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ABSTRACT 
 

Two dimensional (2D) materials have attracted many researchers due to the high-performance of the devices produced by these 

materials. There are different methods to produce 2D materials such as wet chemical synthesis, chemical vapor deposition 

(CVD), molecular beam epitaxy, atomic layer deposition, pulsed laser deposition (PLD), all of which require hours during the 

processes. Once the 2D structures are obtained, their properties including their defects should be revealed by different 

characterization tools. Characterization process also requires time and expertise. In this respect, deep learning methods such as 

Convolutional Neural Networks (CNN) can be a solution for the practical and rapid classification of the produced samples. 

However, there is not enough number of samples in most of the research laboratories because of the above-mentioned long 

experimental processes. This work presents the performance of a CNN algorithm using artificially created images of MoS2, a 

commonly studied 2D semiconductor with a high potential in different electronics applications. The synthetic optical 

microscopic images including normal and defected MoS2 flakes are generated by the intensities of light incident on different 

materials using Fresnel Equations. A deep CNN algorithm is constructed to detect the normal and defective samples. As a result 

of the experiments, an average of 88.9% accuracy was obtained. These results can be interpreted that CNN can be used in the 

future for the characterization of two-dimensional materials with a sufficient number of real images.  
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1. INTRODUCTION 
 

The scaling-down in transistors has led to great progress in silicon-CMOS technology. Reducing the 

physical dimensions at the beginning of the technology development resulted in an improvement in 

speed performance where the power density did not change much. However, in recent years, voltage 

scaling had to be carefully considered, given that lowering the threshold voltage makes it difficult to 

drive enough current, which means an increase in leakage current [1]. Remembering that there is the 

fundamental limit of subthreshold swing (SS), which has to be larger than 60 mV per decade at 300 K 

in conventional MOSFETs [2], the power density power in high-performance microprocessors is 

demanding complicated power management methods although reduction of physical dimensions has 

still been carried out up to present [3]. The problems related to the rise of static power and the leakage 

of current between the source and drain electrodes are examined under the concept of short-channel 

effects. In this sense, novel and smart strategies have to be pursued to overcome the aforementioned 

limitations and continue to improve the performance of transistors. 

 

At this point, FETs that are made up of a 2 dimensional (2D) material based channel do not suffer from 

leakage current since the electrons are confined in atomically thin layers where the gate voltage provides 

a uniform operation [4]. Hence, lately, the potential of layered materials, namely 2D materials, have 

been recognized for advanced technological applications [5]. Such 2D materials present unusual 

properties that do not exist unconventional bulk materials.  The most widely studied 2D material is 
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graphene [6], which is a sheet of carbon atoms atomically thin where its pristine form has a zero-bandgap 

and is counted as a  semimetal. However, the lack of an energy bandgap makes graphene unsuitable for 

FET applications, despite different efforts to open a bandgap. Therefore, other 2D materials have started 

to come into play, mainly semiconductor transition metal dichalcogenides (TMDs) as they possess a 

bandgaps in the visible and infrared spectral range. On the other hand, there are still critical challenges 

related to production and characterization of these 2D materials to be utilized as a compelling 

technology. 

  

Chronologically, first 2D materials were realized by using mechanical exfoliation, which were limited 

to some tens of micrometers [7]. Other methods such as wet chemical synthesis, chemical vapor 

deposition (CVD), molecular beam epitaxy, atomic layer deposition, pulsed laser deposition (PLD) have 

been studies to realize such 2D materials [8], where among these, the CVD process has advanced in 

years and it is recognized as a high potential technique that can provide scalable 2D materials [9, 10] 

and it is well-suited with microelectronic processes [11]. Nevertheless, the activation of gaseous 

reactions , controllability of the formed structures and wafer-size fabrication persist as critical issues 

[12]. In addition to these, 2D material characterization includes time-consuming and sometimes 

expensive routes such as Raman scattering spectroscopy, atomic force microscopy (AFM), 

photoluminescence (PL) spectroscopy, which are not suitable for large-area analysis [13, 14]. If the 

usage of an optical microscope is enhanced also as a tool to understand the uniformity and layer 

thickness then such a practical and low-cost option of characterization tool would make significant 

contribution to the field considering that mainly, an optical microscope is the first tool that is utilized to 

investigate the obtained 2D materials [15].   

 

CVD grown 2D materials can include different number of layers, defects, gain boundaries, wrinkles and 

oxide formations, which can affect the device operation of a device of which the active region is made 

up of 2D materials. Hence, recently, there are ongoing researches that utilize a relatively simple 

characterization tool, optical microscope, to make detailed analyses of 2D materials while still keeping 

rapidness and large-area examination where these techniques engage deep learning-based methods is 

established on artificial neural networks [16-18].  

 

There is an increasing usage of these artificial intelligence techniques in diverse fields including 

medicine, diagnosis, biology, physics, and electronics [19-22]. Image processing, classification, 

clarifying and creating images are also among the other applications [23]. Out of various deep learning 

methods, convolutional neural networks (CNN) out-performs other techniques for image identification 

and arrangement [24-26]. 

 

This article mainly focuses on obtaining a method to decide if CVD grown 2D TMD materials, namely 

MoS2 monolayers, are suitable to be employed in devices such as transistors, sensors or detectors. Such 

formations will be referred as intact structures hereafter. In this study, a deep learning method for the 

characterization of 2D MoS2 will be applied where artificial images, which mimic the images that are 

obtained by optical microscopy tool, are produced using Fresnel equations for training and testing.  

 

2. METHODS 

 

2.1. Fresnel Equations 

 

Light, as an electromagnetic wave, incident on a surface is partially reflected and partially refracted. 

According to the Snell’s law, the reflection and transmission angles of these waves can be calculated. 

Based on these angles, Fresnel equations, which define the ratio of the electric field of reflected and 

refracted waves, are derived [27, 28]. A bright-field microscope creates images by using the contrast of 

the reflected light from the different points of the sample surface. Therefore, generating synthetic images 

could be possible if the physical properties of both the substrates and the deposited materials are known. 
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The cross section of a sample for a typically grown 2D material to be examined under the optical 

microscope is given below. 

             

Figure 1. Cross-section of a grown 2D material (MoS2). 

 

The optical contrast of the sample for two regions can be defined as in Equation 1. 

𝐶 =
𝐼𝐹 − 𝐼𝑆

𝐼𝐹 + 𝐼𝑆
 

 

(1) 

where 𝐼𝐹 and 𝐼𝑆 are the light intensities in region F and region S, respectively. As it is shown in Figure 

1, region F has a 2D material (MoS2) on the substrate (SiO2/Si), whereas region S has only the substrate 

(SiO2/Si). Therefore, light intensities reflected by two different regions would be different and can be 

defined as:  

𝐼𝐹 = |𝑟�̅�𝑟𝐹| (2) 

𝐼𝑆 = |𝑟�̅�𝑟𝑆|  (3) 

where, 𝑟𝐹 and 𝑟𝑆 are the reflection Fresnel coefficients for region F and S, respectively. These two values 

should be analyzed for two cases where in region S there is only the substrate (3 layers including air, 

SiO2 and Si) and in region F the substrate is covered with the 2D material (4 layers including air, MoS2, 

SiO2 and Si).  The related reflection Fresnel coefficients for the regions are defined as in Equation 4 and 

5.   

𝑟𝐹 =
𝑟01𝑒𝑖(∅1+∅2) + 𝑟12𝑒−𝑖(∅1−∅2) + 𝑟23𝑒−𝑖(∅1+∅2) + 𝑟01𝑟12𝑟23𝑒𝑖(∅1−∅2)

𝑒𝑖(∅1+∅2) + 𝑟01𝑟12𝑒−𝑖(∅1−∅2) + 𝑟01𝑟23𝑒−𝑖(∅1+∅2) + 𝑟12𝑟23𝑒𝑖(∅1−∅2)
 (4) 

 

𝑟𝑆 =
𝑟01 − 𝑟12𝑒−𝑖2∅1

1 + 𝑟01𝑟12𝑒−𝑖2∅1
 

 

 (5) 

where, Fresnel coefficients (𝑟𝑖𝑗) are the functions of refractive indexes (𝑛𝑖 and 𝑛𝑗) of the overlapping 

layers i and j: 

𝑟𝑖𝑗 =
(𝑛𝑖 − 𝑛𝑗)

(𝑛𝑖 + 𝑛𝑗)
 

 

(6) 

and ∅𝑖 is the phase shift resulted by the propagation of the light in the medium of layer i. ∅𝑖 is expressed 

as: 

∅𝑖 =
2𝜋𝑛𝑖𝑑𝑖

𝜆
 

 
(7) 
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where 𝑛𝑖, 𝑑𝑖 and 𝜆 are the refractive index, the thickness of the medium i, and the wavelength of the 

light, respectively. The index i is 0 for air, 1 for MoS2, 2 for SiO2 and 3 for Si.  

Hence, for an artificially created structure shown in Figure 1 with the specific values of the refractive 

indices of the media, the intensities of light for the two regions can be obtained under different 

wavelengths. Then, an artificial RGB image can be constructed for different thicknesses from which the 

2D material can be characterized. 

 

2.2. Convolutional Neural Networks 

 

Hubel and Wiesel discovered “simple cells” and “complex cells” regarding the kitten visual cortex in 

1959 [29]. According to this study, two kinds of cells are used for visual recognition. 20 years later, this 

study gave inspiration to Kunihiko Fukushima where the artificial neural network was designed  to 

mimic such complex and simple cells [30]. The artificial cells were evidently not biological neurons, 

but rather mathematical operations. Fukushima’s model was detecting simple shapes by simple cells 

whereas complex images (e.g., a human face) by complex cells which use lower-level complex cells or 

simple cells to get the features (e.g., an eye). In the 1990s, first modern convolution neural networks 

published by Yann LeCun [31]. In this research, LeCun created a convolutional neural network to 

recognize handwritten characters from the dataset which is called MNIST. 

 

A CNN is a structure/concept that typically has three types of layers: convolution layer, pooling layer, 

and fully connected layer (Figure 2). The convolution layer and the pooling layer extract the features, 

and the fully connected layer is a typical neural network which maps the flattened layer vector to the 

output. Convolution layers perform convolution operation by some numbers of filters (kernels). Pixel 

values in digital images are processed by a kernel, a feature extractor. As you move through the layers, 

the extracted features also move from low-level to high-level patterns. 

 

 
 

Figure 2. Convolutional Neural Network 

 

Input Layer 

 

The first layer of the CNN is the input layer from which the network receives the data raw data. The 

data size sent to this layer is critical for to the successful implementation of the model being intended. 

Choosing an image size rather large at the input increases high storage requirements as well as training 

and testing time per image. Furthermore, it can improve the network success rate. Choosing a smaller 

input image size can reduce memory requirements and reduce the training time. However, this time, 

smaller input image size will cause the depth of the network to decrease and the performance to 

deteriorate. Hence, for analyzing images, it is of importance to choose a proper image size in the input 

to reach the appropriate network depth, network success rate, and hardware computational cost. 
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Convolution Layer 

 

The basis of the CNN is the convolution layer also recognized as the transformation level. This 

conversion process is built on looping specific filters throughout the full image. Therefore, a layered 

architecture comprises filters that are an integral part of the architecture with different filter sizes. Filters 

generate output data by means of employing a convolution operation to the preceding level image. 

Accordingly, this convolution operation provides the feature maps to be formed. The map of activation 

is the area where specific features are found for each filter. While training a CNN in the training set, 

each learning iteration changes the coefficients of these filters. In this way, the network can determine 

which areas of the data are essential for representation. 

 

In case that we come up with some M×N size input (I) for any convolution operation and use an m×n 

filter “f” the size of the convolutional layer output X will become (M−m+1)×(N−n+1) and can be 

obtained by the following Equation.  

 

𝑋𝑖,𝑗 =  ∑ ∑ 𝑊(𝑖+𝑎−1),(𝑗+𝑏−1)𝑓𝑎,𝑏

𝑀−1

𝑎=0

𝑁−1

𝑏=0

 

 

(8) 

Pooling Layer 

 

The main objective of this layer is to decrease the input size for the next layer. The size of the depth is 

not changed by pooling operation. The process executed at this layer can be called "downsampling". 

The information loss due to the reduction size would provide two advantages. Firstly, it decreases the 

simulation time resulting from a smaller number of parameters in the network. Secondly, overfitting 

problem is avoided in deep learning. Although pooling operation is held by so called filters, this operates 

differently from the filters in convolution layer. For example, max pooling is that taking the maximum 

value of a group of pixels defined initially. 

 

Fully Connected Layer 

 

In a CNN architecture, after the successive convolution and pooling layers are completed, fully 

connected layers need to be considered. This layer takes inputs from the last pooling layer which are 

flattened. The number of hidden layers will vary in different architectures. Each neuron in each layer is 

fully connected to the previous and next layer neurons. Hence, this layer is called a fully connected 

layer. If the input of fully connected layer is represented by a vector h, layer number by l, neuron weights 

by a matrix W and bias vector by B, then the input of transfer function (𝜎) and the output of the layer 

will be defined as: 

 

ℎ𝑖𝑛
𝑙 =  𝑊𝑙  ℎ𝑙−1

𝑜𝑢𝑡 + 𝐵𝑙 

 
(9) 

𝑦𝑙 = 𝜎(ℎ𝑖𝑛
𝑙 ) 

 

(10) 

Output Layer 

 

This layer is the last layer of the fully connected layer. Classification happens at this level of this deep 

learning architecture. The output value of this layer is equal to the number of objects to be classified. 

Various transfer functions can be used in this layer. 

 

 

 

 



Perkgöz and Angi / Eskişehir Technical Univ. J. of Sci. and Tech. – A – Appl. Sci. and Eng. 23 (3) – 2022 
 

228 

3. RESULTS and DISCUSSIONS 

 

The CNN algorithm developed for the classification of normal and defective stamps uses 10,000 

artificial images of 100x100 pixels where 60% of the dataset is reserved for training, 20% for validation 

and 20% for testing. Half of the images contain normal flakes and the rest have distorted MoS2 flakes. 

Distorted scales consist of two or more layers or have irregular structures. The images are created based 

on the intensity values for region F and S under red, green and blue light. For a normal flake, which has 

only one layer of MoS2, 𝑑1 = 0.63 nm [32]. The thickness of SiO2 (𝑑2) is 300 nm [32]. The refractive 

indices 𝑛𝑖 are given in Table 1 below for the colors in red, green, and blue [32]. 
 

Table 1. Refractive Indices 
 

𝑛 Red Green Blue 

𝑛1(MoS2) 4.3-1i 4.0-0.6i 4.5-1i 

𝑛2 (SiO2) 1.2 1.29 1.36 

𝑛3 (Si) 3.84-0.016i 4.04-0.03i 4.67-0.14i 

 

Based on the above parameters and Fresnel equations given in Section 2, the intact flakes are created 

and placed randomly on the images. For the case of defected flakes, non-uniform MoS2 structures are 

created for various 𝑑1values which will be multiples of one-layer MoS2 thickness. Some examples for 

both of the cases are given in Figure 3. 

 

a)  

 
 

b)  

 

c)  

 

d)  

 
 

Figure 3. a, b) Intact flakes, c, d) defected flakes 

 

In order to classify the uniformly and defected grown 2D materials, the CNN is structured as follows:  

There are 4 convolution layers where the convolution operation is held by 8, 16, 32 and 64 number of 

filters with 7x7, 7x7, 5x5 and 3x3 sizes, respectively. The pooling operation is held by choosing the 
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maximum of 2x2 pixels after each convolution layer. All the neurons in the network have LeakyRELU 

transfer function, except for the output neuron. A LeakyRELU transfer function is given in Figure 4. 

 

 

 
 
 

Figure 4. LeakyRELU Transfer Function 

 

The output of the last maxpooling layer is flattened, which is the input vector of the fully connected 

layer of size 576. The fully connected layer has 64 neurons in the hidden layer and one output neuron 

with a sigmoid transfer function. The adaptive moment estimation (ADAM) optimizer is applied with a 

learning rate of 0.1. 

 

The CNN algorithm is simulated 10 times with the same data set and the parameters on a PC computer 

which has a 3.5 GHz processor, of 128 GB RAM memory and RTX A5000 GPU. The created data has 

two classes of equal number of images. Performance metrics given in Equation 11-14 are used to find 

out the success of the CNN algorithm.   

 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =  
𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁
× 100 

 
(11) 

 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =  
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
× 100 

 
(12) 

 

𝑅𝑒𝑐𝑎𝑙𝑙 =  
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
× 100 

 
(13) 

 

𝐹1𝑆𝑐𝑜𝑟𝑒 =  2 ×
𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 × 𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑅𝑒𝑐𝑎𝑙𝑙
 

 

(14) 

 

where, TP is the true positives, TN is the true negatives, FP is the false positives and FN is the false 

negatives. 

 

The proposed method is simulated 10 times with the same parameters and the same data set. After 

obtaining the trained CNN structure, the test data is evaluated additionally. The performance metrics are 

obtained as given in Table 2 for the test data.  

 

 
Table 2. Performance Metrics  

 
Accuracy Precision Recall  F1 Score 

88.9% 89.8% 88.1% 88.9% 
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4. CONCLUSIONS 

 

The production and characterization of nanomaterials is a time-consuming and demanding process, 

which required an expert to analyze and interpret the results. However, a CNN based deep learning 

method can do this laborious task in a very short time if it can be trained with a sufficient number of 

samples.  In this work, first of all, 2D materials are created by using Fresnel equations and the material-

specific values to obtain enough amount of data. The images of the flakes are constructed artificially 

assuming that a MoS2 flake is on a SiO2 layer which lays on a Si substrate. The intensity values of a 

normal light are calculated for both the regions with and without MoS2 layer. From the intensity values 

the images are obtained for two classes of samples, based on the most encountered sample images. Then, 

a CNN structure is proposed to determine whether the sample is intact or defected. The classification 

performance of a CNN is evaluated by using these artificially created microscopic images that include 

two dimensional materials. Even though the images were artificially created, the high accuracy of the 

results have proved that CNN algorithms can also be used in the future with sufficient number of 

experimentally obtained data. Also, this work can be carried out for different types of 2D materials for 

the classification of intact and defected samples.  
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