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1. Introduction 
Breast cancer is the second most frequently diagnosed cancer 
worldwide, with a frequency of up to 11.9%. It constitutes 
25.2% of all newly diagnosed cancers and is the leading type 
of cancer encountered in women. It has been observed that only 
5-10% of these cases are caused by genetic disorders, while the 
remaining 90-95% are due to environmental factors and 
lifestyle (1, 2). Hormonal factors, overexposure to estrogen, 
and subsequent differentiation of breast cells can affect a 
woman's risk of developing breast cancer (3). While obesity 
and weight gain in the postmenopausal period are associated 
with a higher risk of breast cancer, this association is not 
present for premenopausal women. The number of first-degree 
female relatives with a history of breast cancer significantly 
influences an individual's risk of breast cancer (4-6).  

The use of drugs in cancer treatment has been extensively 
studied since the 1940s (7). Chemotherapy is an important part 
of treatment for many types of cancer. For this reason, the 
effort to develop new anti-cancer drugs constitutes one of the 
largest areas in the pharmaceutical industry (8). It is known that 
a wide variety of chemotherapeutic agents are used clinically 

in sending cancer cells to death by apoptosis. Some of the most 
commonly used of these are Cisplatin, Taxol and Doxorubucin 
(9). While an increase has been observed in the number of anti-
cancer agents developed in the last 10 years, the number of 
agents that can successfully progress clinically from these 
products is less than 10%. The two most important reasons why 
anti-cancer agents cannot be accepted for treatment are their 
lack of clinical efficacy and high toxicity values. The product 
intended to be used as an anti-cancer agent must pass the phase-
III stage during clinical tests. Drug development studies have 
various difficulties due to the high cost of approximately 1.8 
billion dollars and the 9 to 12 years to be approved (10). 

Traditional methods of cancer treatment today, including 
radiotherapy and chemotherapy, are expensive and often have 
harmful side effects on healthy cells. In addition, cancer cells 
have the ability to develop resistance to existing 
chemotherapeutic drugs (11). Therefore, there is a constant 
need for the development of new anticancer drugs to reduce the 
proliferation of cancer cells. While traditional in vitro 
prediction strategies developed in this context face time and 
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cost constraints, potential interaction candidates can be 
predicted more efficiently by computational or in silico 
methods, which have recently become widespread (12). For all 
these reasons, the interest in the use of machine learning (ML) 
methods in the pharmaceutical industry is increasing in order 
to reduce the time spent and increased costs. 

Machine learning algorithms and software have been 
developed and used at all stages of drug discovery and 
development, including clinical trials. ML provides various 
facilities to identify new targets, provide stronger evidence for 
target-disease relationships, improve small molecule 
compound design and optimization, increase understanding of 
disease mechanisms, increase understanding of disease and 
non-disease phenotypes, and develop new biomarkers for 
prognosis (13). ML, a branch of artificial intelligence, is based 
on the idea of learning data from systems, identifying patterns 
and making decisions with minimal human intervention. There 
are several different ML methods implemented within the 
framework of artificial intelligence. For example, drug 
candidates can be optimized in drug discovery through a 
combination of models that predict favorable physicochemical 
properties (eg, solubility and permeability), pharmacokinetic 
properties, safety, and likely efficacy (14). ML techniques are 
very powerful tools in helping several steps of the drug 
discovery process, reducing the time spent in the laboratory, 
the use of consumables and chemical materials, and the 
maximum time anticipated for the discovery of a drug by 
conventional methods (15). 

Although there are a wide variety of chemotherapeutics in 
current use, scientific studies continue rapidly to produce new 
agents. In these studies, it is aimed to develop new agents that 
are more effective and have fewer side effects than the agents 
currently in use. However, successful results cannot be 
obtained from the vast majority of new agents whose efficacy 
is estimated and in vitro cytotoxicity tests are performed after 
synthesis. In this direction, in our study, it was aimed to select 
new anticancer compounds that can be effective on breast 
cancer by using large data sets with machine learning method. 
In this way, it is planned to avoid cost, time loss and ethical 
concerns arising from unsuccessful experiments by conducting 
trials with compounds with cytotoxic potential in future in vitro 
and in vivo studies. 

2. Materials and Methods 
In this study, Health Sciences University, Experimental 
Medicine Application and Research Center Organic Synthesis 
laboratory facilities were used. 

2.1. Data set 
Compounds showing anti-cancer activity were obtained for the 
analyses, with the support of the literature. The collected data 
was uploaded to the OCHEM database, an easy-to-use and 
web-based platform designed to store experimental results and 
biological activity results of compounds that form the basis of 
in silico modeling. This dataset (98 compounds) prepared to 

develop the models consisted of carbazones, coumarins, 
quinolones, azoles, barbiturates and different chemical series. 
Concentrations of compounds with various IC50 values were 
applied to the data set in micromolar (Fig. S1). The dataset was 
used to develop both classification and regression models. To 
develop the regression models, the concentration of selected 
compounds against anti-cancer inhibition was determined in 
µM. After uploading the dataset to the website 
(www.ochem.eu), an independent test set was created by 
randomly selecting approximately 20%-25% of the 
compounds to obtain validation. Molecular formulas and anti-
cancer activity results of all compounds generated in the 
training and validation test sets are available and accessible 
online. 

2.2. Machine learning 
It is the products that have the basic features that have the basic 
features that are basic in a data set consisting of those who have 
this collection prepared for a data set consisting of those in the 
literature. EU). ML method available in OCHEM is used to 
create in-silico models based on different sets (ASNNN, 
XGBOOST, WEKA-RF). 

2.2.1. Validation of Models 
Fivefold cross-validation and external reading set are used to 
validate models. 

2.2.2. Statistical Parameters 
Classification models (SN) and specificity (SP) will be 
calculated as follows; 

SN=TP/(TP+FN) and SP=TN/(TN+FP) 

In this case, it can be accurately calculated, verified as 
accurately as possible, accurately calculated, which is 
absolutely not true. 

2.2.3. Molecular Identification 
The following molecular identifiers from the OCHEM 
database are used. 

-E-state indices: Electro-topological state indices are 2D 
descriptors that combine both electronic and topological 
properties of the compounds analyzed. 

-ALogPS: The program calculates the 1-octanol/water 
distribution coefficient and solubility in water. 

-ChemAxon descriptors: ChemAxon supports the 
calculation of six descriptive groups from 0D to 3D: 
fundamental analysis, charge, geometry, partitioning, 
protonation states. 

-ADRIANA.Code: The software uses a set of methods for 
the creation of 3D-structures, calculation of physicochemical 
descriptors and molecular properties based on experimental 
models. 

2.3. Classification methods 
The data set (98 compounds) was randomly divided into two 
groups: the training (80) and the test set (18). The models were 
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developed after unidentified filtering of molecular descriptors. 
In addition, unsupervised forward selection (UFS) was used in 
models 1, 2 and 4 (Table 1) for better filtering of molecular 
descriptors. The RF algorithm used random subsets of 
descriptors as it was less subject to the problem of correlation 
between molecular descriptors. Therefore, the best WEKA-RF 
model was obtained without the use of UFS. 

Initially, all descriptor sets available on the OCHEM 
website were scanned and the latest models with the highest 
predictive accuracy were calculated using four different 
descriptor sets. Improved models were summarized in Table 1 
and Fig. S2. All models showed approximate results in terms 
of sensitivity, specificity and mean accuracy (BA), calculated 
by averaging all other methods with the training set consensus 
model.

Table 1. Statistical coefficients calculated for classification models obtained from the data set 
  Sensitivity (%) Specificity (%) Average Accuracy (%) 

N Methods Practicea Testa Practicea Testa Practice Test 

1 ASNN 86.1 76.4 62.5 100.0 81.0 ± 6.0 90.0 ± 10.0 

2 kNN 91.6 78.6 50.0 50.0 59.0 ± 7.0 70.0 ± 10.0 

3 XGBOOST 86.5 76.4 53.8 100.0 75.0 ± 7.0 90.0 ± 10.0 

4 WEKA-RF 89.7 81.1 66.7 100.0 70.0 ± 7.0 80.0 ± 10.0 

5 Consensus 89.8 86.6 72.7 100.0 75.0 ± 3.0 89.0 ± 5.00 

2.3.1. Regression models 
The data set used in classification is also used in this model. 
Three methods for regression model analysis, ASNN, kNN and 
XGBOOST, have been developed to give the highest 
performance. 3 different molecular descriptors Adriana, 
ALOGPS and E-state were used on OCHEM to ensure better 
performance of the above methods used in the calculation of 
regression models. The results obtained (R2, q2) are 
summarized in Table 2. 

Table 2. Statistical coefficients of regression models 
  Training Set Test Set 

N Methods R2 q2 R2 q2 

1 ASNN 0.09 ± 0.07 0.05 ± 0.06 0.6 ± 0.2 0.3 ± 0.1 

2 kNN 0.02 ± 0.03 0.00 ± 0.00 0.3 ± 0.2 0.06 ± 0.04 

3 XGBOOST 0.09 ± 0.01 0.04 ± 0.1 0.5 ± 0.3 0.4 ± 0.2 

4 Consensus 0.08 ± 0.09 0.06 ± 0.09 0.5 ± 0.2 0.3 ± 0.1 

2.3.2. Activity estimation of new compounds 
A virtual database of 7 Schiff base derivatives with different 
substituents at the R1, R2 and R3 positions was created (Fig. 
1). Compounds identified using the consensus classification 

model were screened for being active or inactive against the 
MCF-7 cancer cell line, and all of these compounds were found 
to be active (Table 3)

 
Fig. 1. 7 Virtual library of Schiff base derivative; R1, R2 and R3 were chosen based on the availability of starting materials for the synthesis 
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Table 3. Compounds tested against the MCF-7 cancer cell line and their estimated activity accuracies, the most active (marked in red), and their 
IC50 values (µM) 

Compound Active/Inactive Predicted accuracy 
(%) 

Predicted activity 
(IC50, μM) 

 

active 88 29.50 

 

active 88 29.50 

 

active 96 38.00 

 

active 92 41.00 

 

active 88 39.00 

 

active 91 43.00 

 

active 87 28.00 

2.4. Synthesis procedure 
Compound 1 was selected among those with the highest 
activity results (compounds 1, 3 and 7), which were found to 

be active in our study, and its synthesis was carried out step by 
step as follows (Fig. 2). 

 
Fig. 2. Synthetic pathway for the synthesis of target compound (1) 
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Synthesis of Compound B (Ethyl 2-(4-(4-
nitrophenyl)piperazin-1-yl)acetate) [16] 

Ethyl bromoacetate (10 mmol) was added dropwise to the 
solution of 1-(4-nitrophenyl) piperazine (10 mmol) in 
tetrahydrofuran in a round-bottom flask, and the resulting 
mixture was stirred at room temperature in the presence of 
triethylamine (10 mmol) for 24 hours. After the salt formed 
was removed by filtration, the solvent was evaporated under 
reduced pressure and the solid obtained was crystallized from 
ethanol and purified. 

Melting point: 115-116 oC, Reaction yield: 99%. Yellow 
solid. FT-IR (υmax, cm-1): 3080 (ar-CH), 1742 (C=O). 1H NMR 
(DMSO-d6, δppm): 1.24 (t, 3H, J=8.0 Hz, CH3), 2.69 (s, 4H, 
2CH2), 3.34 (s, 2H, CH2), 3.50 (s, 4H, 2CH2), 4.14 (q, 2H, 
J=8.0 Hz, CH2), 7.06 (d, 2H, J=8.0 Hz, arH), 8.09 (d, 2H, J=8.0 
Hz, arH). 13C NMR (DMSO-d6, δppm): 14.70, 46.90, 52.00, 
58.64, 60.48, 113.20, 113.24, 126.28, 126.30, 137.44, 155.29, 
170.41. LC-MS m/z: 316.12 ([M+Na]+). 

Synthesis of Compound C (2-(4-(4-nitrophenyl)piperazin-1-
yl)acetohydrazide) [16] 

Hydrazine hydrate (30 mmol) was added to the solution of 
compound no. 2 (10 mmol) in ethanol in a round-bottom flask, 
and the mixture was boiled under reflux for 5 hours. After 
completion of the reaction, the solvent was evaporated under 
reduced pressure to give a solid. The resulting solid was 
crystallized from ethanol and purified. 

Melting point: 163-164 oC, Reaction yield: 97%. Yellow 
solid. FT-IR (υmax, cm-1): 3328 and 3248 (NH2 + NH), 3006 (ar-
CH), 1631 (C=O). 1H NMR (DMSO-d6, δppm): 2.58-2.63 (m, 
4H, 2CH2), 3.06 (s, 2H, CH2), 3.55 (s, 4H, 2CH2), 4.32 (s, 2H, 
NH2), 7.09 (s, 2H, arH), 8.11 (s, 2H, arH), 9.06 (s, 1H, NH). 
13C NMR (DMSO-d6, δppm): 46.88, 52.89, 60.16, 113.22, 
126.36, 137.39, 155.31, 168.65. LC-MS m/z: 302.11 
([M+Na]+). 

Synthesis of Compound 1 ((E)-N'-(4-nitrobenzylidene)-2-(4-
(4-nitrophenyl)piperazin-1-yl) acetohydrazide) 

4-nitrobenzaldehyde (10 mmol) and 3-4 drops of acetic acid 
were added to the solution of compound 3 (10 mmol) in ethanol 
in a round-bottom flask, and the mixture was refluxed for 6 
hours. After completion of the reaction, the solid formed was 
filtered and dried. Purification was carried out by 
crystallization from ethyl acetate. 

Melting point: 236-237 oC, Reaction yield: 91%. Yellow 
solid. FT-IR (υmax, cm-1): 3380 (NH), 1684 (C=O), 1584 
(C=N). 1H NMR (DMSO-d6, δppm): 2.59 (t, 2H, J=4.0 Hz, 
CH2), 2.74 (t, 2H, J=4.0 Hz, CH2), 3.18 (s, 2H, CH2), 3.46 (t, 
2H, J=4.0 Hz, CH2), 3.60 (t, 2H, J=4.0 Hz, CH2), 6.85 (d, 2H, 
J=4.0 Hz, arH), 7.80 (d, 2H, J=8.0 Hz, arH), 7.87 (d, 2H, J=4.0 
Hz, arH), 8.22 (d, 2H, J=4.0 Hz, arH), 8.50 (s, 1H, CH), 10.74 
(s, 1H, NH). 13C NMR (DMSO-d6, δppm): 50.36, 51.54, 57.62, 
112.41, 124.48, 126.40, 127.95, 138.88, 139.94, 148.02, 

148.64, 158.23, 165.42. LC-MS m/z: 413.23 ([M+1]+). 

3. Results 
3.1. Calculation of IC50 Value with Machine Learning 

Method 
Cross-validated average accuracy results for all models (5-fold 
cross validation) for all models using the ML method range 
from 59% to 81%. With the same models, the mean accuracy 
was also calculated for the test sets, and significant values were 
found in the range of 70%-89%. Consensus model, which is 
calculated by averaging all models, has been chosen for the 
highest results efficiency. 

Statistical calculations of the regression models were made 
by applying ASNN, kNN, XGBOOST and consensus models 
as the average of the three methods. R2 and q2 values in the 
training and test sets are shown in Table 2. Anti-cancer activity 
predictions of new compounds were made with the help of 
classification and regression models created by ML method. 
All 7 determined compounds were found to be active with the 
models created, and 3 compounds were determined to be 
synthesized with an estimated accuracy result (≥87) and 
estimated activity value (≤30 µM) by making an evaluation 
from these results (Table 3). 

4. Discussion 
Using the OCHEM web-based platform, in silico models based 
on different ML techniques and various molecular descriptors 
were created. The models created, cross validation methods 
and estimation of external test sets were made to ensure the 
validation of the model. With these methods, the activities of 
the new Schiff base derivatives designed based on the literature 
data against the MCF-7 cancer cell line were estimated and it 
was determined that the models created showed high stability, 
robustness and predictive power. All compounds engineered as 
a result of the ML models were found to be active against the 
MCF-7 cancer cell line. This result confirms that ML 
approaches facilitate a rational search for active molecules 
within budget and time constraints, which is especially 
important in academic settings. In addition, the developed 
models are available to researchers working in this field and 
can be used to predict the anti-cancer activity of new 
compounds. Compound 1 was synthesized by ML method 
among the 3 most active compounds on MCF-7 cells. 
Traditional treatment methods are now being replaced by 
personalized cancer treatment. The structure of the cells taken 
from the tumour tissue of the patient diagnosed with cancer can 
be examined under laboratory conditions, and the treatment of 
the patient can be directed. With this method, it is aimed to find 
the right treatment method without time, energy and financial 
loss. Personalized cancer treatment is a more effective method 
than traditional therapies (17). In parallel, in our study, the 
anticancer effect of compound 1, whose cytotoxic effect was 
determined by machine learning method, was also 
demonstrated in vitro. Therefore, it has been demonstrated that 
personalized treatments can also be performed using machine 
learning method. One of the main problems with the 
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development of cancer therapy is the low reproducibility of 
results observed in animal models and patients. It has been 
reported that the correlation of data obtained from animal 
models with human tissue is less than 10% (18). More 
physiological human models are needed to reduce this attrition 
rate, improve preclinical screening, and reduce animal use. 
Monolayer and three-dimensional cell culture methods, such as 
cancer spheroids, are emerging as an important tool for high-
throughput screening (19, 20). There is a large gap between in 
vitro two-dimensional cell culture and in vivo. 3D cell culture 
models provide more realistic spatial, biochemical and cellular 
parameters compared to 2D models and can bridge this gap. It 
has been shown that 3D cell culture models are pioneers in 
elucidating molecular and cellular mechanisms, facilitating the 
development and screening of new drugs because they reflect 
intercellular interactions more realistically (21-23). It is 
planned to switch to in vivo studies after the compounds 
synthesized by showing the potential for cytotoxic effects on 
MCF-7 will be used in 2D and 3D in vitro studies in the future. 
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Supplementary materials 

 
1- Data collection and uploading to the system 

 

 
 

2- Creating the model 

 
3- Choosing molecular identifiers 

 
4- Obtaining and evaluating results 

Fig. S1. Application of machine learning method 
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Fig. S2. Classification method results 

 


