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1. Introduction  

 

Since the end of the Second World War to today, 

maintenance has been transformed from failure repairment to 

preventing and predicting the overall failure process. In the 

21st century, maintenance approaches are mostly based on 

system-level analysis which aims to preserve the functions of 

the equipment (Ahmadi et al., 2007).  The aviation sector is a 

highly expensive and rapidly developing industry, and this 

rapid development has increased the expectations of 

preparedness of the aircraft and equipment. Aircraft  

maintenance provides us with safer and more reliable flights 

however, a minor failure in the air may cause fatal problems  

for all crew and passengers. The use of artificial intelligence 

(AI) in aviation, fuel saving, and successful management  

increase operational efficiency, and these issues can support to 

control of air traffic. Besides these benefits, AI techniques 

might also be used in aircraft maintenance to detect failures in  

advance and predict wear and tear before they cause a serious 

breakdown.  

Adhikari and Buderath (2016) examines aircraft  

maintenance strategies and propose a framework for 

condition-based maintenance. They asserted that to decide the 

maintenance type, a maintenance strategy should include the 

criteria; failure characteristics (pattern, rate, consequence, 

severity), failure detectability and diagnosability, cost, system 

availability, and certifiability of the method. Regarding  

uncertainty; Samaranayake (2006) studied the aircraft  

maintenance issues and constraints of the new maintenance 

approaches including uncertainty. Samaranayake and Kiridena 

(2012) studied CBM under uncertainty and found that 

implementation of uncertain maintenance operations requires 

dynamic planning and scheduling which includes rectification , 

re-assembly, materials changes, re-scheduling spare parts, and 

other sources. They claimed that current ERP systems are not 

able to plan simultaneously and dynamically as they are not 

integrated into all data structures of whole aircraft  

maintenance operation, hence they proposed a unitary 

structure to mitigate this drawback. 

Regarding AI techniques in aircraft maintenance; Delft  

University of Technology leads a Project that aims to 

modernize aircraft maintenance using AI techniques. For a 6-

month real-time experiment duration they claim that they are 

successful in modeling the overall maintenance process, 

performing health predictions, and finally simplifying very 

complex maintenance planning. Regarding this project, 

Andrade et al. (2021) used Reinforcement Learning (RL) for 

optimization of the aircraft maintenance scheduling. In their 

real case study, the maintenance data of 45 aircraft were used.  

They found that with the help of this ML technique aircraft 

availability increases, and the number of checks reduces , and 

the fleet availability increases. Basora et al. (2021) used 

supervised machine learning techniques to describe the data 

workflow in aircraft maintenance to determine the difficulties  

regarding the health monitoring of the system.  

Rengasamy et al. (2018) studied deep learning approaches 

to aircraft maintenance, and they identified four main  

architectures Convolutional Neural Networks , Deep Belief 

Networks, Long Short Term Memory, and Deep 

Autoencoders.  Eickemeyer et al. (2013) claim that Bayesian 
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Networks (BNs) are one of the best AI techniques to solve the 

uncertainty problem of capacity planning in maintenance as 

BNs are suitable to solve new problems and process accurate 

forecasts with fewer data. Therefore Dinis et al. (2019) apply 

big data and predictive analytics to aircraft maintenance and 

get positive results in deciding maintenance workloads. From 

this literature review it can be inferred that there are many  

studies on AI supported maintenance however there is almost  

no research on the comparison of these maintenance strategies 

conducted with quantitative decision making methods. 

In this paper, in the second section aircraft maintenance 

strategies are examined in an artificial intelligence context. In 

the third section, with a case study, the three most common 

maintenance approaches are compared using a quantitative 

multi-criteria decision-making technique, besides results and 

discussions are given. In the last chapter, the research is 

concluded.  

 
2. Maintenance in Aviation 

2.1. Maintenance Types in Aviation 
There are many maintenance classifications in the aviation 

industry, main breakdowns are; preventive, predictive, 

prescriptive, and corrective/breakdown maintenance. 

Corrective or breakdown maintenance is performed after the 

failure occurs, it may interrupt flight schedules and might  

cause serious negative effects on the reputation of the 

company, and certainly costs far more expensive than the 

scheduled maintenance. According to its complexity light, 

heavy, base, and hangar maintenance is another classification. 

Regarding periodic checking types, divided into A, B, C, and 

D checks which depend on the scope, duration, and frequency 

of the maintenance requirement. A check is the most frequent 

and has to be done about every 65 hours (Sriram & Haghani, 

2003), however, a D-check consists of painting, stripping, and 

cabin refurbishment, which is performed only one time in 4 

years (Beliën et al., 2012).  

Regarding scheduling, it can be classified as 

scheduled/routine/preventive and unscheduled/non-routine 

maintenance. Generally, preventive and scheduled 

maintenance terms are used interchangeably, as predictive and 

condition-based maintenance is used (Van den Bergh et al., 

2013).  

Prescriptive maintenance combines the advantages of 

descriptive and predictive analyses to predict the failures , 

functionalities, wear and tears. This improves the reliability of 

equipment and saves cost (Koukaras et al., 2022).  Prescriptive 

maintenance is more than providing real-time 

recommendations, but having the most appropriate course of 

action during the operation continues. It analyses data patterns 

and trends to provide the best recommendation (Marques & 

Giacotto, 2019). Meissner et al. (2021) studied a prescriptive 

maintenance approach using a simulation model of 30 days 

and found that it supports reducing waiting times of an aircraft 

on the ground.  

Civil Aviation Authority (CAA) of the United Kingdom 

defines three types of maintenance: (1) Hard time; is 

preventive maintenance performed at specific times, mostly 

including overhaul, servicing, or replacement of spare parts 

according to manuals. (2) On condition; is also preventive 

maintenance but includes testing and inspecting the 

components in a periodical manner to be sure about the 

equipment's functional status. (3) Condition monitoring; is a 

non-preventive maintenance process that includes continuous 

data collection, analysis, and interpretation about the 

equipment's status (Knotts, 1999).  

Three main aircraft maintenance strategies are explained  

with their advantages and disadvantages in Table 1. For the 

first alternative, all non-preventive maintenance like 

unscheduled, corrective maintenance and conditional 

monitoring techniques are merged, as their characteristics are 

similar. 

  

 

Table 1 Aircraft Maintenance Strategies  

No. Maintenance Type Pros&Cons Sources 

1 

Corrective /Unscheduled 

Maintenance and Condition 

monitoring 

 Low cost 

 Non-preventive maintenance process 

 Problem-based repairment process 

 Risk for long and unplanned breakdown durations 

(Knotts, 1999) 

(Paz & Leigh, 1994) 

(Basri et al., 2017) 

(Chen et al., 2012) 

2 Predictive Maintenance 

 Failure detection and prediction 

 Identify problems in critical components (turbines, landing 
gear, etc.)  

 Analyze data and predict the components potential failure 

 Develop inspection  

 Provides advance warnings for some failures 

(Karthik & Kamala, 2021) 

(sparkcognition.com) 

3 Prescriptive Maintenance 

 Identify the best course of action for failures and supports root 
cause analysis  

 Provides AI-driven analysis of historical maintenance  

 Reducing turnarounds by an average of 20 minutes per incident 

 Predicts the remaining useful life of items 

 High cost 

(Meissner et al., 2021) 
(Marques & Giacotto, 2019) 

(Koukaras et al., 2022) 

(sparkcognition.com) 

 

2.2. AI Techniques in Aviation Maintenance  
Airlines suffer from high costs stemming from delays and 

cancellations 30 percent of which are caused by unplanned 

maintenance activities. In the aviation industry, artificial 

intelligence techniques support predictive maintenance to 

predict failures and reduce unscheduled activities by managing 

big data. In the aircraft maintenance process, a serious amount 

of data is generated and processed during the planning stage. 

Especially in unscheduled maintenance, the uncertainty of 

capacity planning affects budgeting, materials management , 

capacity planning, and resource allocation (Samaranayake & 

Kiridena, 2012). 

Many artificial intelligence techniques  support the 

prediction and early detection of failures. Artificial Neural 
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Network (ANN) algorithms are applicable to older machines  

and adaptable to new machines. ANN gives satisfactory results 

in measuring equipment failures e.g. classifies fault with a 

%92 success rate (Biswal & Sabareesh, 2015; Hesser & 

Markert, 2019). Random Forest technique is successful at fault 

detection, prediction of machine states, and identification of 

disk failure (Paolanti et al., 2018). Support Vector Machine 

algorithm which performs regression analysis and pattern 

recognition has the advantage of being low-cost compared to 

classical maintenance, besides its high detection accuracy it 

needs a long training time (Cawley & Talbot, 2010). K-means  

algorithm used for clustering for fault detection which has a 

93% of prediction accuracy in maintenance. It is easy to 

implement however,  it has difficult to decide the number of 

clusters (Durbhaka & Selvaraj, 2016; Amruthnath & Gupta, 

2018). After reviewing the studies on AI Techniques and 

maintenance types in aviation, to the best of my knowledge, 

this study is unique in the literature regarding the comparison 

of artificial intelligence-supported aircraft maintenance 

approaches. 

 

3. Case Study 

 

To determine the most appropriate alternative for aircraft  

maintenance a multi-criteria decision-making method is 

adopted. Regarding the uncertain nature of the maintenance 

operations, q-ROF TOPSIS method (Pinar & Boran, 2020) is 

applied which is successful in modeling and quantifying 

human subjective decision making. Then Pinar et al. (2021) 

and Taghipour et al.(2022) used q-ROF TOPSIS method in  

their research on supplier selection and speech recognition 

product selection. In this section first, the basics of fuzzy sets 

are mentioned, then the methodology is briefly given and 

finally, a case study is presented. 

 

3.1. Fuzzy Set Theory 
Zadeh (1965) proposed the fuzzy set, Atanassov (1986) 

extended it to intuitionistic fuzzy set (IFS), in which A in X 

can be described as: 

 

 , ( ), ( )A AA x x v x x X    (1) 

 

where the functions;  ( ): 0,1A x X   is the degree of 

membership of x,  ( ): 0,1Av x X      is the degree of non-

membership of x, and, 

 

0 ( ) ( ) 1A Ax v x    (2) 

 

Yager (2013) extended IFS to Pythagorean fuzzy sets 

(PFS) and then (Yager, 2016); Yager and Alajlan (2017) 

generalized IFS and PFS and proposed q-rung orthopair fuzzy  

sets (q-ROFs). In these fuzzy sets , the sum of the qth powers of 

the membership and non-membership degrees is equal to or 

less than one and they are formulized as follows:  

 

 , ( ), ( )A AA x x v x x X                 (3) 

 

where  : 0,1A X   and  : 0,1Av X   are membersh ip  

and non-membership degrees of x X  to A respectively and: 

 

   
q q

( ) ( ) 1A Ax v x              (4) 

 

The hesitation degree ( )A x  is as follows: 

 
1/

( ) 1 ( ( )) ( ( ))
q

q q

A A Ax x v x                  (5) 

 

3.2. Methodology 
In this subsection to save some space q-ROF TOPSIS 

methodology (Pinar & Boran, 2020)  is briefly mentioned. Let  

 1 2 3A  , , , . . . ,AmA A A be a set of alternatives and 

 1 2 3X  , , , . . . ,XnX X X  be a set of criteria the steps are:  

Step 1: Decision makers' weights are calculated using 

linguistic terms as described in (Pinar & Boran, 2020). 

Step 2: Criteria are determined by DMs and alternatives are 

evaluated in linguistic terms. These terms are converted to q-

ROF numbers like ( ), ( ) ( 1,2,3,..., )k k kµ x v x k l    and 

aggregated by the q-ROFWA aggregation operator (Liu & 

Wang, 2018). So, aggregated q-ROF decision matrix is 

obtained.  

Step 3: Criteria weights are determined in linguistic terms  

and calculated according to q-ROF TOPSIS method. 

Step 4: Build up the aggregated weighted q-ROF decision 

matrix aggregating the criteria weights with the decision 

matrix obtained in the second step. 

Step 5: Calculate the Positive Ideal Solution (q-ROFPIS) 

and Negative Ideal Solution (q-ROFNIS)  as usual in TOPSIS 

method. While calculating take into consideration the benefit 

and cost criteria. 

Step 6. Determine the separation measures by calculating  

the difference between maintenance strategy alternatives using 

Euclid distance.  

Step 7. Calculate the relative closeness coefficient 
*iC  

using Eq.(6) and rank all the alternatives.  

* *0 1i

i i

i i

S
C where C

S S



 
  


         (6) 

3.3. Case Study of Maintenance Strategy Selection  
Corrective, predictive, and prescriptive maintenance which  

are the most common three aircraft maintenance strategies are 

determined as alternatives. There are also some other 

maintenance methods such as A-D checks or preventive 

maintenance in the aviation industry. These approaches are 

excluded in this study as they are mostly routine checks or time 

based/periodic maintenance methods.  

In the first step, the decision makers’ expertise is 

determined as DM1:Very High, DM2:High, and DM3: 

Medium High and converted to numbers as DM1: 0.384, DM2: 

0.331, and DM3: 0.285. 

 

Table 2.a Linguistic Term Scale 

Linguistic terms     Abbreviation 

-Extremely High level (EH) 

-Very high level (VH) 

-High level  (H) 

-Medium High level  (MH) 
-Medium level  (M) 

-Medium Low level  (ML) 

-Low level  (L) 

-Very low level  (VL) 

-Extremely Low level  (EL) 
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In the second step after a literature search (Kumar et al., 

2013; Parida & Chattopadhyay, 2007; Syan & Ramsoobag, 

2019) and using my maintenance job experience following  

evaluation criteria are determined as performance indicators; 

(1) maintenance cost, (2) reliability (minimization of the  

 

failure rate),  (3) failure detection (identifying the failure in  

advance with high accuracy), (4) downtime period 

(maximization of the readiness of the aircraft). Then DMs 

evaluate all alternatives regarding these criteria with linguistic 

terms as indicated in Table 2.b. using the scale in Table 2.a. 

Table 2.b DMs Evaluations in Linguistic Terms  

 KV1  KV2  KV3 

 A1 A2 A3  A1 A2 A3  A1 A2 A3 

X1 M H VH  ML MH H  ML H EH 

X2 MH H VH  H VH EH  H VH VH 

X3 M VH EH  M H VH  M VH VH 

X4 EH MH M  H M M  VH MH M 

 

After the conversion of these terms to q-ROF numbers, 

all three DMs evaluations are aggregated, and the decision 

matrix (R) is obtained as follows: 
 

 X1 X2 X3 X4 

A1 [0.494;0.610;0.867] [0.717;0.385;0.831] [0.550;0.550;0.874] [0.887;0.230;0.661] 

R=    A2 [0.722;0.380;0.828] [0.819;0.284;0.753] [0.824;0.279;0.748] [0.622;0.481;0.865] 

A3 [0.874;0.242;0.683] [0.897;0.211;0.645] [0.903;0.205;0.634] [0.550;0.550;0.874] 

 

In the third step, importance degrees are evaluated by 

DMs and their weights are determined as: 

X1 X2 X3  X4 

0.225 0.287 0.226  0.262 

 

In the fourth step criteria weights are aggregated with the 

decision matrix obtained in the second step and as a result, the 

weighted aggregated q-ROF decision matrix (R’) is obtained 

as follows: 

 X1 X2 X3 X4 

A1 [0.305;0.895;0.634] [0.498;0.761;0.758] [0.343;0.873;0.664] [0.646;0.680;0.746] 

R’=    A2 [0.465;0.805;0.723] [0.589;0.697;0.770] [0.553;0.749;0.743] [0.411;0.825;0.717] 

A3 [0.603;0.727;0.735] [0.675;0.640;0.755] [0.639;0.699;0.735] [0.360;0.855;0.690] 

 

In the fifth step the positive ( A ) and negative ( A ) 

ideal solutions are calculated and presented in Table 3 (a-b):  

 

Table 3.a. Positive Ideal Solutions 

 

 

 

 

 

 

 

 

Table 3.b. Negative Ideal Solutions 

       µ        v        π 

X1 0.603 0.727 0.735 

A
=  X2 0.498 0.761 0.758 

X3 0.343 0.873 0.664 

X4 0.646 0.680 0.746 

 

In the sixth step the differences between three maintenance 

strategy alternatives are calculated by the help of Euclid  

distance, 
iS   and

iS   values and results ( *iC ) are indicated in  

Table 4. 

 

 

 

Table 4. Results  

 
iS 

 
iS 

 *iC  

A1 0.214 0.136 0.388 

A2 0.099 0.169 0.630 

A3 0.136 0.214 0.612 

 

In the last step we calculate and rank all the alternatives 

from the most appropriate aircraft maintenance strategy to less 

appropriate one as A2> A3 >A1 which indicates that predictive 

maintenance is better than other strategies. 

To validate the results parameter analysis is performed  

using the q parameter values between 2 and 10 as indicated in  

Figure 1. 

 

 

 

 

 

 

 

 

 

 

 

        µ       v       π 

X1 0.305 0.895 0.634 

A
=  

X2 
0.675 0.640 0.755 

X3 0.639 0.699 0.735 

X4 0.360 0.855 0.690 
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  Figure 1. Results of Parameter Analyses  

 

3.4. Results and Discussion 
As three maintenance approaches are examined and 

compared it's obviously seen that the first alternative 

(corrective /unscheduled maintenance and condition 

monitoring) has a lower performance than the other two 

approaches. The main reason might be the nature of the 

corrective maintenance which has no preventive action and 

begins its performance after a problem occurred. Even some 

AI techniques are used, it might be too late to take measures 

after a failure occurs and increases the suspension period of the 

flight schedule. Although the maintenance cost is relatively  

high in both two methods, reliability and readiness of the 

aircraft, and failure detection performance are far better 

compared with the first alternative maintenance approach.  

Comparing predictive and prescriptive maintenance there 

seems a minor difference on behalf of predictive maintenance 

which may come from the effect of prescriptive maintenance 

costs a bit higher than the other one. In both approaches AI 

methods especially machine learning techniques such as RF, 

ANN, SVM, and k-means algorithm support the maintenance 

process positively and make the aircraft maintenance 

performance better. 

Regarding the results of the parameter analyses, due to the 

nature of the q-ROF sets, while the q level increases the ratings 

of the alternatives approach to 0.5. Hence, q=3 generally gives 

us the most stable results, however in between 2-10 its 

obviously seen that the Alternative 2 and 3 are far more better 

than Alternative 1.  Therefore, these results of the parameter 

analyses clearly shows the validity of our method and the 

positive effect of AI in aircraft maintenance. 

 

4. Conclusion 

Maintenance is a serious and expensive process in the 

aviation industry different from other sectors. Losing time with  

repair and unscheduled maintenance also costs too much for 

aviation companies. Even though they have some costs in the 

beginning phase, predictive and prescriptive maintenance 

strategies help these companies on preventing aircraft failures  

and reduce breakdown periods. Therefore, a decision method 

for an optimum aircraft maintenance strategy is  proposed and 

three strategies are compared concerning cost, reliability , 

failure detection, and downtime period. The results of q-ROF 

TOPSIS method show that the support of AI techniques is 

highly important for aircraft maintenance. A parameter 

analysis is also performed to validate the method. The main  

contributions of this article are (1) reviews the AI supported 

aircraft maintenance strategies (2) evaluates and compares 

Artificial Intelligence-supported aircraft maintenance 

strategies with a fuzzy quantitative decision making method. 

As a future study, specifically machine learning techniques 

effects on aircraft maintenance might be studied. Besides, 

other q-ROF decision making methods can be applied on AI 

supported aircraft maintenance approaches to make 

quantitative comparisons.  
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