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Abstract

In this article, two methods are proposed to solve the fractional Cahn-Hilliard equation.
This model describes the process of phase separation with nonlocal memory effects. Cahn-
Hilliard equations have numerous applications in real-world scenarios, e.g., material sci-
ences, cell biology, and image processing. Different types of solutions have been obtained.
For this, the fractional complex transformation has been used to convert fractional differen-
tial equation to ordinary differential equation of integer order. As a result, these solutions
are new solutions that do not exist in the literature.

1. Introduction

Shallow water areas show nonlinear effects during the propagation and transformation of swelling waves. Nonlinear equations such as Cahn-
Hilliard equation exhibit significant spectral energy transfer for finite amplitude waves in shallow areas above the flat seafloor [1]. Chaotic
oscillations usually occur in nonlinear dynamical systems (especially in watersheds). This systems can be represented by Cahn-Hilliard
equation with nonlinear oscillations and external periodic excitation [2].
Fractional differential equations (FDEs) are generalizations of known differential equations (ODEs). Fractional order partial differential
equations (fPDEs) are used effectively in many fields of science because they give more realistic results in modeling real life problems. [3–6].
Many useful methods have been presented for exact solutions of fPDEs as the

(
G′
G

)
-expansion [7–9], the sub-equation [10, 11], the

exp-function [12–15], the first integral [16], the functional variable [17, 18], the modified simplest equation [19, 20]. The Kudryashov
method [21]. With the help of these methods, solutions of fPDEs in many different forms are calculated.
In the next section, the extended tanh method and the sine-cosine method are introduced. In the next section, we will find the traveling wave
solutions of the fractional Cahn-Hilliard equation (fCHE) via the this methods. We will talk about the data obtained in the last section.

2. Presentment of the Methods

2.1. The conformable derivative

The basic limit definition of this derivative is [22]:

Dα
t f (t) =


1

Γ(1−α)
d
dt
∫ t

0(t−ξ )−α ( f (ξ )− f (0))dξ , 0 < α < 1

( f (n)(t))(α−n) , n≤ α < n+1, n≥ 1.
(2.1)

Some important properties of the conformable derivative were summarized in [23, 24]. Now, we briefly describe the definition and theorems
of conformable derivatives:
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Definition 2.1. Let g : (0,∞)→ R be a function. The conformable derivative of g for order α is defined by

Tα (g(k)) = lim
ε→0

g
(
k+ εk1−α

)
−g(k)

ε
(2.2)

for all k > 0, α ∈ (0,1).

Theorem 2.2. If a function g : [0,∞)→ R is α−differentiable at t0 > 0, α ∈ (0,1], g is continuous at t0.

Theorem 2.3. Let f and g be α−differentiable at a point t > 0, α ∈ (0,1]:

Tα (α f +bg) = aTα ( f )+bTα (g), for all a,b ∈ R.

Tα (t p) = pt p−α , for all p ∈ R.

Tα (λ ) = 0, for all constant functions f (t) = λ . (2.3)

Tα ( f g) = f Tα (g)+gTα ( f ).

Tα

(
f
g

)
=

gTα ( f )− f Tα (g)
g2 .

If g is differentiable:

Tα (g)(t) = t1−α dg
dt

(t). (2.4)

A nonlinear conformable partial differential equations (CPDEs) with two independent variables are:

P
(

∂ α u
∂ tα

,
∂ α u
∂xα

,
∂ 2α u
∂ t2α

,
∂ 2α u
∂x2α

, ...

)
= 0, 0 < α ≤ 1, (2.5)

u(x, t) =U(ξ ), ξ = k
xα

α
− c

tα

α
, (2.6)

u(x, t) is a traveling wave solution and c is a constant and will be calculated later.

∂ α

∂ tα
=−c

∂

∂ξ
,

∂ 2α

∂ t2α
= c2 ∂ 2

∂ξ 2 ,
∂ α u
∂xα

= k
∂

∂ξ
,

∂ 2α u
∂x2α

= k2 ∂ 2

∂ξ 2 , ...

using equation (2.6), nonlinear CPDE equation (2.5) can be reduced to a nonlinear ODE equation (2.7):

Q(U,U ′,U ′′,U ′′′, ...) = 0. (2.7)

where the prime denotes the derivation with respect to ξ .

2.2. The extended tanh−coth method

In [25], this method is summarized as follows:
From the Y independent variable and its derivatives:

Y = tanh(ξ ) or Y = coth(ξ ), (2.8)

d
dξ

=
(

1−Y 2
) d

dY
,

d2

dξ 2 =
(

1−Y 2
)(
−2Y

d
dY

+
(

1−Y 2
) d2

dY 2

)
. (2.9)

The tanh−coth method:

U(ξ ) = S(Y ) =
m

∑
k=0

akY k, (2.10)

where ak(k = 0,1,2, ...,m) are constants.
Equation (2.10) can be expanded as follows [26].

U(ξ ) = S(Y ) =
m

∑
k=0

akY k +
m

∑
k=1

bkY−k, (2.11)

where ak(k = 0,1,2, ...,m), bk(k = 0,1,2, ...,m) are constants. The positive integer m can be determined by considering the homogeneous
balance between the highest order derivatives and the nonlinear terms appearing in equation (2.7).
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2.3. The sine-cosine method

In [27], this method is summarized as follows:
The solutions of nonlinear equations is

u(x, t) =

{
λ sinβ (µξ ), |ξ | ≤ π

µ
,

0, otherwise

}
, (2.12)

u(x, t) =

{
λ cosβ (µξ ), |ξ | ≤ π

2µ
,

0, otherwise

}
(2.13)

where λ ,µ and β are parameters to be calculated. µ and c in wave transform are the wave number and the wave speed.
From equation (2.12):

u(ξ ) = λ sinβ (µξ ),

un(ξ ) = λ nsinnβ (µξ ),

(un)ξ = nµβλ ncos(µξ )sinnβ−1(µξ ),

(un)ξ ξ =−n2µ2β 2λ nsinnβ (µξ )+nµ2λ nβ (nβ −1)sinnβ−2(µξ ),

(2.14)

and from equation (2.13):

u(ξ ) = λ cosβ (µξ ),

un(ξ ) = λ n cosnβ (µξ ),

(un)ξ =−nµβλ n sin(µξ )cosnβ−1(µξ ),

(un)ξ ξ =−n2µ2β 2λ n cosnβ (µξ )+nµ2λ nβ (nβ −1)cosnnβ−2(µξ ).

(2.15)

We substitute equation (2.15) or (2.14) in the reduced equation (2.7). We can sum all terms with the same power in cosk(µξ ) or sink(µξ )
and set their coefficients to zero to get a system of algebraic equations. So, we can get all values of parameters µ,β and λ .

3. Applications

Let us investigate traveling wave solutions of space-time fCHE in order to demonstrate the effectiveness of the methods.

3.1. Exact solutions of the fCHE

3.1.1. The extended tanh method

Now we will investigate the solutions of equation (3.1) with the extended tanh method. We will then interpret the results obtained.

∂ α u
∂ tα
− r

∂ α u
∂xα
−6u

(
∂ α u
∂xα

)2
−
(

3u2−1
)

∂ 2α u
∂x2α

+
∂ 4α u
∂x4α

= 0, 0 < α ≤ 1, (3.1)

nonlinear wave equation. We have applied intended tanh method on the Conformable CHE for gaining the exact solutions:

u(x, t) =U(ξ ), ξ = k
xα

α
− c

tα

α
.

Equation (3.1) can be reduced to equation (3.2):

−cU− krU−3k2U2U ′+ k2U ′+ k4U ′′′ = 0, (3.2)

c,r and k are constants.
Balancing U ′′′ with U2U ′ yields m = 1. So, the solution of equation is equation (3.3) format.

U(ξ ) = a0 +a1Y +b1Y−1, Y = tanh(ξ ), Y ′ = 1−Y 2. (3.3)
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Here a0, a1,b1,k and c are constants such that a1 6= 0. Substituting equation (3.3) into equation (3.2), collecting the coefficients of Y i

(i =−4, ...4) and set it to zero we obtain the system

3a3
1k2−6a1k4 = 0,

6a0a2
1k2 = 0,

3a2
0a1k2−3a3

1k2 +3a2
1b1k2 +8a1k4−a1k2 = 0,

6a0a2
1k2−a1kr−a1c = 0,

(a1 +b1)(k2−2k4−3a2
0k2−3k2a1b1)−a0(kr+ c) = 0, (3.4)

6a0b2
1k2−b1kr−b1c = 0,

3a2
0b1k2 +3a1b2

1k2−3b3
1k2 +8b1k4−b1k2 = 0,

6a0b2
1k2 = 0,

3b3
1k2−6b1k4 = 0.

The exact solutions obtained from this system of equations are:

u1 (x, t) =
1

tanh

(
±
√

2
2

xα ±
√

2
2

rtα

) ,

u2 (x, t) =− 1

tanh

±
√

2
4

xα±

√
2

4
rtα

 ,

u3 (x, t) = tanh

(
±
√

2
2

xα ±
√

2
2

rtα

)
,

u4 (x, t) =− tanh

(
±
√

2
4

xα ±
√

2
4

rtα

)
,

u5 (x, t) =±
1
2

tanh

(
±
√

2
4

xα ±
√

2
4

rtα

)
± 1

2tanh

(
±
√

2
4

xα ±
√

2
4

rtα

) ,

u6 (x, t) =±
i
√

2
2

tanh
(
± i

2
xα ± i

2 rtα

)
± 1

2
i
√

2

tanh

(
±

i
2

xα±
i
2

rtα

) ,

(3.5)

where r is arbitrary constant.

3.1.2. The sine-cosine method

Now we will investigate the solutions of equation (3.1) with this method. We will then interpret the results obtained. We have applied the
method on the Conformable CHE for gaining the exact solutions. Using the ξ wave transform, equation (3.1) can be reduced to equation
(3.6):

−cU− krU−3k2U2U ′+ k2U ′+ k4U ′′′+q = 0, (3.6)

c,r and k are constants, q is a constant of integration.
Balancing U ′′′ with U2U ′ yields m = 1. So, the solution of equation is equation (3.7) or equation (3.8) format:

u(x, t) = λ cosβ (µξ ), (3.7)

u(x, t) = λ sinβ (µξ ). (3.8)

We substitute equation (3.7) into the reduced equation obtained from equation (3.6).
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(−k2λ µ +11k4λ 3µ3 +qsin(µξ ))

sin(µξ )
= 0,

(−cλ sin(µξ )− krλ sin(µξ ))

sin(µξ )
= 0,

(−12λ µ3k4 +3λ 3µk2 +a1µk2)

sin(µξ )
= 0,

(6λ µ3k4−3λ 3µk2)

sin(µξ )
= 0.

(3.9)

After the necessary arrangements have been made the following exact solutions obtained:

u7,8(x, t) =

√
3

3
cos−1

(
± r2

6c

(
−1
r

xα − tα

))
. (3.10)

where r and c are arbitrary constants.

4. Conclusion

In this paper we have been successfully obtained traveling wave solutions of the fractional Cahn-Hilliard equation. Many of the results
obtained are new solutions that do not exist in the literature. This hyperbolic solutions are significant for the explanation of many physical
phenomena, ocean engineering and science. This implies that the methods are more powerful and effective in finding the exact solutions
of nonlinear fractional differential equations. Many new solutions can be found with this methods. Using this methods possible to solve
other similar nonlinear equations and systems of equations. The obtained solutions in this research have been found by aid of Maple packet
program.
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[12] A. Bekir, O. Güner, A. C. Cevikel, Fractional complex transform and exp-function methods for fractional differential equations, Abstr. Appl. Anal.,

2013 (2013), Article ID: 426462, 8 pages.
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[26] A. Bekir, A. C. Çevikel, Solitary wave solutions of two nonlinear physical models by tanh−coth method, Communications in Commun. Nonlinear Sci.

Numer. Simul., 14(5) (2009), 1804–1809.
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