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Abstract 

Silicon carbide nanotube (SiCNT) come forward in the great variety of nanotubes with higher durability until 1600 
oC (in air) while carbon nanotube can stay stable until 600 oC (in air). First five buckling loads of single SiCNT 
placed between source and drain metal electrodes in nano sized field effect transistors (FET) is investigated using 
two different molecular dynamics methods. L.A.M.M.P.S. software and Gromacs package is used to perform 
molecular dynamics analyzes. Armchair structure of SiCNT with chiralities (10,0), (12, 0), (14, 0), (16, 0) were 
selected with 400, 480, 560, 640 atoms respectively. Results demonstrate clearly that longest nanotube perform 
lower stability as nanotubes becomes fragile with more atom numbers. Except from (10, 0) armchair SiCNT, first 
mode occurs at lowest load and rise as the number of mode arise.    
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1. Introduction 

Fullerenes may be the first steps into nanomaterials which was emerged in the mid- 1980s. 
Krästschmer et al. [1] introduced the bulk production of fullerenes. Fullerene can be stated as 
an allotrope of carbon which consists of carbon atoms connected by both single and double 
bonds in shape of hollow sphere, ellipsoid, tube, or many other shapes. The interest in carbon 
nanomaterials remained limited as the potential were not fully understand. In 1991, with the 
discovery of carbon nanotube (CNT) by Iijima [2], carbon nanostructures gained wide interest 
all around the world due to superior mechanical properties. In 2008, Wu et al. [3] presented the 
potential of using silicon carbide nanotube (SiCNT) in gas sensors. It is presented that CO and 
HCN molecules can be absorbed to Si atoms on the wall of SiCNTs with binding energies as 
high as 0.70 eV and can attract finite charge from SiCNTs. The potential of sensitivity and 
accurate results in gas sensing using SiCNT pointed researchers to further researches. In 2011, 
Wang and Liew [4] presented the SiCNT performing as a highly sensitive gas chemical sensor 
for formaldehyde comparing to CNT. The interaction between HCOH and SiCNTs was 
presented using density functional theory (DFT). Apart from absorbing CO and HCN molecules 
on SiCNT Jia et al. [5, 6] investigated the SO2 absorbing potential on (5, 5) zigzag SiCNT using 
DFT. Chemisorbing of SO2 molecules to the Si–C bonds of SiCNTs with a result of generating  
different charge distribution, resulting in the breaking of some S–C bonds. Recently, Lin et al. 
[7] presented that phosphorus-doped SiCNT (P-SiCNT) perform better than classical SiCNT 
on sensing SO2 molecules using DFT and MD simulation methods. In 2022, Singh [8] 
investigated sulfur-doped SiCNT for detecting liquefied petroleum gas at room temperature.  
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Composites of silicon based nanostructures with carbon based structures gained attention. 
Dzunda et al.  [9] investigated the mechanical, physical properties and tribological behavior of 
four types of silicon carbide composites with addition of carbon nanotubes to enhance the 
electrical conductivity of nanotube. For two composites electrical conductivity reached values 
of 1448 S/m and 2873 S/m. Shen et al. [10] investigated the fatigue strengthening of 
carbon/carbon composites modified with carbon nanotubes and silicon carbide nanowires. 
Taguchi et al. [11] presented the synthesis of a novel hybrid carbon nanomaterials inside silicon 
carbide nanotubes using ion irradiation of a C-SiC coaxial nanotube with 200-keV Si ions at 
room temperature. Taguchi et al. accomplished to obtain one-dimensionally stacked graphene 
nanodisks with diameters less than 50 nm with cylindrical MWCNTs, inside an amorphous 
SiCNT. Tony et al. [12], using microwave heating, presented the synthesis of one-dimensional 
silicon carbide nanomaterial from the blend of SiO2 particles with two types of CNTs. This 
work demonstrated that types of one dimensional SiCNWs (hollow or solid) can be selected  
using various types of CNTs together with proposing a high efficiency microwave heating 
method. Uzun [13] presented the production of reinforced aluminum foam using SiC particles 
and CNT together and separately. Powder metallurgy method was used to produce SiC particles 
and CNT reinforced aluminum foam. It is clearly demonstrated that addition of reinforcing 
affected the elastic–plastic deformation behavior. Yang et al. [14] presented the 
electromagnetic-shielding of CNT/graphene foam (GF)/SiC composites by in-situ growth of 
CNT in GF resulting in superior electromagnetic interface (EMI) shielding effectiveness (SE). 
Zhang et al. [15] developed a one-step method to synthesize Si/CNTs nanocomposite. A 
magnesium reduction process was developed using SiO2 particles.  Si/SiC/CNT nanocomposite 
were obtained for using in lithium ion batteries (LIBs) with a stable capacity of ~1100 mAh 
g−1 together with a capacity retention of about 83.8% at a current density of 100 mA g−1 after 
200 cycles. 

As setting up a new laboratory to perform nano sized analyzes can reach astronomical costs, 
researchers prefer to perform analyzes using classical mechanic [16-19] which leads to give 
non-accurate results, higher order continuum mechanics theories such as strain gradient [20-
23], couple stress [21, 24-26], nonlocal elasticity  [27-30], surface elasticity [31-35] etc. 
Furthermore, finite element [36, 37] and DSC method [38-43] methods were also used to 
perform analyzes without the need of a lab. On the other hand, modal and bending analyzes of 
nanostructures has been one of the most applied investigation on nanostructures [44-
52].Theoretical works were promising in case of the ability to perform hundreds of analyzes in 
very short time [38, 53-61]. The most important disadvantage in theoretical works were the 
accuracy of methods used. It is not always possible to check the accuracy of method for each 
samples analyzed.  

Molecular dynamics (MD) methods differ from other methods as researchers have the ability 
to model each atom separately. This ability leads to very accurate result with a usage of valid 
model. The interaction between both bonded and non-bonded atom is modeled in MD 
simulations. Another advantage of modeling each atom separately is to model imperfect 
nanostructures such as damaged structures or particular nanostuctures. 

2. Silicon Carbide Nanotube (SiCNT) 

Carbon based nanostructures such as graphene, fullerene, and CNTs has been the keystone of 
nanomaterials. First, with Young’s modulus around 1000 GPa, CNTs attracted attention for a 
limited variety of potential using area with very high surface to volume ratio. After years, 
extraordinary electrical conductivity of CNT were introduced. Together with superior 
mechanical properties, electrical conductivity improved the interest to nanostructures 
drastically. Superior conductivity with very high durability made possible to use nanostuctures 
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in microelectromechanical (MEMS) and nanoelectromechanical systems (NEMS). 
Furthermore, the resistance to high-temperature of CNT and carbon based nanomaterials were 
limited. Due to the limited durability in high temperatures, scientists have developed a new 
structure of nanotube [62-64]. The structure consist of silicon (Si) atoms together with carbon 
atoms. Si atoms bonded to C atoms formed a novel structure in sheet form called silicon carbide 
sheet. Analyzes demonstrated that the durability under very-high temperatures were promising 
while the mechanical strength were not as high as fully carbon based structures. Silicon carbide 
nanotubes (SiCNTs) can be obtained by simply rolling silicon carbide sheets. SiCNT can keep 
stable until 1600 oC (in air), whereas Carbon nanotubes were limited to stay stable until 600 oC 
[65, 66]. Silicon based structures come forward with its strength to high temperature. In Fig. 1, 
the process of obtaining SiCNT from silicon carbide sheet is demonstrated. As it can be seen, 
the easiest way to obtain nanotube from nanosheet is to simply roll the flat structure until 
bonding. 

 

 

 

  

Fig. 1. Producing SiCNT from Silicon Carbide Sheet 

Modeling nanotubes using continuum mechanic and MD simulation has great difference. As it 
can be clearly seen from bottom part of Fig. 2, the nanotube transform to cylindrical 
homogenous structure in continuum mechanic. This can lead to non-accurate results. On the 
other side, as it can be seen from the top part of Fig. 2, modeling each atoms separately in MD 
simulation would lead to more accurate results.  
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Fig. 2. Modeling SiCNT on MD simulation (top) and continuum mechanic (bottom) 

Nanostructures can be presented using three main groups comparing bonding angles. The angle 
of nanostructures are rolled is represented by a pair of indices (n,m). Here ‘n and m’ denote the 
number of unit vectors along two directions in the hexagonal structures of silicon carbide sheet. 
As it can be seen in Fig. 3, if m=0, the structure is called zigzag, and if n=m, the structure is 
called armchair. In any other case, the structure will be called chiral. Armchair, zigzag, and 
chiral nanotubes have different physical, mechanical, and electrical properties which are 
neglected in continuum mechanic. In analyzes, SiCNTs with (10, 0), (12, 0), (14, 0), (16, 0) 
chirality of nanotubes are examined with following given stoichiometries in Table 1.  

Table 1. Stoichiometries of SiCNTs 
Chirality Diameter (nm) Numbers of atoms in sample 

(10, 0) 0.9924 400 
(12, 0) 1.1091 480 
(14, 0) 1.3893 560 
(16, 0) 1.5878 640 

 

 

Fig. 3. Armchair, zigzag, and chiral SiCNT [65]  



K. Mercan, O. Civalek 

 44 

Silicon carbide nanostructures are widely used in gas sensors due to its durability under high 
temperature [67]. CO and HCN gases can be captivated on SiCNT at Si lattice sites in sensors. 
Any captivation on sensor leads to fluctuation in binding energy. Fluctuation in binding energy 
change the conductivity of SiCNT on sensor. Electro-transducers measures the absorbed gas 
molecules [68].  Field effect transistors (FET) is presented in Fig. 4. As it can be seen from Fig. 
4 the nanotube take place between source and drain metal electrodes.  

 

Fig. 4. SiCNT in NEMS 

 

3. Large-Scale Atomic/Molecular Massively Parallel Simulator (LAMMPS) 

Molecular dynamics (MD) method allows to examine the material properties and dynamic 
behavior of nanoscaled structures such as nanotubes, nanoplates etc. MD differ from other 
methods in case of the ability to calculate each samples material properties separately from the 
interactions between atoms. This create the opportunity to be able to analyze imperfect 
structures with more accurate results. The reactive empirical bond order potential (REBO) 
which was exposed by Brenner in 1990 can be accepted as the starting point of calculating 
potential between atoms of hydrocarbons including nonlocal effect [69]. REBO is based on 
Tersoff’s covalent-bonding formalism and include extra terms for correcting overbinding. In 
our previous work, interatomical potentials calculations was expressed as follow [70]: 

2𝐸 = ∑% ∑ 𝑓'(𝑟%*+ ,𝑓-(𝑟%*+ + 𝑏%*𝑓0(𝑟%*+1*23    (1) 

Where 

𝑓-(𝑟 ) = 𝐴𝑒(89:;)     (2) 

𝑓0(𝑟 ) = −𝐵𝑒(89>;)     (3) 
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Where i,j and k represent the atom numbers, 𝜃 is the angle between atoms, 𝑟 	is the distance 
between Si and C atoms. Furthermore, 𝑓- act in place of a two-body term,  𝑓?  represent cutoff 
term while 𝑓0 stand for three-body interactions.  

4. Gromacs Package 

Gromacs is a package which allow to perform molecular dynamics analyzes using interactions 
between neighboring atoms. Nanotubes were modeled subjected to compressive loading with 
different geometric parameters. To calculate the interactions between atoms, the force 
potentials from both bonding together with nonbonding interactions needs to be taken into 
consideration. Non-bonding interactions occurs due to van der Waals force instead of 
electrostatic interactions. Assorted potential functions can be used to obtain forces needed. In 
this paper Lennard-Jones potentials were used. The equation of motion to obtain the 𝑖hi atoms 
force can be stated as  

𝐹% = ∑ k∅XY(;XY)
k;XY

;Y8(;X)
m;Y8(;X)m

n
*o3
*2%

     (8) 

Whilst dynamical process, the location of calculated 𝑖hi atom were presented as 𝑟%(𝑡) at specific 
time (t). Newton’s second law were followed on the differ in atomic positions leading to 
capturing the fluctuation in the energy of the system. Small time steps were applied to capture 
the fluctuation as follows together with Verlet algorithm to reduce computational time 

𝐹% = 𝑚%
k>;X
kh>

, 𝑖 = 1,2, … . , 𝑁     (9) 

 

4. Numerical Results 

In this section the comparative buckling analysis of SiCNT using L.A.M.M.P.S and Gromacs 
package is presented. Armchair SiCNT structures with chiralities (10, 0), (12, 0), (14, 0), (16, 
0)  are examined. Calculated Young’s modulus of SiCNTs with (10, 0), (12, 0), (14, 0), (16, 0) 
chirality varies from 508.3 GPa to 518.1 GPa.  
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a) (10, 0) b) (12, 0) 

 

c) (14, 0) d)  (16, 0) 
 

Fig. 5. First five modes of stability analysis  

Armchair (16, 0) SiCNT with 640 atoms perform lowest stability comparing to other structures 
for both MD simulation results while (10, 0) with 400 atoms perform highest stability. 
L.A.M.M.P.S. analysis for (10, 0) armchair SiCNT results in lower second mode which means 
second mode shape occurs before first mode of buckling while Gromacs differ from 
L.A.M.M.P.S. in this analysis. Results are plotted for first five modes of (10,0), (12, 0), (14, 0), 
(16, 0) in Fig. 5 (a-d) respectively. 

5. Conclusions 

As biocompatible materials, SiC nanostructures have many applications in biomedicine. SiC is 
used in coatings on biomedical implants with excellent wear-resistant and non-hazardous to 
health, also SiC films with very small pores are used as semi-permeable biomaterials. 
Biomorphic SiC ceramics coated with bioactive glass show great promise as dental and 
orthopedic implants with improved mechanical and chemical properties. In current work 
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SiCNTs stability analysis is investigated using two different molecular dynamics packages. 
Results indicates that the size of  nanotube effect the stability as nanotubes becomes fragile 
with more atom numbers. Except from (10, 0) armchair SiCNT, first mode occurs at lowest 
load and rise as the number of mode arise. 
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