )− τ(U)C(V, PW ), (4.13)

g(R(U, V )ξ,N) = C(V,A⋆
ξU)− C(U,A⋆

ξV )− dτ(U, V ), (4.14)

g(R(U, V )PW, ξ) = (∇UB)(V, PW )− (∇V B)(U,PW ) +B(V, PW )τ(U)−B(U,PW )τ(V ), (4.15)

for any U, V,W ∈ Γ(TM) and X ∈ Γ(S(TM)).
Using the Corollary 3.2 with (4.3), (4.4), Theorem 4.1, (4.9), (4.10), (4.11), (4.12), (4.13), (4.14) and (4.15), we

obtain following relations.

Theorem 4.2. Let (M, g, J) be an indefinite Kähler manifold with a fixed closed Killing J−rigging ζ ∈ R(J) for a null
hypersurface M ⊂ M . Then

R(U, V )X−R̃(U, V )X = g(R(U, V )X,N)ξ − g(R(U, V )X, ξ)ξ + C(U,X)A⋆
ξV − C(V,X)A⋆

ξU

+B(U,X)∇V ξ −B(V,X)∇Uξ,

R(U, V )ξ − R̃(U, V )ξ = g(R(U, V )ξ,N)ξ,

g̃(R(X, ξ)ξ,X) = g̃(R̃(X, ξ)ξ,X), (4.16)

for all U, V ∈ Γ(TM) and X ∈ Γ(D).

Let (M, g) be a normalized null hypersurface of (M, g, J) with rigged vector field ξ and Πnull
ξ = span{X, ξ} be

a null plane at p ∈ M directed by ξ, where X is a unitary vector tangent to D. Then, the null sectional curvature
Knull(Πnull

ξ ) of Πnull
ξ is a real number defined by

Knull(Πnull
ξ ) =

gp(R(X, ξ)ξ,X)

gp(X,X)
= gp(R(X, ξ)ξ,X).

Let K̃(Πξ) denote the g̃−sectional curvature of the same plane Πξ = span{X, ξ} containing ξ and a unitary
vector X tangent to D. Then from (4.16), the following observation is immediate.

Theorem 4.3. Let (M, g, J) be an indefinite Kähler manifold with a fixed closed Killing J−rigging ζ ∈ R(J) for a null
hypersurface M ⊂ M . Then

Knull(Πnull
ξ )− K̃(Πξ) = τ(ξ)B(X,X),

for any unitary vector field X ∈ Γ(D). Moreover, Knull(Πnull
ξ ) = K̃(Πξ), if ζ is a conformal rigging vector field or M is

a totally geodesic null hypersurface.

From (3.2), take an almost complex distribution D = {TM⊥ ⊕orth J(TM⊥)} ⊕orth D. Then

TM = J(tr(TM))⊕D. (4.17)

Consider local lightlike vector fields as U = −JN and V = −Jξ. Let X ∈ Γ(D) be a unitary vector field then
we denote Πnull

U = span{U , X} and Πnull
V = span{V, X} the null planes directed by the null vector fields U

and V , respectively and denote the null sectional curvature associated to these null sections by Knull(Πnull
U )

and Knull(Πnull
V ), respectively. We denote the g̃−sectional curvatures of the planes ΠU = span{X,U} and

ΠV = span{X,V} by K̃(ΠU ) and K̃(ΠV), respectively. Then using the Corollary 3.2 with (2.5), (4.5) and (4.9),
we derive the following relations.
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Theorem 4.4. Let (M, g, J) be an indefinite Kähler manifold with a fixed closed Killing J−rigging ζ ∈ R(J) for a null
hypersurface M ⊂ M . Then

Knull(Πnull
U )− K̃(ΠU ) = B(U , X)C(X,U)−B(X,X)C(U ,U) +B(X,X)B(U ,U)−B(X,U)2,

Knull(Πnull
V )− K̃(ΠV) = B(V, X)C(X,V)−B(X,X)C(V,V) +B(X,X)B(V,V)−B(X,V)2.

Corollary 4.1. If M is totally geodesic null submanifold of M then

Knull(Πnull
U ) = K̃(ΠU ), Knull(Πnull

V ) = K̃(ΠV).

Let {ξ,U ,V, ei, e⋆i } be a quasi-orthogonal frame on M , where D = span{ei, e⋆i }
m−2
i=1 and e⋆i = Jei. Hence

{ξ,N,U ,V, ei, e⋆i } is the corresponding frame of fields on M . Then, the Ricci tensor R(U, V ) on M and the
induced Ricci tensor R(U, V ) on M are respectively given by

R(U, V ) =

m−2∑
i=1

εi

{
g(R(U, ei)V, ei) + g(R(U, e⋆i )V, e

⋆
i )
}
+ g(R(U,U)V,V)

+g(R(U,V)V,U) + g(R(U, ξ)V,N) + g(R(U,N)V, ξ)

and

R(U, V ) =

m−2∑
i=1

εi

{
g(R(U, ei)V, ei) + g(R(U, e⋆i )V, e

⋆
i )
}
+ g(R(U,U)V,V)

+g(R(U,V)V,U) + g(R(U, ξ)V,N).

Now, by using Gauss-Codazzi equations, (4.12) leads to the following expression of the induced Ricci tensor
on M :

R(U, V ) = R(U, V )− g(R(U,N)V, ξ) +

m−2∑
i=1

εi

{
−B(U, V )C(ei, ei)

+B(ei, V )C(U, ei)−B(U, V )C(e⋆i , e
⋆
i ) +B(e⋆i , V )C(U, e⋆i )

}
−B(U, V )C(V,U) +B(V, V )C(U,U)−B(U, V )C(U ,V)
+B(U , V )C(U.V).

Furthermore, observe that since we are dealing with an indefinite Kähler manifold, using (2.1), (2.2) and (2.6)
lead to

C(U,V) = g(ANU,V) = −g(J∇UN, ξ) = B(U,U) (4.18)

and similarly

C(V,V) = B(V,U). (4.19)

Then

R(U, V ) −R(V,U) = R(U, V )−R(V,U)− g(R(U, V )N, ξ)

+

m−2∑
i=1

εi

{
g(A⋆

ξV, ei)g(ANU, ei) + g(A⋆
ξV, e

⋆
i )g(ANU, e⋆i )

+g(A⋆
ξV,V)g(ANU,U) + g(A⋆

ξV,U)g(ANU,V)
}

−
m−2∑
i=1

{
g(A⋆

ξU, ei)g(ANV, ei) + g(A⋆
ξU, e

⋆
i )g(ANV, e⋆i )

+g(A⋆
ξU,V)g(ANV,U) + g(A⋆

ξU,U)g(ANV,V)
}
. (4.20)
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On the other side, it is easy to check that for arbitrary vector fields U and V in TM , we have

U =

m−2∑
i=1

εi

{
g(U, ei)ei + g(U, e∗i )e

∗
i

}
+ g(U,V)U + g(U,U)V + g(U,N)ξ

and

g(U, V ) =

m−2∑
i=1

εi

{
g(U, ei)g(V, ei) + g(U, e∗i )g(V, e

∗
i )
}
+ g(U,V)g(V,U) + g(U,U)g(V,V). (4.21)

By using the fact that R(U, V ) is symmetric and (4.21) in (4.20), we have

R(U, V )−R(V,U) = −g(R(U, V )N, ξ) + g(A⋆
ξV,ANU)− g(A⋆

ξU,ANV ). (4.22)

Next, from straightforward calculations, we obtain

g(R(U, V )N, ξ) = −B(U,ANV ) +B(V,ANU) + dτ(U, V )

= −g(A⋆
ξU,ANV ) + g(A⋆

ξV,ANU) + dτ(U, V ). (4.23)

On substituting (4.23) in (4.22), we finally have R(U, V )−R(V,U) = −dτ(U, V ) and hence, we have following
observation.

Theorem 4.5. Let (M, ζ) be a normalized null hypersurface of an indefinite Kähler manifold (M, g, J) with a fixed closed
Killing J−rigging ζ ∈ R(J) for M . Then the induced Ricci tensor on M is symmetric if and only if each 1−form τ on
SJ
ζ is closed.

Next, from (3.4), we know that g̃(U ,U) = α(N)2 and therefore U is not a g̃−unitary. Then take U ′ = 1
α(N)U ,

which is clearly g̃−unitary. Also g̃(V,V) = 1, i.e, V is also g̃−unitary. Hence {ξ,U ′,V, ei, e⋆i } is a g̃−frame on M

then for any U, V ∈ Γ(TM), the induced g̃−Ricci tensor R̃(U, V ) is given by

R̃(U, V ) =

m−2∑
i=1

εi

{
g̃(R̃(U, ei)V, ei) + g̃(R̃(U, e⋆i )V, e

⋆
i )
}
+ g̃(R̃(U,U ′)V,U ′)

+g̃(R̃(U,V)V,V) + g̃(R̃(U, ξ)V, ξ). (4.24)

Assume that the J−rigging ζ ∈ R(J) is a closed Killing vector field. Then, using the Corollary 3.2 with (4.5),
(4.7) and (4.8), we derive

g̃(R̃(U, ei)V, ei) = g(R⋆(U, ei)PV, ei)−B(U, ei)B(ei, V ) +B(ei, ei)B(U, V ) + ω(V )g(R(U, ei)ξ, ei)

and taking into account of the Corollary 3.2 with (4.9) and (4.12) in the last equation, we obtain

g̃(R̃(U, ei)V, ei) = g(R(U, ei)V, ei) + (1 + g(ζ, ζ))
[
B(U, V )B(ei, ei)−B(U, ei)B(V, ei)

]
. (4.25)

A similar formula for g̃(R̃(U, e⋆i )V, e
⋆
i ) is obtained by interchanging ei and e⋆i . Since N = ζ − α(N)ξ, this

further implies Jζ = −(U + α(N)V). Also, the Kähler condition together with the parallelism of ζ implies
g(R(U,U)V, Jζ) = −g(R(U,U)Jζ, V ) = 0. So

g̃(R̃(U,U ′)V,U ′) = − 1

α(N)
g(R(U,U)V,V) + (1 + g(ζ, ζ))

[
B(U, V )B(U ′,U ′)−B(U,U ′)B(V,U ′)

]
(4.26)

and

g̃(R̃(U,V)V,V) = − 1

α(N)
g(R(U,V)V,U) + (1 + g(ζ, ζ))

[
B(U, V )B(V,V)−B(U,V)B(V,V)

]
, (4.27)

g̃(R̃(U, ξ)V, ξ) = −B([U, ξ], V )− ξ(B(U, V )) +B(U,∇⋆
ξPV )

= B(A⋆
ξU,PV )− (∇̃ξB)(U, V ). (4.28)
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Hence, using (4.25), (4.26), (4.27) and (4.28) in (4.24), we have the following important relationship between
the intrinsic and extrinsic Ricci tensors for a null hypersurface with a closed Killing J−rigging ζ ∈ R(J) of an
indefinite Kähler manifold.

R̃(U, V ) = R(U, V )− (1 + α(N))

α(N)

{
g(R(U,U)V,V) + g(R(V,U)U,V)

}
− g(R(U, ξ)V,N)− g(R(V, ξ)U,N)

+(1 + g(ζ, ζ))B(U, V )
{m−2∑

i=1

ϵi{B(ei, ei) +B(e⋆i , e
⋆
i )}+B(U ′,U ′) +B(V,V)

}
−(1 + g(ζ, ζ))

{m−2∑
i=1

ϵi{B(U, ei)B(V, ei) +B(U, e⋆i )B(V, e⋆i )}+B(U,U ′)B(V,U ′)

+B(U,V)B(V,V)
}
+B(A⋆

ξU, V )− (∇̃ξB)(U, V ). (4.29)

From the last expression, it is obvious that the intrinsic Ricci tensor for a null hypersurface with a closed
Killing J−rigging ζ ∈ R(J) of an indefinite Kähler manifold is a symmetric tensor and hence has significant
applications in geometry and physics.

Since {ei, e⋆i ,U ′,V, ξ} is a g̃−frame on M , where i ∈ {1, . . . ,m− 2} and B(U, ξ) = 0, therefore the mean
curvature µ of the null hypersurface is given by

µ =
1

2m− 2

m−2∑
i=1

ϵi{B(ei, ei) +B(e⋆i , e
⋆
i )}+B(U ′,U ′) +B(V,V) (4.30)

and using (2.5) and (4.21), we can write

B(A⋆
ξU, V ) =

m−2∑
i=1

ϵi{B(U, ei)B(V, ei) +B(U, e⋆i )B(V, e⋆i )}+B(U,V)B(V,U) +B(U,U)B(V,V). (4.31)

From the Corollary 3.2, it is known that B(U, Jζ) = 0; therefore B(U,U) = −α(N)B(U,V) and using (4.30), (4.31)
in (4.29), we derive

R̃(U, V ) = R(U, V ) + (2 + g(ζ, ζ))g(R(U,V)V,V)− g(R(U, ξ)V,N)− g(R(V, ξ)U,N)

+(1 + g(ζ, ζ))B(U, V )(2m− 2)µ− g(ζ, ζ)B(A⋆
ξU, V )

−(1 + g(ζ, ζ))(2 + g(ζ, ζ))B(U,V)B(V,V)− (∇̃ξB)(U, V ). (4.32)

Next, using (4.32), we have

R̃(ei) = R(ei) + (2 + g(ζ, ζ))g(R(ei,V)ei,V)− 2g(R(ei, ξ)ei, N)

+(1 + g(ζ, ζ))B(ei, ei)(2m− 2)µ− g(ζ, ζ)B(A⋆
ξei, ei)

−(1 + g(ζ, ζ))(2 + g(ζ, ζ))B(ei,V)2 − (∇̃ξB)(ei, ei). (4.33)

Since B(U,U) = −α(N)B(U,V), we get B(U ′,U ′) = B(V,V) and B(U ′,V) = −B(V,V) and consequently

R̃(U ′) = R(U ′)− 2g(R(U ′, ξ)U ′, N) + (1 + g(ζ, ζ))B(V,V)(2m− 2)µ

−g(ζ, ζ)B(A⋆
ξU ′,U ′)− (1 + g(ζ, ζ))(2 + g(ζ, ζ))B(V,V)2 − (∇̃ξB)(U ′,U ′), (4.34)

R̃(V) = R(V)− 2g(R(V, ξ)V, N) + (1 + g(ζ, ζ))B(V,V)(2m− 2)µ

−g(ζ, ζ)B(A⋆
ξV,V)− (1 + g(ζ, ζ))(2 + g(ζ, ζ))B(V,V)2 − (∇̃ξB)(V,V), (4.35)

R̃(ξ) = R(ξ) + (2 + g(ζ, ζ))g(R(ξ,V)ξ,V). (4.36)

It is well known that an indefinite complex space form is a connected indefinite Kähler manifold of constant
holomorphic sectional curvature c and is denoted by M(c). Then the curvature tensor field of M(c) is given by

g(R(X,Y )Z,W ) =
c

4

{
g(Y,Z)g(X,W )− g(X,Z)g(Y,W ) + g(JY, Z)g(JX,W )

−g(JX,Z)g(JY,W ) + 2g(X, JY )g(JZ,W )
}
, (4.37)
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for any X,Y, Z,W ∈ Γ(TM).
Denote the scalar curvatures of null hypersurface M of an indefinite Kähler manifold (M, g, J) with a fixed

closed Killing J−rigging ζ ∈ R(J) for M ⊂ M and of (M, g, J) by τ̃ and τ , respectively. Then relationship
between these intrinsic and extrinsic scalar curvatures is given in the next Theorem.

Theorem 4.6. Let M be a null hypersurface of an indefinite complex space form M(c) with a fixed closed Killing
J−rigging ζ ∈ R(J) for M ⊂ M . Then

τ̃ = τTM + R̃(ξ) + c(m− 2) + (1 + g(ζ, ζ))(2m− 2)2µ2 − (1 + g(ζ, ζ))(2 + g(ζ, ζ)) | A⋆
ξV |2

−(1 + g(ζ, ζ))(2 + g(ζ, ζ))2B(V,V)2 − (1 + g(ζ, ζ))(tr(A⋆
ξ)

2).

Proof. By straightforward calculations, using (4.33), (4.34), (4.35), (4.36) and (4.37), we derive

τ̃ = τTM + R̃(ξ) + c(m− 2) + (1 + g(ζ, ζ))(2m− 2)2µ2

−(1 + g(ζ, ζ))(2 + g(ζ, ζ))
[ (m−2)∑

i=1

ϵi
{
B(ei,V)2 +B(e⋆i ,V)2

}
+ 2B(V,V)2

]

−(1 + g(ζ, ζ))
[ (m−2)∑

i=1

ϵi
{
B(A⋆

ξei, ei) +B(A⋆
ξe

⋆
i , e

⋆
i )
}
+B(A⋆

ξU ′,U ′) +B(A⋆
ξV,V)

]
. (4.38)

From (4.31), we have

m−2∑
i=1

ϵi{B(ei,V)2 +B(e⋆i ,V)2} = B(A⋆
ξV,V)− 2B(U ,V)B(V,V) (4.39)

and using (4.39) in (4.38), we obtain

τ̃ = τTM + R̃(ξ) + c(m− 2) + (1 + g(ζ, ζ))(2m− 2)2µ2

−(1 + g(ζ, ζ))(2 + g(ζ, ζ))B(A⋆
ξV,V)− (1 + g(ζ, ζ))(2 + g(ζ, ζ))2B(V,V)2

−(1 + g(ζ, ζ))
[ (m−2)∑

i=1

ϵi
{
g((A⋆

ξ)
2ei, ei) + g((A⋆

ξ)
2e⋆i , e

⋆
i )
}
+ g((A⋆

ξ)
2U ′,U ′) + g((A⋆

ξ)
2V,V)

]
,

this completes the proof.

Corollary 4.2. Let M be a null hypersurface of an indefinite complex space form M(c) with a fixed closed Killing
J−rigging ζ ∈ R(J) for M ⊂ M . If M is totally geodesic then τ̃ = τTM + c(m− 2).

5. Induced almost contact structure

Let Q be the projection morphism of TM on D; then using (4.17), any vector field U on M can be written as

U = QU + u(U)U , (5.1)

where u is a 1−form locally defined on M by

u(U) = g(U,V). (5.2)

Denote ũ(U) = g̃(U,V), using (3.4) and (5.2), we get

ũ(U) = u(U) + α(i⋆JU). (5.3)

On applying J to (5.1), we obtain
JU = FU + u(U)N, (5.4)

where F is a tensor field of type (1, 1) globally defined on M by FU = JQU . Further, it follows that

F 2U = −U + u(U)U , u(U) = 1, (5.5)
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and g(FU,FV ) = g(U, V )− u(U)v(V )− u(V )v(U), for any U, V ∈ Γ(TM) and where v is a 1−form locally
defined on M by v(U) = g(U,U). Denote ṽ(U) = g̃(U,U) then

ṽ(U) = v(U) + α(i⋆JU)α(N). (5.6)

It should be noted from (5.5) that (F, u,U) defines an almost contact structure on M .

Lemma 5.1. Let (M, g, J) be an indefinite Kähler manifold with a fixed J−rigging ζ ∈ R(J) for a null hypersurface
M ⊂ M . Then, for any U, V ∈ Γ(TM), we have

(∇U ṽ)(V ) = τ(U)ṽ(V )− α(i⋆JV )α(N)τ(U)− g(ANU, i⋆JV ) + (∇Uα)(i⋆JV )α(N).

Proof. Let U, V ∈ Γ(TM). Relations (2.2) and (5.6) together with the Kähler condition provide

(∇Uv)V = U(v(V ))− v(∇UV ) = τ(U)v(V )− g(ANU, i⋆JV )

= τ(U)ṽ(V )− α(i⋆JV )α(N)τ(U)− g(ANU, i⋆JV ). (5.7)

Next, using (5.6), we directly derive

(∇U ṽ)V = (∇Uv)V + {U(α(i⋆JV ))− α(i⋆J∇UV )}α(N) + U(α(N))α(i⋆JV ). (5.8)

Since the J−rigging ζ ∈ R(J) is fixed then, the final expression follows from (5.7) and (5.8).

Lemma 5.2. Let (M, g, J) be an indefinite Kähler manifold with a fixed J−rigging ζ ∈ R(J) for a null hypersurface
M ⊂ M . Then

(∇UF )V = ũ(V )ANU − α(i⋆JV )ANU −B(U, V )U , (5.9)

(∇U ũ)V = −B(U,FV )− ũ(V )τ(U) + U(α(i⋆JV )) + α(i⋆JV )τ(U)− α(i⋆J∇UV ), (5.10)

where
(∇UF )V = ∇UFV − F∇UV, (∇U ũ)V = ∇U ũ(V )− ũ(∇UV ), (5.11)

for any U, V ∈ Γ(TM).

Proof. It is immediate by using the Gauss-Weingarten formulae and (5.3).

The type numbers t(p) and t⋆(p) of M and of the screen distribution SJ
ζ at a point p are the rank of the shape

operators AN and A⋆
ξ at p, respectively.

Theorem 5.1. Let M be a null hypersurface of an indefinite Kähler manifold (M, g, J) with fixed J−rigging ζ ∈ R(J).
If F is parallel with respect to the induced connection ∇ on M , then the type number t(p) of M satisfies t(p) ≤ 1, for any
p ∈ M . Moreover, B(U, V ) = u(V )B(U,U), B(U,V) = 0 and B(U,X) = 0, for any U, V ∈ Γ(TM) and X ∈ Γ(D).

Proof. Let F be parallel with respect to the induced connection ∇ on M then on taking scalar product of (5.9)
with U and X , we get u(V )g(ANU,U) = 0, and u(V )g(ANU,X) = 0, respectively and then replace V by U in the
above expressions, we obtain

g(ANU,U) = g(ANU,X) = 0, that is, C(U,U) = C(U,X) = 0. (5.12)

Take scalar product of (5.9) with V and by using (4.19), we have

B(U, V ) = u(V )g(ANU,V) = u(V )C(U,V) = u(V )B(U,U).

On replacing V by V and X in the last expression, we get B(U,V) = 0 and B(U,X) = 0, respectively.
Furthermore, from (2.6)2 and (5.12), it follows that the type number t(p) of M satisfies t(p) ≤ 1, for any
p ∈ M .

From (4.17), it is known that TM = J(tr(TM))⊕D. Hence, if the distributions J(tr(TM)) and D are parallel
distributions on M then by the decomposition theorem of de Rham [9], null hypersurface M of an indefinite
Kähler manifold M is locally a product manifold of the type LU ×MD, where LU is a null curve tangent to
J(tr(TM)) and MD is a leaf of D.
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Theorem 5.2. Let M be a null hypersurface of an indefinite Kähler manifold (M, g, J) with fixed J−rigging ζ ∈ R(J). If
F is parallel with respect to the induced connection ∇ on M then M is locally a product manifold of the type ML ×MD,
where ML and MD are some leaves of J(tr(TM)) and D, respectively.

Proof. The distribution D is parallel on M if and only if ∇UX ∈ Γ(D), for any U ∈ Γ(TM), X ∈ Γ(D)
or equivalently g(∇Uξ,V) = g(∇UV,V) = g(∇UY,V) = 0, for any U ∈ Γ(TM), X ∈ Γ(D), Y ∈ Γ(D), ξ ∈
Γ(Rad(TM)). Then using (2.1), (2.4), (2.5) and the Theorem 5.1, we get g(∇Uξ,V) = −B(U,V) = 0, g(∇UV,V) =
0 and g(∇UY,V) = B(U, JY ) = 0. Hence, the distribution D is a parallel distributions on M .

The distribution J(tr(TM)) is a parallel distribution on M if and only if ∇UU ∈ Γ(J(tr(TM))), for any
U ∈ Γ(TM) or equivalently,

g(∇UU , N) = g(∇UU ,U) = g(∇UU , Y ) = 0.

Then using (2.2), (2.6) and (5.12), we get g(∇UU , N) = C(U,U) = 0, g(∇UU ,U) = 0 and g(∇UU , Y ) =
−C(U, JY ) = 0. Hence the distribution J(tr(TM)) is a parallel distributions on M . Consequently, by the
decomposition theorem of de Rham [9], null hypersurface M of an indefinite Kähler manifold M is locally
a product manifold of the type LU ×MD, where LU is a null curve tangent to J(tr(TM)) and MD is a leaf of
D.

On replacing U by U in (5.3), we have
ũ(U) = 1 + α(N). (5.13)

Now, replace V by U in (5.10) and using (5.13) with Gauss-Weingarten formulae for lightlike hypersurface, we
derive ũ(∇UU) = (1 + α(N))τ(U)− α(ANU). On using (2.6)2 and (3.1), it follows that α(ANU) = g(ζ,ANU) =
g(N,ANU) = 0, then from the last expression, we have τ(U) = 1

(1+α(N)) ũ(∇UU), for any U ∈ Γ(TM). Now,
replace V = V in (5.10) and use the facts that ũ(V) = 1, FV = JV = ξ and B(U, ξ) = 0, for any U ∈ Γ(TM), we
derive ũ(∇UV) = α(i⋆J∇UV). Further using (2.1) and (2.4), we obtain α(i⋆J∇UV) = −τ(U), hence from the last
expression it yields

τ(U) = −ũ(∇UV), ∀ U ∈ Γ(TM). (5.14)

It is known that for a fixed J−rigging ζ ∈ R(J), α(i⋆Jξ) = 0 then it follows that ũ(ξ) = 0. Next, on taking V = ξ
in (5.9) and using (2.4) and (5.11), we obtain ∇UV = F (A⋆

ξU)− τ(U)V, further using (5.3), (5.4) and (5.14), we
get

∇UV = J(A⋆
ξU)− ũ(A⋆

ξU)N + α(i⋆JA
⋆
ξU)N + ũ(∇UV)V. (5.15)

Finally, take V = U in (5.9) and using (5.11), we derive F∇UU +ANU = B(U,U)U , apply F on the last
expression and further using (5.5), it implies that ∇UU = τ(U)U + FANU, further using (5.3) and (5.4), we
derive

∇UU = τ(U)U + J(ANU)− ũ(ANU)N + α(i⋆JANU)N. (5.16)

Hence from (5.15) and (5.16), the following is proved.

Theorem 5.3. Let (M, g, J) be an indefinite Kähler manifold with a fixed J−rigging ζ ∈ R(J) for a null hypersurface
M ⊂ M . Then we have

(i) The vector field V is parallel with respect to ∇ if and only if A⋆
ξU = ũ(A⋆

ξU)U − α(i⋆JA
⋆
ξU)U + ũ(∇UV)ξ.

(ii) The vector field U is parallel with respect to ∇ if and only if ANU = ũ(ANU)U − α(i⋆JANU)U , and τ vanishes
on M .

Lemma 5.3. Let (M, g, J) be an indefinite Kähler manifold with a fixed closed Killing J−rigging ζ ∈ R(J) for a null
hypersurface M ⊂ M . Then

∇̃UV −∇UV = ũ(A⋆
ξU)ξ − v(A⋆

ξU)ξ, (5.17)

∇̃UU −∇UU = ṽ(A⋆
ξU)ξ − v(ANU)ξ, (5.18)

for any vector field U on M .

Proof. Using (2.3), (3.23) and (3.24), we have ∇̃UV −∇UV = g̃(A⋆
ξU,V)ξ − C(U,V)ξ. Further, using the definition

of ũ and (4.18), we get ∇̃UV −∇UV = ũ(A⋆
ξU)ξ −B(U,U)ξ, on using (2.5) and then definition of v, we get the

equation (5.17). Similarly, we can derive (5.18).

Above Lemma 5.3 with (5.15) and (5.16), lead to the following.
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Corollary 5.1. Let (M, g, J) be an indefinite Kähler manifold with a fixed closed Killing J−rigging ζ ∈ R(J) for a null
hypersurface M ⊂ M . Then

(i) The vector field V is parallel with respect to ∇̃ if and only if

A⋆
ξU = {ũ(A⋆

ξU)− α(i⋆JA
⋆
ξU)}U + {v(A⋆

ξU)− ũ(A⋆
ξU)}V + ũ(∇UV)ξ.

(ii) The vector field U is parallel with respect to ∇̃ if and only if

ANU = {ũ(ANU)− α(i⋆JANU)}U − {ṽ(A⋆
ξU)− v(ANU)}V.

(iii) if A⋆
ξU ∈ Γ(D) then vector field V is parallel with respect to ∇̃ and ∇, simultaneously.

Theorem 5.4. Let (M, g, J) be an indefinite Kähler manifold with a fixed J−rigging ζ ∈ R(J) for a null hypersurface
M ⊂ M . Then M is totally geodesic if and only if

(∇UF )V = 0, ∀ U ∈ Γ(TM), V ∈ Γ(D ⊕orth J(TM⊥)),

ANU = −F∇UU , ∀ U ∈ Γ(TM).

Proof. From (5.3), we have ũ(ξ) = 0, also α(i⋆Jξ) = 0. Take V = ξ in (5.9) and by using the above facts, we obtain

(∇UF )ξ = 0. (5.19)

Take V ∈ Γ(D) in (5.9) and further using the fact that ũ(V ) = 0, we get

(∇UF )V = −B(U, V )U . (5.20)

Take V = Jξ in (5.9) and further using ũ(Jξ) = −1, α(J2ξ) = −1, we derive

(∇UF )Jξ = −B(U, Jξ)U . (5.21)

Finally, put V = U in (5.9) and (5.11). Since ũ(U) = 1 + α(N) and α(i⋆JU) = α(N),

ANU + F∇UU = B(U,U)U . (5.22)

The assertion follows from (5.19), (5.20), (5.21) and (5.22).
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